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ABSTRACT: The coarse-graining of data from molecular simulations yields conformational space networks that may be used
for predicting the system’s long time scale behavior, to discover structural pathways connecting free energy basins in the system,
or simply to represent accessible phase space regions of interest and their connectivities in a two-dimensional plot. In this
contribution, we present a tree-based algorithm to partition conformations of biomolecules into sets of similar microstates, i.e., to
coarse-grain trajectory data into mesostates. On account of utilizing an architecture similar to that of established tree-based
algorithms, the proposed scheme operates in near-linear time with data set size. We derive expressions needed for the fast
evaluation of mesostate properties and distances when employing typical choices for measures of similarity between microstates.
Using both a pedagogically useful and a real-word application, the algorithm is shown to be robust with respect to tree height,
which in addition to mesostate threshold size is the main adjustable parameter. It is demonstrated that the derived mesostate
networks can preserve information regarding the free energy basins and barriers by which the system is characterized.

B INTRODUCTION

Clustering or coarse-graining of molecular simulation data
through measures of geometrical or kinetic similarity is a special
case of a broad class of problems in data analysis." Clustering of
molecular trajectory information is used most often to identify
free energy basins and the structural pathways connecting
them®™* but can also serve to estimate entropy (occupied phase
space volume),” check for simulation convergence,®™” or simply
condense trajectory information to highlight qualitative trends
and features of an ensemble.'”’" The use of geometric
clustering to identify fine-grained mesostates [we will refer to
individual trajectory snapshots as microstates and to collections
of similar microstates identified by a clustering algorithm as
mesostates] constituting a conformational space network at
equilibrium is a very powerful technique, as these networks in
principle are able to represent both thermodynamics and
kinetics of the system in detail.'">~"°

Computing these networks requires that simulation data are
sampled frequently enough to resolve transitions of interest
between those mesostates that exchange most rapidly. This is
linked to the chosen resolution of mesostates. Otherwise,
shortcuts are introduced, and processes will no longer be
resolved or be described inaccurately at the kinetic level.'” Due
to the sheer number of terms, convergence of transition
probabilities often requires frequent recording of trajectory
information, which potentially gives rise to very large data
sets.'®!” When using geometric criteria for clustering,20
mesostates should not differ drastically in phase space volume
(resolution) since conformational diffusion in the absence of
significant barriers sets a fundamental time scale. If, for
example, one were to combine all “unstructured” states into a
single, “entropic” mesostate, kinetics of pathways passing
through such a significantly larger mesostate will be incorrectly
described at the network level. This is because the real physical
pathway, which involves different subpopulations of the
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mesostate that are not reachable within the fundamental time
step, is now masked. Similarly, mesostate centers should be
placed preferably at regions of high density (basins) in order to
minimize the risk of crossing low-density regions (barriers),
which may be geometrically narrow, within a single mesostate.

From these explicit or implicit requirements, we can derive
the following demands toward a clustering algorithm for
molecular simulation data. We look for an algorithm that
operates in linear time, handles large data sets of high
dimensionality, does not impose any specific a priori
partitioning criteria (whether in the number of mesostates or
the boundaries connecting them), yields homogeneous cluster
volumes, chooses cluster centers in accordance with local
density, and keeps cluster overlap minimal. Specifically for the
identification of mesostate networks, we do not require that all
points within a region of homogeneous density belong to the
same cluster, or that the clustering is exactly stable, i.e., weak
input order dependence is tolerable if the number of mesostates
is large. Furthermore, none of the input data are interpreted as
database “noise”, and algorithms relying explicitly on database
sampling (those that try to derive mesostates by considering
only a subset of the data) are not of interest. These last three
points may be altered if the goals are different; e.g, they lie in
identifying few geometric clusters.”'

