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Illustration of the standard Lifson-Roig model for a tetrapeptide

The partition function of the simplest Lifson-Roig model for a tetrapeptide is the sum of possible  

statistical weights for each realizable sequence. The latter are listed in Table S1:

State Weight Ns Nh N1 State Weight Ns Nh N1

cccc u33u33u33u33 0 0 0 hcch v32u23u33v32 0 0 2

ccch v32u23u33u33 0 0 1 hchc v32u23v32u23 0 0 2

cchc u33v32u23u33 0 0 1 hhcc v31v12u23u33 1 0 0

chcc u33u33v32u23 0 0 1 chhh u33v31wv12 1 1 0

hccc u33u33u33v32 0 0 1 hchh v32u23v31v12 1 0 1

cchh u33u33v31v12 1 0 0 hhch v31v12u23v32 1 0 1

chch u33v32u23v32 0 0 2 hhhc v31wv12u23 1 1 0

chhc u33v31v12u23 1 0 0 hhhh v31wwv12 1 2 0

Table S1: A tetrapeptide has 24=16 unique conformational states (indices for distinguishing residues 

have been dropped for clarity, and subscripts indicate matrix elements as in equation S1). The values 

for Ns, Nh and N1 defined in the main text are listed for each state along with its statistical weight that is  

computed as the product of the weights for individual residues. Obviously,  N1 is not or negatively 

correlated to the other two quantities. Positive coupling between Ns and Nh is expected, and becomes 

even larger if two-residue segments are discarded.

The partition  function  is  simply the  sum of  all  the  weights.  The transfer  matrix  approach is  a 

representation of Z as matrix products, and allows – in its original form – to only compute properties 

that saliently emerge from sequences of length 3:
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From the resultant weights in Table S1, equations 4 and 5 in the main text become obvious. Such 
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partial  derivatives  of  Z  with  respect  to  specific  elements  in  the  matrices  corresponds  to  isolating 

different contexts in those sequences of length 3. For instance, elements v12 will always be followed by 

a u-weight, and will be preceded by either w or v31. It therefore corresponds to an end of a stretch of at 

least two residues in helical conformation ending at the third residue.  Similarly, the context around 

elements  v32 is always that of two residues in coil conformation (u23 or  u33). If we drop the residue 

identity labels, equation 5 in the main text becomes explicitly:

 ln Z
 ln v32

=
v32

Z
⋅2u23 v31v123u33

2 u23u33
3
2u23

2 v324u23u33v 32=Z−1∑k
W k⋅N 1k =〈N 1〉 (S2)

In equation S2, Wk is the weight of state k as found in Table S1 for the 16 states.
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Supplementary Methods

Description of Computational Model:

The ABSINTH continuum solvation model (see Vitalis and Pappu, J. Comput. Chem. 2009, 30, 673-

699, and references therein) describes the process of aqueous solution by formally decomposing large 

solute  molecules  into  building  blocks  that  correspond  to  small  molecules  for  which  transfer  free 

energies  from  the  gas  phase  into  aqueous  solution  have  been  measured.  Using  a  volume-based 

approach, all atomic solvent accessibilities are computed from the positions of all explicitly represented 

atoms in the vicinity. The resultant solvation states are used to create a weighted average over all the 

atoms comprising a specific solvation group. From this, a group solvent accessibility (normalized to an 

interval between 0 and 1) can be computed, and is multiplied with the reference transfer free energy for 

the underlying model compound to obtain the contribution this  particular group makes to the total 

direct mean-field interactions (DMFI) between solute and water. The DMFI encapsulates polar and 

nonpolar  terms  and  utilizes  explicitly  quantities  that  can  be  measured  experimentally.  Dielectric 

screening is handled in a way similar to generalized Born-type (GB) models of solvation using again 

volume-based measures to  derive the effective dielectric  acting between two (partial)  charges.  The 

main difference between GB models and ABSINTH is the different decomposition. GB models capture 

polar components of the DMFI as well as dielectric screening within the same framework, but require a 

separate  model  to  describe  any nonpolar  contributions.  ABSINTH captures  all  components  of  the 

DMFI within the same framework, but requires an additional model for dielectric screening.

