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ABSTRACT: Simple helix�coil transition theories have been indispensable tools in the analysis of data reporting on the reversible
folding of α-helical polypeptides. They provide a transferable means to not only characterize different systems but to also compare
different techniques, viz., experimental probes monitoring helix�coil transitions in vitro or biomolecular force fields in silico. This
article addresses several issues with the application of Lifson�Roig theory to helix�coil transition data.We use computer simulation
to generate two sets of ensembles for the temperature-controlled, reversible folding of the 21-residue, alanine-rich FS peptide.
Ensembles differ in the rigidity of backbone bond angles and are analyzed using two distinct descriptors of helicity. The analysis
unmasks an underlying phase diagram that is surprisingly complex. The complexities give rise to fitted nucleation and propagation
parameters that are difficult to interpret and that are inconsistent with the distribution of isolated residues in the α-helical basin. We
show that enthalpies of helix formation are more robustly determined using van’t Hoff analysis of simple measures of helicity rather
than fitted propagation parameters. To overcome some of these issues, we design a simple variant of the Lifson�Roig model that
recovers physical interpretability of the obtained parameters by allowing bundle formation to be described in simple fashion. The
relevance of our results is discussed in relation to the applicability of Lifson�Roig models to both in silico and in vitro data.

’ INTRODUCTION

Elucidating the helix�coil transition microscopically has long
been deemed to be of utmost importance for the understanding
of protein folding, and the reader is referred to excellent review
articles for further reading.1,2 The process is of such elementary
nature that it has also become an indispensable benchmark for
the development of biomolecular force fields.3�7

Helix�coil transition data are often analyzed in an established
statistical framework such as that of Zimm and Bragg,8 Gibbs and
DiMarzio,9 or Lifson and Roig (LR).10 In the latter, it is assumed
that the potential energy function of the system can bemapped to
terms written over the ϕ/ψ angles of individual polypeptide
residues with the exception of an α-helical hydrogen-bonding
term coupling residue i energetically to residues i � 1 and i + 1.
This term is triggered as soon as three consecutive residues are in
a helix-competent conformation, and the resultant favorable
energy contribution is mapped exclusively onto residue i. In
the absence of hydrogen bonds, the statistical weights of helix-
competent vs helix-incompetent (“coil”) states correspond to the
respective, partial integrals over the Ramachandran map that due
to the lack of residue�residue coupling can be formulated for
each residue individually:

u0i ¼
Z

ci
e�βUðj,ψÞdjidψi ð1Þ

v0i ¼
Z

hi
e�βUðj,ψÞdjidψi ð2Þ

Here, ci and hi denote the helix-incompetent and helix-
competent regions of ϕ/ψ space, respectively, while U is the
(unknown) potential energy function. The LR model stipulates
that whenever three consecutive residues are in helical confor-
mation, stabilization occurs and another statistical weight, w0

i, is
invoked. Recognizing the arbitrary absolute scale of the energy in

the system, the statistical weights can be normalized by u0. Then,
the low level of coupling allows the partition function to be
expressed in matrix form:10
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Here,Nr is the number of residues with peptide bonds on both
sides and is equivalent to the number of amino acids for capped
polypeptides. If we ignore any sequence specificity (including
end effects), the matrices become identical, i.e., all residue
subscripts can be dropped, and it is possible to obtain global
averages as follows:

ÆNhæ ¼ ∂ln Z
∂ln w

ÆNsæ ¼ ∂ln Z
∂ln v12

ð4Þ

Here, Nh denotes the number of α-helical hydrogen bonds,
andNs the number of helical segments. Matrix element v12 refers
to a single instance of v in the matrix. Note that Ns by definition
includes segments of only two helical residues in a row with no
hydrogen bonds formed. This is because the formalism in eq 3
only scans three consecutive residues, and v12 corresponds to
states of the type “hhc” (helix, helix, coil) regardless of con-
figuration of preceding residues. Further illustrations of LR
theory using a simple example are provided in the Supporting
Information.
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Because w denotes the ratio of the statistical weights of
hydrogen-bonded and coil states for an individual residue, it is
often assumed to correspond directly to the stepwise equilibrium
constant of helix elongation, i.e., �β�1 ln w ≈ ΔGhb, where β is
the inverse thermal energy, and ΔGhb the free energy gain
associated with the formation of a single hydrogen bond. It is
possible to determine w from equilibrium experiments that are
able to estimate helix content directly, such as temperature-
dependent circular dichroism (CD) spectroscopy, by fitting the
raw data to a two-state model that allows extraction of ÆNhæ and
subsequent fitting to yield w. This requires knowledge of v, which
is often obtained independently or can be fit if data for multiple
chain lengths are available.11 Limitations of the LR model were
established and analyzed soon after publication of the original
model, and extensions were suggested.12,13 Throughout the past
two decades, specific modifications were proposed that incorpo-
rate helix capping,14 short-range side chain interactions,15 or
extensions beyond the triplet model.16

Experimental analyses of the helix�coil transition designed to
extract more than just helix content and to interpret the results in
terms of a microscopic theory have had to utilize assumptions to
avoid overfitting the data. Rohl et al.17 used the kinetics of amide
proton exchange to show that a single model with essentially
three parameters can fit data at a single temperature for poly-
peptides of the series Ace-(AAKAA)mY-NH2 reasonably well for
values of m ranging from 1 to 10. Such a simple model was
obtained by assuming a homopolymer and by assuming that
exchange in the only considered hydrogen-bonded state
(α-helix) is completely quenched. Then, the free parameters
were the exchange rate in the coil-state and the aforementioned
helix nucleation and propagation parameters.

Later, the same authors showed that, for a nearly identical
series of peptides and over a limited range of temperatures, two
types of fits with similar quality could be obtained, both using a
T-independent helix nucleation parameter and again assuming
homopolymeric behavior.18 In the first fit, T-dependent propa-
gation parameters were derived from CD, and the exchange rates
in the coil-state were fitted, whereas in the second, the exchange
rate was fixed to that observed for the shortest peptide, and helix
propagation parameters were fit. These fits show small systematic
deviations and yielded a slight inconsistency that was interpreted
as stemming from the inapplicability of the exchange rate in the
canonical coil state (shortest peptide) to the coil state seen for
longer peptides capable of forming helices.