It should be emphasized that the algorithm derived in this
work is a general data processing tool and need not be
restricted to the application domain chosen here. For the latter,
dedicated simulation and analysis schemes have been
developed®*® and applied successfully.***> These explicit
path sampling schemes rely on nonequilibrium sampling of
transitions between local minima identified independently, e.g.,
as inherent structures.”® They may overall be more efficient,
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and in a second step they often allow straightforward grouping
(lumping) of states (minima) according to a threshold time
scale.”” Advanced sampling methodologies may yield improved
overall efficiency because sufficient sampling of low likelihood
regions of phase space will often be difficult to attain using
conventional molecular dynamics. The literature offers similar,
kinetic (re)grouping techniques that operate on ﬁne—%rained
mesostate networks obtained from structural clustering.'®'¥*®

In clustering, the issue of dimensionality deserves particular
attention since very frequently molecular simulation data are
represented in fairly high-dimensional spaces (D &~ 100—1000).
The so-called “curse of dimensionality”*® is a colloquialism for
the fact that high-dimensional spaces generally lead to low data
density (sparsity) due to exponential growth of the available
space. This effect is most pronounced if all dimensions are
decoupled sources generating white noise. For molecular
systems in Cartesian space, however, the covalent topology
alone will exclude the vast majority of said space on account of
manifold correlations between the chosen degrees of freedom.
This is the reason why—for example—it often makes little
difference to use C, atoms only vs all backbone heavy atoms for
clusterings using the positional root-mean-square deviation
(RMSD) of aligned coordinates despite dimensionality
increasing by a factor of 4. Mismatches in apparent and actual
dimensionalities can sometimes be addressed by the use of
degrees of freedom that do not experience strong topology-
derived correlations, e.g., dihedral angles. However, data
sparsity continues to become critically low if too many weakly
coupled dimensions are part of the chosen coordinate space, for
instance when including both intramolecular and intermolec-
ular degrees of freedom, or when including side chain
conformations. Then, measures of distance that respect the
full dimensionality will show a spectrum that is almost entirely
depleted for small values and exhibits an increasingly narrow
distribution otherwise.”® This contraction of minimum and
maximum observed distances is a well-known phenomenon and
essentially renders neighbor relations arbitrary.*" In simulation
terms, this is a manifestation of sampling problems related to
the combinatorial complexity of weakly coupled processes. For
instance, if there are 15 independently moving side chains with
three rotamers each, there are already in excess of 1.4 X 107
possible configurations, ie., a number exceeding the size of
typical data sets. The key here is that one will typically consider
those processes to be sufficiently independent of one another,
such that recurrent sampling of each side chain is deemed to be
enough. For clustering, this means that it is not permissible to
blindly include all of them in the coordinate subset, because the
conformational distances caused by the set of weakly coupled
processes will drown out signals coming from processes of
interest. Instead, these motions are usually discarded entirely,
and this is called feature selection in the data processing
literature.>

Aside from relying on massive dimensionality reduction
using principal components® or other techniques,'®**** the
current state-of-the-art in the field is to use algorithms for
mesostate identification that present a reasonable compromise
between efficiency and robustness. It is undesirable to have
many parameters or system-specific performance characteristics
because the structure of the data is not known a priori. The
simplest class of approaches is based on the Leader algorithm®®
(in Prinz et al.*” referred to as a regular space clustering).38’39
Alternatively, fixed partition algorithms such as the ?E?roximate

K-centers (K-medoids) algorithmsm’41 are in use.”> 7% All
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aforementioned methods scale superlinearly with data set size
(because in fixed partitioning schemes, the number of
mesostates, K, will have to be proportional to N unless
sampling is exhaustive). Postprocessing of initial results may
involve application of similar or more rigorous algorithms such
as strictly hierarchical schemes.**™* The reason for using
simple algorithms appears to be solely that they are reasonably
affordable in both memory and CPU time for large data sets. It
has been argued that at the level of coarse Markov state models,
details of the algorithm are not important.”” Note again that the
aforementioned algorithms are general data processing tools
with a modular definition of similarity and that dedicated
grouping schemes as discussed may be available.'**”?*

In this contribution, we propose a tree-based algorithm that
relies on partitioning according to a preset schedule of
threshold criteria operating at each level of the tree. Clusters
or mesostates at coarser resolution serve as parent nodes to a
set of mesostates at the next finest level. Inherently a
multiresolution technique, the algorithm utilizes the parent—
child relations to limit the search space for the branches and
thereby achieves near linear scaling with data set size. The
height of the tree is a fixed parameter that can be tuned to
optimize computational cost. The algorithm is architecturally
similar to the BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies) and related clustering algo-
rithms.***” Given that the motivation behind those tree-based
algorithms is fundamentally different (optimization of spatial
demands to hardware limitations), the proposed scheme
deviates substantially in most of the actual implementation.