The force  field  paradigm used in  conjunction  with  the  ABSINTH model  differs  from standard 

protocols in that 1) dihedral angle potentials are considered only to maintain planarity at bonds that are 

electronically restricted (like the peptide bond); and 2) short-range electrostatic interactions are pruned 

in an effort to maintain only those interactions that correspond to pairwise terms between charge groups 
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(usually net neutral units) that are separated by enough bonds such that nonbonded energy functions 

apply. Parameters are taken from OPLS-AA/L (Kaminski  et al.,  J. Phys. Chem. B, 2001,  105, 6474-

6487 →  partial charges and bonded parameters), were specifically reparameterized (Lennard-Jones 

radii  and dispersion  parameters),  or  are  available  directly  from experiments  (group  reference  free 

energies of solvation).

Monte Carlo simulations:

The FS-peptide was simulated for 50x106 elementary steps, the first 20x106 of which were discarded 

as equilibration. The employed moveset was taken similar to prior work (Vitalis and Caflisch, J. Mol.  

Biol. 2010,  403,  148-165).  At  very low temperatures  sampling  is  difficult,  and  we therefore  only 

obtained  data  for  the  replica  exchange  schedule  at  higher  temperatures.  The  underlying  range  of 

temperatures (260-440K) is identical to prior MC simulations on this system (Vitalis and Pappu,  J.  

Comput.  Chem. 2009,  30,  673-699).  All  other  settings  were  chosen  identically  to  those  for  the 

molecular dynamics runs.  Results  from the Monte Carlo simulations are shown in Figure S1 only. 

While it may have been an obvious choice to utilize MC results as the “rigidified” model throughout, 

we were specifically interested in being able to systematically alter the applied constraints. We also 

wanted  to  sidestep  possible  concerns  regarding  comparisons  between  sets  of  data  relying  on 

fundamentally different methodologies. Therefore, the MC data serve exclusively to demonstrate that 

mass-metric  tensor  artifacts  are  quantitatively  much  smaller  than  the  differences  imposed  by  the 

constraints per se. 
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Derivation of Properties of the Simplified Model

The simplified model as proposed in equations 7 and 8 in the main text has the partition function:

Q=1v⋅N rv2
⋅N r−1∑i=2

N r−1
v2 w i−1

⋅N r−i (S3)

For convenience, we work in reduced units given that all processes are unimolecular (normalization 

by the activity of the all-coil state). The average number of hydrogen bonds is obtained as:

〈 N h 〉=
∂ lnQ
∂ ln w

=
w
Q
⋅
∂Q
∂w

=
w
Q∑i=2

N r−1
v2 w i−2

⋅(i−1)⋅(N r−i) (S4)

This is equivalent to the result in equation 8 in the main text. The generalized equilibrium constant 

Θm is defined as follows:

m=
〈 N h 〉

N r−2−〈 N h 〉
=

f h

1− f h

   with  f h=
〈 N h 〉

N r−2
(S5)

The  one  derivative  we  will  inevitably need  to  characterize  the  dependence  of  Θm on  w is  the 

following:
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∂
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2

(S6)

Given equation S4, it should be apparent that – excepting the w in the denominator - the first term 

on the right-hand side in the last line of equation S6 corresponds to the ensemble average of the square 

of the number of hydrogen bonds,  〈Nh
2〉. Hence:
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∂ 〈 N h 〉
∂w

=
1
w
⋅[〈 N h

2 〉− 〈 N h 〉
2
] (S7)

The direct derivative and thereby the logarithmic derivative are directly proportional to the second 

central moment of the distribution of the number of hydrogen bonds. The logarithmic derivative of Θm 

with w is as follows:

∂ lnΘm

∂ ln w
=

w
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⋅
∂Θm

∂w
=

w
Θm

⋅
∂ f h
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(S8)

Unfortunately, it does not appear trivial to obtain analytical expressions for maxima in the function 

in equation S8. We address this numerically in Figure S5 where we show maximal values for this 

function using values of  v and  Nr that cover a regime that corresponds to what has been tested and 

proposed in vitro. Due to the use of the simplified model, this should be an upper bound estimate as can 

be  gleaned from Figure  5 in  the  main  text.  The most  realistic  values  for  v (0.05  and 0.15)  yield 

maximum values for the derivative in equation S8 that for short chain lengths are indeed close to (Nr-

2)/2 as stated in the main text. 
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Details on the Partition Function Implied by Equation 9 in the Main Text

Equation 9 constructs a new model by considering a weighted hybrid of two alternative LR models 

as follows:

Z total=Z N r=7
3f 3 Z N r=21

1− f 3  (S9)