Thompson et al.19 constructed a kinetic zipper model for a
similar alanine-based peptide (termed FS-peptide)20 to simulta-
neously interpret data from laser T-jump experiments and CD.
They found that the equilibrium data could be equally well
reproduced by different parameter sets but that relaxation rates
were only consistent with values of the T-independent nuclea-
tion parameter that are significantly larger than those reported by
Rohl and colleagues.17 In their model, Thompson et al. were,
however, restricted to the assumption of only a single helical
segment being allowed to form. Examples, such as the three
studies mentioned above, have led to the transferability of
parameters derived from LR models being questioned.21,22

Based on the extensive literature on the subject, several
assumptions inherent to the application of LR models to
helix�coil transition data emerge as questionable:
(1) Even in the absence of helix formation, independence

of the backbone angles of individual residues does not
hold.22,23

(2) Helix stability does not just depend on hydrogen bonds
but encompasses solvation and hydrophobic terms.24�26

(3) Scattering experiments and in silico studies have pro-
posed that the single-sequence approximation is mislead-
ing even for relatively short peptides.27,28 It appears quite
likely that helix bundles form through stabilization by
tertiary interactions that are not representable in LR
models. Such interactions are also one possible expla-
nation for the observed length-dependent propagation
behavior of α-helices.29�31

(4) As a corollary to the previous point, it is worthmentioning
that LR models predict that very long helices are extre-
mely stable, which contrasts with the low prevalence of
long helices in biological systems: The likelihood of
observing helices longer than 15 residues in globular
proteins decreases rapidly,28 and even putative coiled-coil
domains rarely exceed 150 residues despite the pres-
ence of stabilizing and specific tertiary interactions.32 Of
course, these data provide indirect evidence only as the
impacts of evolutionary pressures vs physicochemical
properties cannot be delineated.

In addition, applications of LRmodels tomolecular simulation
data have revealed that in almost all molecular force fields, the
statistical likelihood of occupying the region of Ramachandran
space compatible with α-helical hydrogen bonds is larger than
proposed nucleation parameters suggest. Nucleation parameters
are routinely overestimated when analyzing in silico data,5,33,34

and this constitutes either a fundamental error in force fields or a
disconnect between in vitro and in silico interpretations of helix
nucleation.

In this contribution, we employ molecular dynamics simula-
tions in an all-atom representation of the FS-peptide (acetyl-
A5(AAARA)3A-N-methylamide) coupled to the recently devel-
oped ABSINTH implicit solvation model.34 Our aim was to
generate a diverse but statistically sound set of data that highlight
limits of applicability and interpretability of LR fits and para-
meters to computational and atomistic sampling of the tempera-
ture-dependent helix�coil transition.We employ a wide range of
simulation temperatures and compare models differing in the
imposed rigidity of backbone bond angles to explore the
thermodynamics of the transition in richer detail. The known
impact of such constraints35 is found to be large and is affecting
qualitative features of the sampled ensembles as well. Using our
simulation data, we show that LR fits yield results that are
unsatisfactory either in terms of parameter interpretability or in
terms of fit accuracy. We highlight the lack of transferability by
showing that the temperature dependence of the fitted helix
propagation parameter cannot be connected easily to the bulk
behavior of the peptide. Finally, we suggest additional tests and
alternative routes for analyzing in silico data, the most important
one being the inclusion of the mean number of isolated residues
in the α-helical basin, ÆN1æ, in the LR fitting.

’METHODS

Simulation Design. The FS-peptide (acetyl-A5(AAARA)3A-
N-methylamide)20 was enclosed in a spherical droplet of 40 Å
radius along with explicit sodium and chloride ions compensating
the peptide’s positive charge and adding a background electrolyte
concentration of ∼150 mM. Starting configurations were ran-
dom aside from satisfying excluded volume requirements. The
effects of water were described by the ABSINTH implicit
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solvation model,34 which is a group transfer-based model similar
in spirit to the EEF1 model36 and based in parts on the OPLS-
AA/L force field37 (see Methods in Supporting Information for
further details). The simulations integrated Langevin equations
of motion at constant volume with a time step of 2.5 fs and a
universal atomic friction coefficient of 1.2 ps�1.38 With these
settings, integration was stable, and net temperature artifacts due
to integrator, cutoff, and other noise terms assumed maximal
values of∼4K for the highest temperature (see below). The use
of a Langevin integrator neglecting hydrodynamic interac-
tions with artificially low friction in conjunction with an implicit
solvent model means that the resultant conformational dynamics
will not be physically realistic. The motivation for this setup lies
in obtaining converged equilibrium data of the thermodynamics
of the helix�coil transition as a function of temperature, which
allow rigorous assessment of LR models.
To additionally enhance sampling, we employed the replica�

exchange (RE) technique39 and constructed two overlap-
ping schedules each consisting of 16 temperatures. The low-
temperature schedule used 220, 227, 234, 242, 250, 259, 268,
278, 288, 299, 310, 322, 334, 347, 360, and 374 K, and the high-
temperature schedule used 260, 268, 276, 284, 292, 300, 310,
320, 330, 340, 350, 360, 375, 390, 410, and 440 K. Exchanges
between neighbors were attempted every 25 ps in either case.
The average acceptance probability for the swap moves generally
exceeded 33% except for terminal replicas. The low exchange
attempt frequency was intended, and the results show that
sampling is robust regardless. Comparison of results from the
two completely independent runs across the overlapping region
allows a simple and rigorous assessment of sampling quality. It
should be noted that implicit solvents do not exhibit phase
transitions, thereby allowing the use of unusual temperatures. An
exact mapping of simulation temperatures to realistic ones is
typically not possible. Specifically for the ABSINTH continuum
solvation model, temperatures between 280 and 350 K may be
reasonably well-represented,34 but the primary reason for using
“unphysical” temperatures lies in our aims to create as diverse an
ensemble of helical and coil states as possible and to optimize
benefits from RE sampling to obtain statistically sound data.
Residue-based neighbor lists were recalculated every 5 steps,