The rest of this article is structured as follows. After
describing the algorithm itself in detail, we address the
modifications necessary to evaluations of conformational
distances when typical descriptors of molecules such as
Cartesian coordinates or dihedral angles are used. The accuracy
of these approximations is discussed, followed by an illustration
of the performance of the proposed algorithm on a two-
dimensional data set. Using data sets of realistic dimensionality,
the impact of tree height on clustering results and efficiency are
explored, and a scaling analysis with data set size is performed.
Lastly, we use network-derived properties to analyze the
robustness of the extracted mesostate networks for a simple and
pedagogically useful system as well as a realistic test case. On
the basis of our results, we conclude that the algorithm
represents a good compromise between efficiency and quality
of the derived mesostate networks.

B METHODS

Description of the Algorithm. Consider a pseudotree of
height H with an associated vector of threshold values t,, t,, ...t;;
(see Figure 1). The top (root) will (formally) consist of exactly
one parent node containing the entire data set. We will process
the data in arbitrary order (sequentially for simplicity), and for
each point j scan a cluster set {c;} at each level k from H down
to 2 (1 being the leaf level). If {c;} contains a cluster ¢," such
that the chosen distance between cluster and snapshot,
dep(c"j), is less than #, we store the respective cluster index
m; and add snapshot j to ¢™. This will change the centroid of
¢™, which in turn affects all distance evaluations (also
retroactively). Centroids drift toward regions of high data
density, which implies that the threshold criteria are rarely
fulfilled exactly for all snapshots that have been added to a
cluster, in particular at the higher levels. If k equals H, {c} is
the set of all clusters at that level (since there is only a single
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Figure 1. Schematic illustration of the proposed algorithm on an
arbitrary 2D data set. The example shown uses H = 3. At each level
indicated by the gray rectangles, the data set is shown as a scatter plot
where colors indicate mesostate assignment (colors repeat at the
bottom level). At the root, all data are lumped together, and their
centroid is indicated by the black octahedron. At the three actual
levels, the centroids of the S, 14, and 66 mesostates, respectively, are
highlighted by colored octahedra. Parent—child relationships are
indicated by lines colored according to the parent. Two issues at the
level corresponding to t, are indicated, both of which stem from the
fact that for every level except the leaf level, essentially only one single
scan of the data is used. First, it is possible for two mesostates
centroids to be extremely close to one another (overlap) on account of
a split in pathways further toward the root. Second, some mesostates
may end up without any children, even though at least one microstate
was nearby. Such problems are largely eliminated at the leaf level,
which is why the two-pass strategy is essential. In general, mesostate
centroids track local data density well, and no major partitioning errors
are seen at any of the levels.

root); otherwise, it is the set of children of ¢,,”. If at any
given level the search is unsuccessful, the corresponding k is
recorded, and the cluster list at the next lower level will instead
consist of the children of the ¢,” that had the smallest dcp(c,™).
Any assignment failure will lead to new clusters being spawned
for all undefined m,’s. For consecutive, undefined m,’s (the
most common case), the resultant clusters will of course all
consist of the same snapshot and have identical centroids.
Occasionally, a failed assignment will recover at a level higher
than 2. This is because children of a cluster can extend beyond
the threshold radius set for the parent cluster. Then, the
identified ¢," will be made a child also of the newly created c.,,,
i.e,, it effectively has two parents. This violates the definition of
a tree (hence pseudotree) but is (i) usually rare and (ii)
irrelevant algorithmically since we never attempt to follow a
path from the leaves to the root.

After the entire data set has been scanned once, we have a
fixed tree with a set of clusters {c,}. The second scan of the
input data works identically for levels H to 2 with the exception
that the snapshots are not actually added to the clusters (and
therefore the centroids at these levels are static). Note,
however, that it is still possible for snapshots to remain
unassigned at one of those levels (due to a combination of a
specific input order and centroid drift). Most importantly, in
the second pass, we also descend to the leaf level (1) by
searching the children of ¢,” (defined identically) that are now
being created. If no children exist yet, or if no cluster is found
for which dcp(c;™j) is less than t;, a new cluster at level 1 is
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spawned; otherwise, an existing leaf cluster is appended by the
current snapshot. An example tree illustrating the verbiage
above is provided in Figure 1.

The efficiency of the algorithm relies on the fact that for a
range of settings the number of clusters scanned per snapshot is
approximately constant. For higher trees, the average number
of children per level decreases, which compensates the cost
incurred by having to consider more levels. For H = 1, the
algorithm relaxes to a simple Leader-like algorithm with
centroid drift. Efficiency is also impaired if t; approaches t,.