Here, ZNr=21 is the standard partition function for a peptide of 21 residues. It obeys the standard LR 

rules, i.e., the statistical weights are assigned as demonstrated above (see Table S1). Similarly, ZNr=7 is 

the standard LR partition function for a peptide of 7 residues. Individually, it again obeys the rules 

outlined above. In the limiting case of f3 approaching unity, the total partition function of the modified 

model is that of three independent helical peptides that are each 7 residues long. This implies both a 

quenching of states that are representable in ZNr=21, and an extension to new states. The quenched ones 

are those possessing helical segments longer than 7 residues (in the LR partition function, terminal 

residues can never be assigned state  w). The maximally helical sequence possible is “(vwwwwwv)3”, 

which can be thought of as ”vwwwwwv|vwwwwwv|vwwwwwv” when mapped back onto the 21 residues 

of the actual peptide (vertical lines indicating boundaries between 7-residue segments). This particular 

sequence is actually an example of an extension of the original partition function, as it is not realizable 

in ZNr=21. This is because the two consecutive v-residues would automatically be turned into state w, i.e., 

ZNr=21 only allows helix interruptions if u-residues are in between. The reason that the first term on the 

right-hand side of equation S9 is beneficial to the fitting (see Figures 7 in the main text and S6) lies in 

the fact that it allows states with both high helicity and larger values for the number of helical segments 

to be represented without requiring very large values of  v. The sequence above would be counted as 

Nh = 15 and Ns = 3. Conversely, in the coil phase, the two limiting partition functions in equation S9 (f3 

approaching  either  zero  or  unity)  become  indistinguishable,  i.e.,  sequences  like 

S8



“uvwwwwvuuuuuuuuuuuuuu” are invariant whether they are represented in the framework of ZNr=21 or 

ZNr=7
3. To see this, consider explicitly the sum entering ZNr=7.:  

(S10)

The first term in equation S10 is the all-coil state, the second and third terms are those with just one 

or two residues in helical conformation (no hydrogen bond formed). Terms with 1, 2, or 3 hydrogen 

bonds are then omitted due to the complicated combinatorial factors involved. The second last term 

corresponds to the exactly two ways of having four hydrogen bonds (the single  u-residue has to be 

terminal), and the last term is the aforementioned all-helical conformation with 5 hydrogen bonds. It is 

important to note that the exponentiation by 3 generates all the possible cross-terms, i.e., “uvwwwwv|

uuuuuuu|uuuuuuu” is  representable within the scope of  ZNr=7
3.  Deriving properties from the hybrid 

partition function is simple:

∂ ln ( Z N r=7
3 f 3 Z N r=21)
∂ ln w

=
∂

∂ ln w [3 f 3 ln Z N r=7+ (1− f 3 ) ln Z N r=21 ]

∂ ln ( Z N r=7
3 f 3 Z N r=21)
∂ ln w

=3 f 3

∂ ln Z N r=7

∂ ln w
+ (1− f 3)

∂ ln Z N r=21

∂ ln w
=〈N h〉

(S11)

Equation  S11 is  identical  to  equation  9  in  the  main  text.  It  shows that  due  to  the  logarithmic 

derivatives, ensemble averages can simply be derived using properties of the underlying standard LR 

partition functions for the two different peptide lengths. Analogous equations hold for 〈Ns〉 and 〈N1〉.
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Supplementary Figure Captions

Figure S1: Comparison to data from Monte Carlo (MC) Simulations. This figure is identical to 

Figure 1 in the main text with the two exceptions that data from MC simulations are added, and that 

Panel B lacks the uncorrected DSSP-derived values for  〈Ns〉. The data demonstrate that differences 

between the MC data and those in the presence of backbone bond angle constraints are negligible for  

〈Ns〉 and 〈Nh〉 except at the four lowest temperatures. Small, systematic deviations are seen for 〈N1〉. The 

comparison demonstrates that the majority of differences between flexible and rigidified cases indeed 

stems from constraints themselves, and not from artefactual sources,  i.e., mass-metric tensor artifacts 

(see  Methods  in  the  main  text).  The  small  deviations  are  just  as  likely a  result  of  the  additional  

constraints present.

Figure  S2:  Pair  correlation  functions  for  sodium+ vs.  chloride- ions  (green  colors),  the  peptide 

arginine+ sidechain carbon atom of the guanidino group  vs.  sodium+ ions (red colors),  and for the 

peptide arginine+ sidechain carbon atom of the guanidino group vs. chloride- ions (blue colors). Panel A 

shows  data  for  the  case  with  flexible  backbone  bond  angles  for  a  few  selected  temperatures  as  

indicated, and Panel B does the same for the case with rigidified backbone bond angles (data are taken 

from low temperature replica-exchange simulations only). Peptide-ion pair correlation functions do not 

converge exactly to 1.0 because of the boundary condition (spherical droplet with soft wall), and – 

more  importantly –  the  finite  volume of  the  peptide.  Sodium+ is  preferentially excluded from the 

vicinity of the arginine+ sidechains, while chloride- ions are preferentially found around the peptide, but 

show very little direct binding (small peak at ~5Å). Ion-ion pair correlation functions reveal a weak 

direct interaction peak (~4Å), followed by a desolvation barrier, and a solvent-separated peak (~7.5Å). 