and interactions were generally truncated at 12 Å. Interactions
between residues carrying a net charge were not truncated at all
but instead computed in a monopole approximation if their
distance exceeded 12 Å. The total simulation length of an
individual temperature replica was always 250 ns, with the first
50 ns being discarded as equilibration. Two different sets of
holonomic constraints were enforced during integration (see
below). All simulations were performed using the homegrown
CAMPARI software package.40 The data for alanine dipeptide in
Figure 7 were extracted from simulations of 125 ns in length.
With the exception of the absence of any ions, these runs used
identical conditions and settings and were performed indepen-
dently for either set of constraints.
Constraints.We simulated the FS-peptide using two different

sets of holonomic constraints enforced during integration of the
equations of motion via the SHAKE algorithm.41 The first set
constrained the lengths of all covalent bonds. This corresponds
to a standard setup in molecular dynamics applications. The
second set specifically rigidified backbone bond angles by
introducing additional distance constraints between Cα and O,
Cα and HN, N and Cβ, C and Cβ, N and C, Ci�1 and Cα, and
Cα and Ni+1. Even though the coupling between constraints is

increased, this set is still comfortably solvable by SHAKE. We
used a relative tolerance of 10�4 and verified that the corre-
sponding internal degrees of freedom were in fact constant
throughout the simulations.
It should be noted that we ignored contributions to the

equilibrium populations stemming from the mass-metric tensor
determinant.42 Given that fixed bond lengths are not typically
considered as a source of bias error and that we introduce only a
subset of possible bond angle constraints, we assume that the
combination of a stochastic dynamics integrator and a structured
energy landscape renders potential artifacts minor.43,44 Support
for this assumption is presented in Figure S1 in the Supporting
Information, where we compare molecular dynamics to Monte
Carlo data. The latter is based on an implementation34 that
rigidifies all bond angles (and some dihedral angles) and is
inherently free of mass-metric tensor artifacts due to the absence
of momenta. For the polypeptide backbone, it is therefore very
similar to the case with rigidified backbone angles shown here.
Consequently, quantitative similarity is expected and largely seen
in Figure S1, Supporting Information. Formulations incorporat-
ing explicit corrections for mass-metric tensor artifacts exist but
require dedicated integrators.44,45

Analysis of Simulation Data. Statistics for all data were
collected every 25 ps. The α-helical region of Ramachandran
space was defined identically to previous work.34 Define second-
ary structure of proteins (DSSP) statistics were collected by
assigning secondary structure based on hydrogen-bond patterns
using the actual trajectory coordinates for amide hydrogen atoms.
The default cutoff criteria employed by Kabsch and Sander46

were used throughout, but numerical tests (not shown) revealed
the sensitivity of altering the energetic cutoff for hydrogen bonds
from�0.5 to�0.3 and�1.0 kcal/mol, respectively, to be insigni-
ficant compared to the differences between flexible and rigidified
models or between measures of helicity in Figures 1 or S1,
Supporting Information. Helical segments in DSSP require at
least two, consecutive hydrogen bonds of if i + 4 registry. This
means that three-residue segments are missed in the DSSP
analysis, which in LR theory are assumed to possess one helical
hydrogen bond. Furthermore, one- and two-residue segments
are not accounted for at all. Both methods can theoretically yield
false positives and false negatives, and this is partially intended:
Torsional statistics are purely based on inference, and any three-
residue segment assigned as helix may easily be in a conforma-
tion not amenable to hydrogen-bond formation. Conversely,
α-helical hydrogen bonds may be formed even when not all three
intervening residues are in the torsional basins due to compen-
satory effects. DSSP assignments on the other hand imply that
not all hydrogen bonds throughout a helix may satisfy the
significance cutoff, but that the residues are treated as a single
helix nonetheless. Conversely, two consecutive hydrogen bonds
may both be barely within the cutoff andmay not correspond to a
proper α-helical segment.
Length-dependent statistics for helical segments (continuous

residues in helical conformation as determined by either DSSP or
torsional occupancy) were collected and used to determine ÆNsæ
and ÆN1æ. For each encountered segment, the contribution to
ÆNhæ was inferred as ls � 2, where ls is the length of the
corresponding segment. To be able to use DSSP-based statistics
consistently, counts for three-residue segments contributing to
ÆNhæ, for two- and three-residue segments contributing to ÆNsæ,
and for one-residue segments constituting ÆN1æ were taken from
the torsional assignment instead (this gives rise to the “DSSP corr.”
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data set in Figures 1, 3, and 6 and S1, S3, and S4, Supporting
Information). We believe it is important to include two-residue
segments in the counting in contrast to suggestions in the recent
literature.3 This is because otherwise ÆNhæ and ÆNsæ becomemore
closely correlated, and less information than possible is being
utilized.
Fitting Procedure. In all fits, the chosen model was fit to the

data by a Monte Carlo procedure that allowed randomization
over a reasonable interval (10% likelihood, 50% for the parameter
f3 that we introduce in eq 9 below) or stepwise perturbations
(90% likelihood, 50% for f3) of the fit parameters. All parameters
were fit simultaneously, and a new set of values was accepted
whenever the metric of goodness of fit was improved. The latter
was defined as the normalized root-mean-square (rms) devia-
tions of the two or three fitted quantities, viz., either ÆNhæ and
ÆNsæ or ÆNhæ, ÆNsæ, and ÆN1æ. The normalization values were 19, 2,
and 2, for ÆNhæ, ÆNsæ, and ÆN1æ, respectively. Normalized rms
deviations were chosen to achieve a balanced impact of all three
quantities irrespective of their value. The fits were generally
highly reproducible and did not depend on the initial guess,
indicating that a unique optimal solution given the metric of
goodness exists. If this was not the case, it is noted in the text.