Distance Computations. To keep the computations
feasible, we utilize the clustering feature (CF) vector
introduced in the BIRCH algorithm.** CF vectors are
incremented by each added snapshot and contain mean
information regarding the mesostate, specifically the linear

sum fS:, squared sum, SS, and number of snapshots, N,. For
Euclidean (L,) distance measures, CF vectors allow rapid
calculation of a variety of cluster properties and intercluster
distances:

— NC - NC - 2
LS, = ) Sgyand S8, = ) Sy
i i

—2
rcz = (I/ch)(NcSSc - Lsc)

2 -1 =22
di = [N(N; = 1)/2] " (N.SS, — LS,) (1)
Here, S. is the data vector of snapshot j and r, and d, are cluster
radii and diameters, respectively. r, corresponds to the mean
distance of snapshots from the centroid and d, to the mean

distance between snapshots. The centroid (ﬁc /N,) is readily
available as well. For the critical computation of dcp(c,”,j), we
can choose different models including the simple centroid—
centroid distance (dcc) or the mean pairwise distance between
members of different mesostates (d;c). Both measures
generalize to the case where one of the two clusters is only a
single snapshot, i.e., the case required by dep(c,™j), and the
formulas are as follows:

2 . 1T o2
déclea, j) = (N3 LSy = §))

dclca, j) = N3 (SSy + NiS; - 2L8,5) -~
dic and dcc become increasingly similar when the distance
between centroid and snapshot gets larger relative to the cluster
radius. Conversely, for distances on par with the cluster radius,
dic will generally be larger than d... The two values are
identical if N, is 1. We generally choose to normalize all
distances by the dimensionality, D (or by D/3 in the case of the
Cartesian coordinates), which means that the formulas for the
squared quantities in eqs 1 and 2 need to be extended on the
right-hand side by a corresponding factor, typically D™".

We utilize the CF vector to be able to quickly evaluate
relative and internal cluster properties. Unlike in the BIRCH
algorithm, we do not attempt to condense the data set into CF
vectors to satisfy a spatial constraint. Instead, we do maintain a
list of snapshots added to each mesostate to be able to later
derive the corresponding transition network.

Adaptation to Typical Data from Molecular Simu-
lations.  Root-Mean-Square Deviation of Atomic Positions
(RMSD). When considering the RMSD of atomic positions, X,
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Table 1. Normalized Accuracies of Simplified Computations of Cluster Properties for DS2“

measure D t N; L,(d.)/t L (d)/t,
RMSD 66 1.6 A 3554 14 % 1072 22 x 1072
w,py 33 25.0° 3123 2.6 % 107° 14 x 1073
sincos 66 0.27 2641 12 x 1071 1.1 x 107
D-RMS 144 1.7 A 3648 1.6 x 107 20 %1078
w,pp/1 33 22.0° 3365 35 x 1072 87 x 1072
sincos/I 66 0.24 2931 43 %1073 2.7 x 1072

Lz(fc)/tl Loo(”c)/tl LZ(dIC)/tl Loo(dIC)/tl
2.3 %x 107* 3.1%x 1073 1.0 X 1072 1.6 x 107"
1.6 x 107 19 x 10783 49 x 1072 2.5 x 107!
6.6 X 1071¢ 3.0 X 1071° 6.7 x 1071¢ 4.1 x 1071
1.0 x 107 1.0 x 1078 9.2 X 1071 6.8 x 1071
3.1 x 1073 3.5 x 1072 49 x 1072 2.6 x 107"
2.7 %1073 1.5 x 1072 7.2 %1073 7.2 x 1072

“RMSD utilized Cartesian positions of 22 atoms and quaternion-based alignment. The D-RMS is a set of partially redundant interatomic distances.
“w,¢,y” utilizes the three backbone dihedral angles of 11 consecutive residues, and “sincos” denotes the same data in sine/cosine space. The “/I”
denotes that each underlying torsional degree of freedom was subjected to a fluctuating weight corresponding to the moment of inertia associated
with that torsion (see Supporting Information). N, stands for the number of identified clusters of size 3 or larger. The L, symbol stands for the
quadratic norm of the difference between a cluster property computed either using one of egs 1, 2, S2, S5, or S7 or exactly by enumerating it for all
snapshots (RMS deviation). The L, symbol corresponds to the associated L, norm, i.e., the largest deviations in the set. d, and r, were evaluated for
all N, clusters, while d;o(Cj) was computed for all N, ; with respect to both a random snapshot and a snapshot from the same cluster. Italic font
highlights differences between 1 and 10%, while bold italic font is used for those deviations exceeding 10%.