Direct contact formation is expected to be much stronger in explicit solvent (see for example Chen, A. 

A. and Pappu, R. V. J. Phys. Chem. B, 2007, 111, 6469-6478) meaning that possible processes that are 
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explicitly mediated by direct  ion binding would not be well  described.  Data are  overall  only very 

weakly dependent on temperature.

Figure S3: Quality of fits of LR theory to helical content data as a function of temperature for the  

FS-peptide when using a temperature-independent value for the nucleation parameter (v = 0.127). Data 

shown as solid lines in Panels A-C are identical to those provided in Figure 1, and the same color code 

applies. Fitted values according to LR theory are shown as symbols only (using equations 4 and 5 in 

the main text). In contrast to Figure 3, all three readouts were fit to simultaneously (〈Nh〉,  〈Ns〉, and 

〈N1〉), and only w was allowed to vary during the fitting procedure. Panel B uses the same legend as 

Panel A. Panel D shows the underlying values for w as a function of temperature. This plot is analogous 

to Figure 4B in the main text, and again uses the same color code.

Figure S4: Quality of fits of LR theory to helical content data as a function of temperature for the  

FS-peptide when including data for  〈N1〉 in the fitting. This figure is exactly analogous to Figures 3 

(Panels A-C) and 4 (Panels D-E) in the main text with the exception that data for 〈N1〉 were included in 

the fitting. Panel B uses the same legend as Panel A, and Panel E uses the same legend as Panel D.

Figure S5: Analysis of maximal slopes in double logarithmic plots of the generalized equilibrium 

constant, Θm, as a function of the propagation parameter w. Values are plotted as a function of peptide 

length for five different values of the nucleation parameter,  v. The maximal slopes were obtained by 

taking numerical derivatives of data as shown in Figure 5 in the main text. This implies that w-values 

ranging from 0.355 to 3.345 were used that utilize a discretization interval of 0.01. As can be seen from 

Figure 5, the underlying function is generally smooth and exhibits a well-defined region of maximal 

slopes for values of Θm in the vicinity of 10-1. The dotted and dashed black lines are lines with slopes of 

Nr-2 and (Nr-2)/2, respectively. It is obvious that the case of Nr-2 is never reached even if the nucleation 
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parameter is vanishingly small.

Figure  S6:  Quality  of  fits  of  a  modified  LR  model  to  helical  content  data  as  a  function  of 

temperature for the FS-peptide . This figure is identical to Figure 3 in the main text with the exception 

that data for 〈N1〉 were included in the fitting, and that equation 9 and analogs for 〈Ns〉 and 〈N1〉 were 

used instead of equations 4-5.

Figure S7: Considering alternative models for fitting temperature-dependent helix-coil equilibrium 

data. As an example, we can construct a partition function allowing for two helices of variable length  

(compare to equation S9): Z total=Z N r=N
f 2 Z N r=N r−N

f 2 Z N r=21
1− f 2

To avoid overfitting such a model, some values have to be provided by independent means. Here, 

we choose to set the nucleation parameter directly to the values from dipeptide data shown in Figure 7 

of the main text. The three fitted quantities are then the subsegment length N, the fractional occupancy 

f2 (both in Panel A), and the propagation parameter w (Panel B). As can be seen, the fitting quality is 

unsatisfactory when compared to the data in Figures 7 and S6, in particular for flexible backbone bond 

angles  (Panels  C-E).  As  with  the  model  in  equation  9,  values  for  f2 (and  similarly  N)  become 

meaningless in the coil regime. This is because peptide annotation strings with few and short helical 

segments are equally well-representable in both limiting cases of the partition function (i.e., f2 → 0 and 

f2 → 1), and – by extension – also by intermediate values of f2. As a peculiarity of the particular model 

explored here, N → 0 will also recover the original LR partition function regardless of the value of f2. 

Results are shown for  φ/ψ statistics, but similar results regarding fitted quantities and fit quality are 

obtained with DSSP-based data.
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Figure S2
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Figure S3
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Figure S4
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Figure S5
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Figure S6
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