’RESULTS AND DISCUSSION

In published computational work, connections to LR theory
are usually made by parsing segment distributions for the peptide
in question with respect to the α-basin which is defined by some
heuristic.3,5,33 From this, ÆNsæ and ÆNhæ are estimated by assum-
ing that, just like the LR stipulation, three consecutive residues in
helix conformation will yield a hydrogen bond. This is an indirect
estimation, and we show in Figure 1 how such inference
compares to more direct estimates based on DSSP hydrogen-
bond energies.
Cooperative Helix Melting and the Influence of Rigid

Backbone Bond Angles. Figure 1A shows results from two
independent temperature RE runs each for two different sets of
constraints using both DSSP and torsional estimates of the
number of α-helical hydrogen bonds. The first noteworthy point
is the excellent congruency between the two independent RE
runs. Since this constitutes convincing evidence toward the
statistical reliability of the data, error estimates from block
averaging, which would inherently be less rigorous indicators,
are omitted for reasons of clarity from this and all further plots.
What impact does backbone rigidity have on the helix�coil

transition? For both sets of constraints, the peptide shows a well-
defined melting transition with increasing temperature. The loss
of α-helical hydrogen bonds appears cooperative in either case,
but, as is observed experimentally,19,47 occurs over a relatively
broad temperature range. If bond angles along the backbone are
rigidified, both the melting temperature and the limiting helical
content in the helix phase experience a substantial upshift. This is
true irrespective of whether hydrogen bonds are inferred by the
DSSP algorithm or based on torsional segment statistics. The
DSSP-based values are generally larger. This leaves at least two
possibilities that are mutually compatible: On average the
inference from torsional statistics misses hydrogen bonds
(false negatives) and/or the DSSP inference overestimates
numbers of hydrogen bonds (false positives, see Methods
Section for details).
Panel B shows that there are qualitative differences between

the two ensembles as well. With only bond lengths constrained,

Figure 1. Quantification of helical content as a function of temperature
for the FS-peptide using two different sets of holonomic constraints
during the simulations. Panel A shows the mean number of α-helical
hydrogen bonds, ÆNhæ, inferred from either torsional statistics (“ϕ/ψ”)
or DSSP assignments for the FS-peptide with corrections for three-
residue segments (see Methods Section). Data for either set of con-
straints are indicated in the figure legend as “Rigid” (backbone bond
angle constraints) and “Flex.” (no bond angle constraints). Panel B plots
the mean number of distinct segments with at least two consecutive
residues in helical conformation, ÆNsæ. DSSP data not including the
corrections are shown in addition to the rest. Panel C shows the average
number of single residues in helical conformation surrounded by
residues in nonhelical conformation, ÆN1æ. By construction, only data
based on torsional statistics are available. In all plots, darker colors
correspond to the replica exchange molecular dynamics (REMD) run
across a lower set of temperatures and lighter colors to the higher
temperature run. Lines are drawn as a guide to the eye only.
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the average number of segments with at least two consecutive
residues in helical conformation increases continuously with
decreasing temperature. This suggests that the high flexibility
of the chain favors conformations containing two ormore shorter
helices. Conversely, the introduction of angle constraints in the
polypeptide backbone appears to stabilize conformations with
just a single helix over a wider range of temperatures leading to an
actual decrease in the number of helical segments when reducing
the temperature from 300 to 250 K. The uncorrected DSSP-
derived segment statistics are not applicable to LR theory since
conformations with exactly two or exactly three residues in
helical conformation are missed due to the lack of the two hydro-
gen bonds required according to DSSP (see Methods Section).
They can, however, be used to quantify the actual number of
well-defined helical segments. This confirms that the qualitative
dissimilarity between the two ensembles is robust. If we add the
counts from torsional statistics for those two- and three-residue
segments to the DSSP counts (“DSSP corr.” in the legend), the
data for the case of flexible backbone angles are mutually con-
sistent, i.e., the omissions of shorter segments implied by theDSSP
algorithm are able to approximately explain the discrepancy in the
data. This is not true for the case of rigidified backbone angles.
Here, the discrepancy seems to stem mostly from a single, long
helix being mistakenly broken into two or more pieces by the
inaccuracy of the inference of hydrogen bonds based on torsional
segment statistics. Later, we will therefore use both data sets.
Lastly, Figure 1C shows the number of single residues that are

in helical conformation with both neighbors not being in helical
conformation (“one-residue segments”). This is a complemen-
tary readout to the data in panel B and can, just like the other two,
be directly estimated using the LR formalism:

ÆN1æ ¼ ∂ln Z
∂ln v32

ð5Þ

Note that v32 is the (only) element of the matrix correspond-
ing to three-residue sequences “chc” (coil, helix, coil), i.e., an
isolated, helical residue. We will use this readout, which we are
unaware of having been employed in the recent literature, and its
characteristic temperature dependence below as a weakly de-
pendent test for fits obtained using eqs 4.
In summary, the data in Figure 1 show that bond angle

constraints have a profound impact on the nature of helix-rich
ensembles even though the melting transition itself may be
robust. It is worth pointing out, however, that the differences
observed here are still smaller than those seen when comparing
different force fields to one another3,5,48 or when comparing
explicit to implicit solvent data.33 It may be argued that increased
local flexibility leads to access to larger parts of the Ramachandran
map. Inspection of the corresponding data for alanine dipeptide
(not shown) supports this statement and allows the tentative
hypothesis that increased likelihood of helix nucleation leads to
the shift in the melting transition upon rigidification of backbone
bond angles. Importantly, the increased flexibility could also
influence segment statistics in an artificial manner given the use
of the same definition of the α-basin in either case. This is where
the complementary DSSP analysis is important that shows
consistent differences between flexible and rigid cases but should
not be affected in a similarly straightforwardmanner by increased
local flexibility. In fact, sensitivity analyses (not shown) empha-
size the robustness of DSSP estimates with respect to changes in
cutoff criteria.

As a corollary, we do not believe that it is possible to tune the
cutoff parameters for the two analyses types tomake the resultant
estimates of helicity mutually consistent. In fact, qualitative
differences should persist on account of the fundamentally
different information utilized and DSSP’s built-in fault tolerance.
In this context, it should be stressed that the definition of the
statistical weight w in LR theory does not require a specific
interpretation in terms of dihedral angles that matches the one
implied in the definition of v.
Single Helix or Collapsed Bundles?What is the nature of the

qualitative differences observed between the two helix-rich en-
sembles? The data in Figure 1 suggest that with increased back-
bone flexibility, the peptide is more likely to form collapsed
bundles of multiple helical segments, whereas the single helix
is the dominant state with rigidified backbone angles. Figure 2
shows distributions of the radii of gyration for either case at a few