between snapshots as the fundamental measure of distance, it is
usually implied that the two sets of data are aligned prior to
RMSD computation:

d*(i, j) = 307 '[X; — Op(Op (X))

with O and Og chosen such that dz(i, j) min (3)
In eq 3, the 3D™! term is the aforementioned normalization by
dimensionality, as is implied in the definition of RMSD. The
translational operator, Or, is obtained by overlapping the
centroids, and the rotational operator, Oy, can be determined
exactly by a quaternion method. Operators will be unique for
each pair of snapshots implying that the definition of the CF
vector becomes nontrivial. We use the following heuristic to
solve this issue. Computing the values for dep(c,"j) utilizes

alignment of snapshot j to the current centroid of cluster ¢;”.

When adding snapshot j to cluster ¢, appending RC and SS. is
preceded by an identical alignment. Fixed weights can be added
to this computation (e.g,, atomic masses) as long as they are
also used for alignment, and as long as data are centered first.
The proposed heuristic is expected to fail whenever
considerably heterogeneous sets of snapshots are involved,
e.g, when evaluating djc for two large and well-separated
clusters.

Periodic Data Such as Dihedral Angles. For clustering
directly in dihedral angle space,*® the periodicity of the
underlying data becomes problematic. We can uniquely define a
distance between two vectors of dihedral angles, C_IS,- and (_Isj,
corresponding to two microstates:

d*(i, j) = D '[(®; — ®;) mod 21> @
Essentially, each distance evaluation requires a check as to
which periodic image (frame) is nearest. Correspondingly,
definitions of centroids are altered, and variances are no longer

uniquely defined. To be able to continue to use the simple
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equations above, we therefore have to modify the way the CF

vectors are incremented.

—

N
LSpew = LSt — Npew

-2
SShew = SSt + NpewA

>

- =
— 2K-LS;
— — - -
LS, = LSoig + @; — 22[W(Ag) — 1]
- - 2
8¢ = SSoiq + (¥ — 22[W(Ag) — 1])

W(x) = H(x — #) + H(x + =)

-

> —
Agp = @; — LSo1d4/Nold

A = WIS No) — 1] (5)
Here, we assume that a snapshot with index j is added to an
existing cluster of size N4 H(x) denotes the Heaviside
function, and N,., = N4 + 1. The procedure is essentially a
two-step process that first shifts the snapshot into the right
periodic image and after addition corrects for possible
boundary violations in the linear sum itself (note that dihedral
angles are assumed to be defined on the interval [—7, 7]). It is
important to point out that the added overhead for each added
snapshot is of O(D) only. The treatment is approximate for
cluster diameter (see Table 1) because the shift vectors A are
defined as pseudoaverages at the centroid level, where in reality
they are truly pairwise terms.

Data with Fluctuating Weights. Fluctuating weights mean
that the contribution an individual degree of freedom makes to
the evaluation of distance between data instances can change
throughout the data set. In this contribution, we test whether
the simple algebraic transformations utilizing CF vectors can be
extended to such a case. As an example, we propose a set of
dihedral angles for clustering, for which the weight corresponds

to the sum of conformation-dependent moments of inertia
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Figure 2. Clustering results for the two-dimensional data set DSI. Data correspond to 25 000 snapshots of two principal components obtained from
a high-dimensional data set. A: Scatter plot of entire data set along with contour lines delineating regions of high density (based on a 2D data
histogram with bin widths of 1.77 and 1.07 A, respectively). B: Using the proposed algorithm with H = 4, ¢, = S A, and ¢, = 25 A, we obtained 280
mesostates at level 1 (six of them containing only a single microstate). The members of the largest 30 of them are shown as dots in different colors.
Since some colors are similar, filled circles denoting the centroid position of each mesostate are added. Density contours are overlaid. Note the
different axis scaling compared to A. C: The same as B for the simple Leader algorithm (see Supporting Information). Here, we obtained 195
mesostates (a single one containing only a single microstate). Filled circles denote the microstate serving as the cluster center and not the actual
centroid. D: The same as B for the rigorous agglomerative scheme with mean linkage (see Supporting Information). This algorithm yielded 218
mesostates with 10 of them consisting of a single microstate only. The mesostate size thresholds were applied consistently for all three cases. The top
30 clusters contained 44.7, 58.3, and 57.7% of DSI for panels B, C, and D, respectively.

associated with the dihedral angle in the two respective

conformations:
d*(i, j) = b([T; + T1[V.G, ) + Vi, 1))

D
b= Y [F+ 1)
k

V.(i, j) = (cos ®; — cos &)j)o(cos ®, — cos &)])
\_)/'S(i, ]) = (sin &)i — sin &)j)O(sin &)i — sin &)]) (6)
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Here, IX is the kth element of moment of inertia vector T,-, and

“«

o” denotes the element-by-element product. Equation 6
chooses the sine/cosine terms of the angles to eliminate
explicit periodicity. The vectors T, need to be stored along with
the dihedral angles. Note that dimensionality normalization is
handled through the first term on the right-hand side of eq 6.
An extended CF vector is required to derive approximate
relations for cluster radii etc. These are provided in the
Supporting Information. Equation 6 is just one possible choice
for a set of fluctuation weights, and ongoing research concerns
the identification of alternative weights for the basic coordinates
in which microstates are represented.
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Refinement. The clustering that is obtained initially may be
refined. For instance, we can consider merging clusters that are
adjacent using an appropriate heuristic. We could also attempt
to remove cluster outliers to tighten clusters, or to recluster
snapshots that form a “cluster” just by themselves. The
important point is that none of those procedures are unique
to the algorithm or required by our goals and that they typically
exhibit unfavorable scaling with data set size. The only explicit
refinement considered during development was to merge
clusters that would yield either a reduced joint diameter or
radius relative to the respective weighted averages of the
original clusters. Numerical tests showed that these criteria are
rarely fulfilled for the unrefined results. Therefore, refinement is
not considered further in this article.

Data Sets. DSI. Data are derived from recently pubhshed
simulations on the intrinsically disordered peptide A, s>
The trajectory contained 2.5 X 10* snapshots saved at an
interval of 20 ps. A total of 144 internal distances between
backbone nitrogen and oxygen atoms of sufficiently spaced,
nonterminal residues served as the input data for extracting
principal components via the discrete Karhunen—Loéve
transform. After transforming the entire data set, the two
components with the largest variances were isolated and served
as DSI.

DS2. Data are derived from recently published simulations
on the intrinsically disordered peptide Af;,_,s.> The trajectory
contained 7.5 X 10° snapshots saved at an interval of 20 ps, and
the same 144, partially redundant internal distances that DSI
was originally derived from were extracted at each frame (D =
144). For the data in Table 1, backbone (¢/y/w) dihedral
angles of residues 14—24 of the peptide (D = 33), their sine/
cosine terms (D = 66), the respective terms weighted by inertial
masses (see eq 6), or the Cartesian coordinates of backbone
nitrogen and oxygen atoms of residues 14—24 (D = 66) were
also extracted.

DS3. The source of the data is the same as for DS2 only with
a combined trajectory with data from multiple simulations (up
to 6 X 10° snapshots). The coordinate subset extracted from
each frame was the sine/cosine values of the backbone (¢/y/
®) dihedral angles of residues 14—24 of the peptide (D = 66).

DS4. The small molecule n-butane was simulated at all-atom
resolution in the presence of completely constrained bond
lengths and angles, and with dihedral angle potentials derived
from the OPLS-AA force field* as the only term in the
Hamiltonian. This effectively uncouples the three torsional
degrees of freedom. At 400 K, a continuous trajectory of S0 000
snapshots was obtained spaced at 36 fs. Since all atoms are
assumed to be labeled, degeneracies due to identical hydrogens
are removed. Each dihedral angle potential has 3-fold symmetry
(anti or a, gauche® or g, gauche” or g~) allowing the
identification of 3 X 3 X 3 = 27 coarse states.

DS5. The miniprotein beta3S folds into a three-stranded S
sheet. At 330 K reversible folding is observed reliably, as shown
in prior work.”® DSS was generated from a total of 20 s of
simulation time containing 1 X 10° snapshots saved at an
interval of 20 ps.