Figure 2. Histograms of radii of gyration (Rg) of the FS-peptide at
different temperatures. Panel A shows the data for the case without any
bond angle constraints, and panel B for the case with backbone bond
angle constraints. The bin size for the construction of the histograms was
0.05 Å. All data drawn with solid lines are extracted from the low-
temperature REMD run. To illustrate the statistical reliability of the data,
we plot as dashed lines the two temperatures closest to 288 K found in
the high-temperature REMD schedule (284 and 292 K). Clearly, the
differences between substantially different temperatures vastly exceed
the level of statistical noise in the data. To illustrate some of the
dominant peaks, cartoon representations of individual structures along
with their parent temperature and actual radius of gyration are given.
These graphics were generated using VMD.63
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different temperatures. In the coil regime (360 K), comparison of
panels A and B, shows that the two distributions are broad and
very similar indicating that extended and disordered structures
are populated in either case. In the helical regime (e288 K),
however, substantial differences are found. The distributions are
generally multimodal with the peak at about 9.8 Å corresponding
to the single, extended α-helix and the sharp peak at∼7.2 Å cor-
responding to the symmetric two-helix bundle (“helix�turn�helix”).
These states and their sizes are perfectly consistent with the work
of Zhang et al.,28 who report 10.2 Å for the straight helix and 7.2 Å
for a helix�turn�helix conformer (symmetric bundle) based
on implicit solvent molecular dynamics simulations using an
AMBER force field.
In the presence of just bond length constraints (panel A), the

straight helix is never populated in dominant fashion, and
bundles are more prominent. Its population appears to increase
with temperature before melting occurs (above 300 K) presum-
ably on account of the lessened drive to collapse. Conversely,
with a rigidified backbone, the dominant helical state is the single
helix. Here, the probability of observing partially collapsed states
with radii of gyration of 7�8 Å seems to increase with increas-
ing temperature when compared to the data at 250 K. If the
temperature is dropped even further, a secondary transition sets
in, in which the single helix collapses to form the two-helix
bundle. This transition is also apparent in panels A and B of
Figure 1. Complex coupling of coil-to-globule and helix�coil
transitions has been observed for simplified models.49�51 One
may ask whether the artificially low temperatures coupled with
explicit representation of counterions influence these results, but
an analysis of both ion�ion and peptide�ion pair correlation
functions indicates that ions remain largely inert with very little
direct binding at all temperatures (see Figure S2, Supporting
Information).
LR Fitting.Next, we show that it is possible to fit a LRmodel to

the data for just ÆNsæ and ÆNhæ by using eq 4 if no limits are placed
on the values v and w can assume. In Figure 3A and B, we show
most of the same data as in Figure 1 as solid lines along with the
fitted values (symbols). There are two fits, one to the data
obtained from torsional inferences and the other to the data
obtained from DSSP inference. Obviously the quality of the fit is
arbitrarily good in either case suggesting that the two LR
parameters are sufficiently independent. However, panel C
shows that the resultant values for the LR parameters are
inconsistent with the observed propensity to form isolated
residues in helical conformation (see eq 5). ÆN1æ appears to be
consistently overestimated when using the fitted values for v and
w, more so for the torsional case than for the DSSP estimates.
This indicates that the obtained nucleation parameters are generally
too large.
In panels A and B of Figure 4, we plot the actual values for

v and w resulting from the aforementioned fitting, respectively.
We find the conjecture that large nucleation parameters cause an
overestimation of ÆN1æ to be qualitatively confirmed. The nuclea-
tion parameter traces the temperature dependence of the pro-
pagation parameter irrespective of the constraint set employed or
the data set fit to. At low temperatures, it assumes values that are
indeed nonsensically large if one considers that the nucleation
parameter should be related to the likelihood of visiting the
α-region of ϕ/ψ-space in the absence of any hydrogen bonds.
Conversely, in the coil region, the assumed values appear reason-
able and close to the estimation of Thompson et al.19 of∼0.127
(page 9208, σZB ∼ 0.01, and σZB = v2/(v + 1)4). Interestingly,

Figure 3. Quality of fits of LR theory to helical content data as a
function of temperature for the FS-peptide using two different sets of
holonomic constraints. The LR parameters obtained by these fits are
plotted in Figure 4. To illustrate goodness of fits, solid lines are identical
to those in Figure 1 and show the data measured directly from the
simulations. Conversely, best-fitted values resulting from imposing the
LRmodel are shown as symbols only (fits performed using eqs 4). Panel
B uses the same legend as panel A.
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given a set of constraints, the nucleation parameter seems to be
mostly independent of the data set used (“DSSP corr.” vs “ϕ/ψ”)
all the way down to temperatures of ∼265 K, even though
divergence of the fitted quantities occurs already at much higher
temperatures in Figure 3A and B. Conversely, in Figure 4B, it is
worth noting that the values of w and its dependency on
temperature do appear to depend significantly on the data set
used for fitting, suggesting that any enthalpy estimates using ln w
will lack robustness (see below).
One may ask whether it is possible to fit to all three quantities

(ÆNhæ, ÆNsæ, and ÆN1æ) with only one or two free variables. Figure S3,
Supporting Information, shows that, when assuming a con-
stant value for the nucleation parameter of 0.127, the quality of
the fit drastically deteriorates. Essentially, it is impossible to
predict correctly the values for ÆNsæ if only w is allowed to vary.3

Even though the agreement for ÆN1æ may be improved due to
inclusion in the fitting procedure, it is overall very clear that
LR predictions are unable to explain the data. As suggested by
Figure 2, the largest discrepancy arises on account of the inability
to represent the stabilization of helical bundles (ÆNsæ significantly
larger than unity). An unconstrained fit in v/w-space masks this
inapplicability by producing large values for v. This is almost
certainly the reason why in silico data that match melting tem-
perature and overall helicity well universally exhibit large values
for v when analyzed with LR theory.5,33,34 This inapplicability is
masked of course if only data are analyzed that correspond to the
transition and coil regimes but not to temperatures significantly

below the observedmelting temperature, or if the force field does
in fact produce strictly LR-like results.3,48