B RESULTS

Below, we present two categories of results. The first three
subsections are concerned with the algorithm itself, ie., its
qualitative performance, its efficiency and parameter sensitivity,
and the accuracy of the derived approximation formulas. The
remaining three subsections examine the utility of the proposed
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scheme specifically in the context of constructing fine-grained
mesostate networks, and whether those networks appear to
preserve information regarding free energy basins and barriers.
The latter makes use of both a simple but pedagogically useful
example and a real-world application.

Accuracy of Simplified Computations Based on CF
Vectors. Table 1 shows how accurate it is to use the simplified
formulas derived above and in the Supporting Information. For
D-RMS and sine/cosine transforms of dihedral angles, the
formulas are exact to machine precision. In all other cases,
accuracy suffers. For dihedral angles, cluster radii are exact,
while diameters and in particular djc values suffer. The error
gets large if the periodic shift vectors become increasingly
heterogeneous and are ill-approximated by vector Ain eq S, ie,
results deteriorate with increasing distance values and
increasing dimensionality. Conversely, the approximations
made to be able to treat fluctuating weights have a rather
uniform impact—at least for the case studied here. Lastly,
RMSD values of Cartesian coordinates are somewhere in the
middle. Here, larger underlying distances lead to more
heterogeneity in the alignment operators, which in turn leads
to maximally decreased accuracy for dj¢. It is important to point
out that it is possible to run the algorithm described here
without ever considering d,, r,, or d;c by choosing d. to decide
whether to assign a snapshot to an existing cluster. The
derivations are needed primarily to permit computation of
cluster properties and refinement operations with time
complexities that do not exceed that of the algorithm itself.

Qualitative Evaluation of Proposed Algorithm in
Comparison to Reference Methods. Figure 2 shows how
the proposed algorithm works in comparison to two other
clustering algorithms. The data set considered (DSI) is shown
as a scatter plot in panel A along with contour lines. There are
two dominant basins embedded into relatively uniform low-
density regions. These data are a realistic representation of
analysis of molecular simulation data in low-dimensional
projections. Qualitatively, drawing boundaries to delineate
basins is challenging given the structure of the data. Panels B—
D show the 30 largest clusters from the proposed algorithm
with H = 4 (B), from the simple Leader algorithm (C), and
from a rigorous, agglomerative clustering (D) using a mean
linkage criterion (see Supporting Information). All algorithms
identify mesostates in accordance with regions of high density.
Mesostates appear largest for the Leader algorithm (C) and
smallest for the proposed scheme (B). Cluster shapes are
distinctively noncircular, in particular for panels B and D. For
the Leader algorithm, the suboptimal assignment of mesostate
centers (see Supporting Information) gives rise to overlap and
mesostates with small occupied volumes. Mesostate boundaries
are of arbitrary shape in the agglomerative scheme (D), curved
in the Leader scheme (C), and more or less linear for the
proposed algorithm (B). In summary, Figure 2 shows that the
results from the proposed algorithm with H = 4 provide a
qualitatively similar picture to those from a rigorous,
agglomerative algorithm. Figure S1 highlights the origin of
the linear mesostate boundaries in the former and shows that
large values of H can give rise to undesirable effects for these
low-dimensional data.

Parameter Dependence and Scaling Properties. Figure
3 shows that the increase in the number of mesostates reported
in Figure 2 and Figure S1 is a systematic function of the chosen
tree height H. For the given example (DS2), the total number
of mesostates is constant when considering only those
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Figure 3. Dependence of clustering results on tree height H for DS2
(750000 snapshots). The proposed algorithm was used with variable
H, t; = 1.5 A, and ty = 8 A. A: The total number of proposed
mesostates is plotted along with the number of mesostates consisting
of only a single microstate. Also, the total number of microstates
contained in mesostates of size 10 or larger is shown along with the
total number of such mesostates. B: CPU time does not show a similar
dependency on H to any of the other quantities. The reported times
do no contain contributions from actual data set I/O but do contain
contributions from computing cluster properties, and for writing graph
and network files. Note the logarithmic scale chosen to aid clarity
(right y axis). The black dashed line is obtained as a fit of the original
tcpy values to H using data from H > 12. The increasing tightness of
clusters is expected on the basis of panel A and shown as well (linear
scale). Tightness is measured as the average, normalized distance of
each microstate to the centroid of its corresponding mesostate. Only
those mesostates are included that contain more than one microstate.