Figure S4, Supporting Information, shows that the overall fit,
as seen in Figure 3, can be improved when including ÆN1æ as a
fitted quantity. However, this may lead to a deterioration of
fitting quality specifically for ÆNhæ. Interestingly, both types of fits
for either system now tend to agree more with the DSSP-derived
hydrogen-bond counts. This is despite the fact that the values for
ÆN1æ are derived exclusively from torsional occupancies and
indicates that the DSSP-derived statistics, which include tor-
sional data for short segments (see Methods Section), may
intrinsically be more consistent on account of the fact that they
are much less prone to assign false breaks within long helices. In
fact, overall fit quality is fairly good for the two DSSP-based fits.
However, the values for the nucleation parameters remain large
and exhibit even stronger dependencies on temperature. There
are two ways to compensate the overestimation of single residues
in α-conformation seen in Figure 3: making helices very stable
(w large) or making the nucleation parameter so large that it is
more likely to see two or more consecutive residues in helical
conformation rather than one purely on account of v. Both paths
are explored in Figure S4, Supporting Information; the former
for DSSP and the latter for torsional statistics. This is an exacer-
bated demonstration of blind fitting yielding parameters that are
impossible to interpret physically.
van’t Hoff Analysis. The enthalpy change associated with the

formation of a single hydrogen bond,ΔHhb, is one of the param-
eters used most often to characterize the helix�coil transition
experimentally. It is accessible from calorimetric experiments,
and most recent estimates for alanine and alanine-like residues
report a value of �0.9 kcal/mol52 with earlier values being
slightly larger (�1.3 kcal/mol).53 For experiments that directly
measure helix content (e.g., CD), it is common to extract ΔHhb

from a van’t Hoff plot by assuming the following temperature
dependence for ln w:8,10,11,48,54

�β 3ΔGhb ¼ � β 3ΔHhb þ ΔShb=R ¼ ln k ≈ ln w ð6Þ
Here, the subscript “hb” indicates that the process is inter-

preted to correspond to the addition of a single, α-helical
hydrogen bond. We next critique the interpretation of ln w in
eq 6 to arrive at a conclusion relevant to all LR-based analyses of
helix�coil transition data.
If we consider a Schellman model55 by assuming that only a

single continuous helix is formed at any time and that no other
residues, on average, reside in the helical basin at all, then the
two-state equilibrium constant for the equilibrium between all-
coil and all-helix states can be constructed as a product of
stepwise constants:

Kcum
ch ¼

QNr � 1

i¼ 0
ki ¼ Nrv 3

Nr � 1
Nr

v 3
Nr � 2
Nr � 1

w 3 ...¼ v2wNr � 2

with ki ¼ Nr � i
Nr � i þ 1 3

w and Ki ¼ ðNr � iÞ 3 v2wi � 1 for i > 2

ð7Þ
The statistical weight of a given sequence of Nr residues

flanked by peptide bonds is the product of its residue weights,
where the weight factor of a residue in the coil state, u, is set to 1
(normalization). Hence, a sequence “hhhcc” has total weight v2w
and sequence “hhhhc” has weight v2w2. The combinatorial
factors are simply related to the number of unique sequences
that can accommodate a helical stretch of a given length. General

Figure 4. LR nucleation (A) and propagation (B) parameters as a
function of temperature. Two types of fits are shown that use either
DSSP-derived or torsional values for ÆNhæ and ÆNsæ. The values shown
give rise to the predictions shown as symbols in Figure 3 by using eq 4.
The set of constraints enforced and the data set used are indicated in the
legend similar to Figure 1. Note that low-temperature data for DSSP-
based fits are cut off to allow visualization of all data in the same plot.
They both continue to increase monotonously when further reducing
the temperature.



370 dx.doi.org/10.1021/ct200744s |J. Chem. Theory Comput. 2012, 8, 363–373

Journal of Chemical Theory and Computation ARTICLE

forms for stepwise (ki) and cumulative (Ki) equilibrium con-
stants are provided in eq 7, the latter being referenced to the all-
coil state. Clearly, the stepwise constants suggest the approxima-
tion in eq 6 to be applicable when considering an isolated growth
step as long as the helix is nucleated and not yet close to its
maximum length. The expected slope in a double logarithmic
plot of Kch

cum and w would indeed be Nr � 2 supporting the
view that values obtained via eq 6 correspond to numbers per
hydrogen bond. However, this equilibrium between the all-coil
and all-helical states is monitored neither experimentally nor
computationally; in both cases, ensemble averages are used to
determine w. For ÆNhæ, the simple model above yields

ÆNhæ ¼ ∑
Nr � 1

j¼ 2

Kj 3 ðj� 1Þ
Q

with Kn ¼ Yn
i¼ 0

ki and

Q ¼ 1 þ ∑
Nr � 1

i¼ 0
Ki ð8Þ

We can thus construct a generalized equilibrium constant,Θm,
for the helix�coil transition as fh/(1� fh), where fh = ÆNhæ/(Nr� 2),
i.e., the fractional helicity, and compare it in terms of its depen-
dency on w to data extracted from exact application of LR theory
(see eq 4). This is shown in Figure 5 for two cases: the first corre-
sponds to a scenario where the single-sequence model above
should be reasonably applicable (small v, larger Nr). Indeed,
predictions from exact LR theory and from the simplified model
agree very well. However, the relationship between the loga-
rithms of Θm and w is complex. If we fit a line to the region of
maximal variation (corresponding to states ranging from low
to intermediate helicity), the resultant slope is only ∼32, i.e.,

slightly more than half of the possible hydrogen bonds. It is
therefore inaccurate to assume that application of eq 6 will yield
values that can be interpreted as values per residue or per hyd-
rogen bond (this would require a slope proportional toNr). With
parameters mimicking the system under study here, we find that
the simple model becomes less applicable and that the slope for
the full LR model is less than that found in the simplified model.
Further numerical tests (see Figure S5, Supporting Information)
clearly demonstrate that the maximum encountered slope
has a nontrivial dependency on both Nr and v, that it is always
larger in the simplified model, and that it will often lie close to to
(Nr � 2)/2. This is an important point, as it means that results
from fitting ln w in a van’t Hoff-type plot should not be inter-
preted to be contributions per hydrogen bond.
For simulation data, we therefore advocate to construct van’t

Hoff plots directly from measured equilibrium constants as
described above, where the problem of identifying baselines is
negligible. In vitro, van’t Hoff fits of ln w usually require the
definition of baselines implicitly that can often be determined
with better accuracy using cosolute titrations. In Figure 6, van’t
Hoff plots of the values ofΘm constructed from the data for ÆNhæ
in Figure 1A are shown over temperature regimes where linearity

Figure 5. Comparison of the simplified single-sequence model (eq 7)
to the exact LR formalism for two model systems. We show plots of
Θm (see text) as a function of w when estimated using either the exact
formula (eq 4) or the simplified version (eq 8). Agreement between the
two depends on system parameters. Dashed lines indicate linear fits to
the regions of maximal slope observed for the simplified model. The
derivative can also be obtained analytically (see Supporting In-
formation). Numerical tests show that the maximal slope does not
approach Nr � 2 even when v is reduced by another 2 orders of
magnitude for the case with Nr = 63.

Figure 6. Van’t Hoff determination of thermodynamic parameters of
the helix�coil transition. Data are based on those in Figure 1A (see text).
Linearity holds throughout the transition where both helix- and coil-rich
states are populated to significant extent. With no angle constraints, the
fitting region spanned from∼280�360 K, and with angle constraints we
used∼310�375 K. These segments do in fact encompass the tempera-
ture regions exhibiting the largest change in Figure 1A. In the low-
temperature region, secondary processes may prevent the van’t Hoff
assumption of temperature-independent enthalpy from being valid. The
legend indicates the value assumed as the upper baseline for constructing
fh from ÆNhæ (see text). The obtained values are ΔS = �[34�35]
cal 3mol�1

3K
�1 andΔH =�[9.6�9.8] kcal 3mol�1 for the case without

bond angle constraints and ΔS = �[44�45] cal 3mol�1
3K

�1 and
ΔH = �[13.8�14.5] kcal 3mol�1 in the presence of angle constraints.
The fits are nomore dependent on the data set used than they are on the
intrinsic accuracy of the data, which can be estimated by the differences
obtained by independently fitting the low- and high-temperature REMD
runs in each case. Lastly, values are not particularly sensitive to the
definitions of upper baselines and temperature intervals. For example,
the total variation is below 20% when including one additional tem-
perature at each end or when changing the upper baseline from 14 to 19
for the case of flexible backbone and torsional data.



371 dx.doi.org/10.1021/ct200744s |J. Chem. Theory Comput. 2012, 8, 363–373

Journal of Chemical Theory and Computation ARTICLE

holds. The lower baseline was always ÆNhæ = 0, while the upper
baselines we used are indicated in the legend. By this methodol-
ogy, we obtain thermodynamic parameters for the entire process
that are independent of whether DSSP or torsional statistics are
used. The actual values agree well with literature estimates of
ΔS = �36 cal 3mol

�1
3K

�1 and ΔH = �12 kcal 3mol�1 47 and
ΔS =�51 cal 3mol

�1
3K

�1 andΔH =�14.8 kcal 3mol�1 that are
obtained in similar fashion directly from spectroscopic data.56

The agreement is congruent with the fact that the estimated
melting temperatures from experiment (290�306 K) overlap
with the interval defined by the apparent melting temperatures
of the two simulated ensembles (see Figure 1A). The total
enthalpy gives rise to estimated values for ΔHhb of �0.5
and�0.75 kcal 3mol

�1 for flexible and rigidified backbones, respec-
tively. These values are mutually consistent with the calorimetric
estimate of�0.9 kcal 3mol�1 that by definition has to be larger in
magnitude given that it will include contributions from factors
not related to hydrogen bonding (most prominently overall
peptide swelling). They are also consistent with the values
obtained for fits to ln w, which yield values between �1.0
and�1.3 kcal/mol experimentally,11,18 if we consider thatΔHhb in
such a case should really correspond to the enthalpy associated
with the formation of more than one hydrogen bond (see above).
Of course, the agreement between the particular computational
model in use and experimental data at the level of thermody-
namics may be fortuitous. It is noteworthy that the force field in
use here implies discarding most of the dihedral angle potential
parameters34 that continue to be optimized elsewhere.3,5,57,58

Crucially, however, neither LR fits nor van’t Hoff plots resolve
potential discrepancies in mechanisms or dynamics of the helix�
coil transition that could, for example, arise on account of the
continuum solvation model lacking an appropriate description of
water�peptide interfaces regarding wetting behavior, reorienta-
tion dynamics, etc.59 It would therefore be ill-advised to arrive at
conclusions on relative virtues of different computational models
purely based on analyses like the ones presented here.
Modeling of Equilibrium between Single Helix and Multi-

helix Bundles. Lastly, is there a simple way to improve the
original LR model, which specifically addresses issues identified
here? For conceptual illustration, we test here a nongeneralizable
modification to the fitting procedure that leaves the LR frame-
work intact at the expense of an additional parameter. We focus
on the statistics derived from torsional segments only since DSSP
statistics need to be augmented by data on short segments
derived from ϕ/ψ-values.
Following some of the ideas in the work of Ghosh and Dill,60

we consider the system to be in equilibrium between a three-helix
“bundle” and a single helix. Then, wemay approximately treat the
three-helix bundle as three independent sequences of one-third
the length of the original peptide:

ÆNhæ ¼ 3f3 3
∂ln ZNr¼ 7

∂ln w
þ ð1� f3Þ 3

∂ln ZNr ¼ 21

∂ln w
ð9Þ

The averages ÆN1æ and ÆNsæ are computed analogously (see
eqs 4). The new parameter f3 is simply the fractional occupancy
of the three-helix bundle and setting it to zero recovers the
original fitting functions as used in Figures 3 and 4. How are
nonzero values of f3 interpretable? Essentially, we stipulate that
there are reasons external to LR theory that “stabilize” helix
interruptions. In a thermodynamic sense, these can be tertiary
interactions stabilizing compact bundles. However, in a statistical
sense, they can also be errors in the counting of helical segments

and their lengths. Evidence for both was presented above. Using
eq 9 and treating f3 as a free parameter, we obtain the fits and data
in Figures S6, Supporting Information, and 7, respectively.
The first thing to note in Figure S6, Supporting Information, is

that the overall fit quality is significantly improved over that
shown in Figures S4, Supporting Information, which is of course
expected due to the inclusion of an additional parameter. None-
theless, f3 is not able to explain all of the data consistently, as
minor deviations are observed in the fitted values for ÆNhæ for the
case with flexible bond angles. In Figure 7A, we show the
obtained values for v and f3. Consistent with physical intuition,
the nucleation parameter now assumes values in the interval from
0.1 to 0.25 and, for both systems, exhibits a very weak tempera-
ture dependence. This is despite the fact that no constraints were
placed on the values v can assume during the fitting. We show
that these values are reasonable for the computational model in
use by explicitly computing the ratio of weights of the helical vs
coil regions for alanine dipeptide as a function of temperature.
As can be gleaned from Figure 7A, the agreement is profound.
Both the sign of the temperature derivative and the differ-
ences between flexible and rigidified backbones are mirrored
in the dipeptide data. We can also infer that differences in local
backbone conformational properties may in fact be able to

Figure 7. Fitted values v, w, and f3 as a function of temperature when
employing eq 9. Only fits to the data based on torsional inference are
considered. Panel A shows the values for the nucleation parameter and f3
in the same plot. Only those values for f3 are shown that proved
reproducible through multiple independent Monte Carlo fits (see main
text and Methods Section). Along with the fitted values for v, we show
the ratio of probabilities of occupying the helix and coil regions
determined from simulations of alanine dipeptide, i.e., ph/pc(T). The
definition of the helical region was identical to the one used through-
out to analyze data for the FS-peptide. Panel B shows the values for w.
As in other figures, darker colors correspond to the low-temperature
REMD run.
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explain the observed shift in the melting transition as was
hypothesized above.
The values for f3 are not particularly informative in the coil

region since large differences have little impact on fit quality if
long helical segments are generally unlikely to form. This means
that the fits become ill-defined (not substantially dependent on
f3), and we omit those data points in Figure 7A. The model
apparently suggests that the data are well-described by the three-
helix bundle, in particular for the case of flexible bond angles.
This is qualitatively consistent with Figure 2, in which the height
of the peak at ∼10 Å (single helix) strongly depends on the
constraint set in use. The temperature dependence at low tem-
peratures is consistent with Figure 2 as well in that bundled
conformations are least likely at an intermediate temperature
within the strongly helical region. In that sense, f3 is physically
interpretable. However, we wish to remind the reader that these
fits are to quantities inferred from torsional statistics that are
inherently prone to produce false negatives (see Methods
Section and above). This may help to explain why in general
the values for f3 are large. Fitting this parameter may therefore
simply represent a way to silently correct such faulty assignments.
Unfortunately, the two effects are not easily deconvoluted. Along
those lines, it may be interesting to ask whether a generalization
of the model in eq 9 to arbitrary subsegment length distributions
could produce even better results. The problem here is the
limited data available for fitting a larger number of parameters.
Figure S7, Supporting Information, shows a variant of eq 9, that
can be fit unambiguously, producing inferior results. Lastly, it
may be tempting to try to transform the data in Figure 2 into a
direct and independent estimate for f3 or related parameters, but
such an effort would require the definition of a fair number of ad
hoc structural criteria for clustering data.

’CONCLUSIONS

This contribution makes a number of points that can be
grouped into two categories. The first four all deal with the
application of LR models to molecular simulation data and also
with comparisons between in silico and in vitro results. Conclu-
sions are as follows:
(1) Estimates of the LR nucleation and propagation param-

eters are not directly comparable to those extracted from
experimental data if the processes for obtaining those are
different (Figures 3 and 4 and S3 and S4, Supporting
Information). For example, it is invalid to perform an
unconstrained fit to ÆNhæ and ÆNsæ, as in Figures 3 and 4
for a single chain length, and compare it to estimates such
as those by Rohl and Baldwin18 or Thompson et al.19 that
use a fundamentally different construct of assumptions.
Moreover, values for v andw that agree with experiment at
a specific temperature may mask inaccuracies, and we
recommend reporting melting temperatures and van’t
Hoff enthalpies instead (Figures 1 and 6).

(2) Two checks are recommended: (i) mutual consistency of
eligible helix�coil descriptors (ÆNhæ and ÆNsæ) between
torsional and DSSP inference and (ii) use of ÆN1æ as either
a weakly dependent test or an additional quantity to fit to
(Figures 3 and S3, S4, and S6, Supporting Information). The
robustness of estimation in particular of ÆNsæwill depend on
the nature of the force field, and smaller deviations than
those reported here may be found if the polypeptide back-
bone exhibits a larger amount of preorganization.34

(3) We show that it is misleading to interpret data from van’t
Hoff fits of ln w as quantities per residue or per hydrogen
bond (Figures 5 and S5, Supporting Information). Of
course, for similar procedures and identical systems,
values obtained in such a way are still comparable to
one another, but their physical meaning is not immedi-
ately obvious to us. In contrast, direct van’t Hoff analyses
of a generalized equilibrium constant, such as Θm, yield
robust results that in this case also agree well with both IR
and calorimetric estimates (Figure 6).25,47,52,56

(4) Lastly, we demonstrate that simple models can be found
that preserve physical interpretability of fitted helix�coil
parameters (Figure 7). It would be desirable to have a
generalized framework for analyzing in silico data that
satisfies the criteria spelled out above. One approach
could be the ascending levels model of Lucas et al.54

The problem thus far is that it is not routinely feasible
to simulate reversible helix formation for many different
peptides of differing lengths under a wide variety of con-
ditions. Consequently, inconsistencies in the analysis are
easily masked, and conclusions may be misleading.

The fifth and last point is more technical in nature:
(5) Bond angle constraints alter the free energy landscape

substantially and give rise to quantitatively and qualita-
tively different ensembles (Figures 1 and 2). As noted,35

force field reparametrization will often be required to add
(or release) such constraints. Therefore, they should not
be viewed as independent entities controlling computa-
tional efficiency only.61 In contrast to backbone bond
angle constraints, we did not observe strong changes of
the kind seen in Figures 1 and 2 upon introduction of just
bond length constraints (data not shown).

In summary, we suggest guidelines and checks for applying LR
or similar theories to data obtained from atomistic simulations of
helix-forming polypeptides. Ultimately, LR models may well be
inapplicable to such data, and there is a clear need for a unified
framework.60,62 We also believe that this work helps to reconcile
some of the discrepancies in interpreting helix�coil transition
data using the LR or similar formalisms, for example, when
comparing in vitro to in silico data and also when comparing
different sets of in vitro data to each other.
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