constituted by at least 10 microstates. This means that the
increase is primarily a result of failing to cluster microstates in
low-density regions with the strongest contribution coming
from resultant “meso”states of size 1 (Figure 3). In essence, an
increasing number of levels will—in data-dependent fashion—
create more and more dividing lines between regions of data
space (see Figure S1). For two microstates that are within a
normalized distance of t; of one another, those dividing lines
will eventually lead to a divergence in the paths taken through
the tree. It remains to be seen whether this H-dependency
poses a problem beyond having to slightly renormalize the
chosen value for t,. The renormalization is manifested in panel
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B of Figure 3 that shows a more or less linear decrease in the
average snapshot—centroid distance with increasing H. In terms
of computational complexity, the algorithm clearly has a
minimum as a function of H (panel B of Figure 3). An initial
and strong decrease in computational cost crosses over into a
regime where CPU time increases linearly with H. We typically
employ values of H ranging from 4 to 24 depending on the data
set. Naturally, we also examined the scaling of the algorithm
with data set size, and these results are shown in Figure 4. A
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Figure 4. Scaling of computational cost with data set size for DS3. The
threshold value (t,) was 0.3 in either case. For the proposed algorithm,
we used as additional settings H = 16 and ¢4 = 1.0. A: Elapsed CPU
times for clustering are shown as a function of data set size, N. See
caption to Figure 3 for details on CPU times. Results for the Leader
algorithm are distinctively nonlinear, whereas a very good line fit can
be obtained to describe the results for the proposed scheme. B: The
same data in a double logarithmic plot. Congruent with the results in
panel A, line fits to both sets of data reveal scaling exponents of 1.68
and 1.06 for the Leader and proposed algorithm, respectively.

linear dependence on data set size is observed as expected, and
the proposed scheme outperforms the (superlinear) Leader
algorithm substantially for large data set sizes. Regarding the
dependency on H, for the data in Figure 4 it sufficed to use a
fixed value of 16 throughout. This dispels concerns regarding
parameter-dependent efficiency in the application of the
proposed algorithm to real molecular simulation data in high-
dimensional spaces.

dx.doi.org/10.1021/ct200801b | J. Chem. Theory Comput. 2012, 8, 1108—1120



Journal of Chemical Theory and Computation

Quantitative Comparison of Proposed Algorithm in
Comparison to Reference Methods. Next, we wish to
analyze whether the algorithm introduces artificial features to
the derived mesostate network. It is unfortunately difficult to
convert such a network into a q7uantitative and informative
readout. Tests of Markovianity'**”**! or diffusivity>> report
on whether the network satisfies specific properties, but failure
statistics of those tests are poor quantitative descriptors of the
networks themselves. Here, we employ cut-based free energy
profiles (cFEPs) utilizing the mean-first passage times
(mfpt)”’53 to a chosen reference mesostate (cref) to partition
the network into two components. The number of transitions
between these two components is the partition function of the
cut (Z,5), and can be semiquantitatively related to a free
energy. For each mesostate i, its mfpt; can be used to define the
cut between two partitions with either smaller or longer mfpt
values, and the cumulative probability density of all mesostates
with mfpt; < mfpt; can be used as the associated progress
variable. An alternative would have involved using free energy
disconnectivity graphs®** that depict the structure of the free
energy landscape as a hierarchical graph. However, cFEPs allow
clearer quantitative comparisons between multiple networks.

The toy system we use to evaluate the algorithm is labeled n-
butane, meaning that all hydrogens are distinguishable. Exact
constraints on bond lengths and angles mean that the effective
D = 3 regardless of the chosen microstate representation. Each
of the three dihedral angles has three basins (g, g%, g~) with the
one around the central C—C bond favoring the anti
conformation over the two gauche states, while the two C—
C—C—H torsions populate all three states with equal
likelihood. Kinetic distances are expected to show large overlap,
e.g., with state ag'a being equally far away from state aaa as
states ag a, aag’, or aag” (the first character denoting the
rotation around the central C—C bond, the latter two that
around the two terminal C—C bonds). Figure S demonstrates
that the cFEPs for this system are independent both of the
algorithm used to obtain mesostates and of the chosen
representation (dihedral angles in panel A or RMSD in panel
B). Differences between algorithms are hardly significant,
because they stem from reordering of minor basins that overlap
kinetically and from differences in the amount of overlap
resolved. The former is seen generally for the basins where C—
C—C—C is not anti, while the latter can be observed for
instance in panel A for the proposed scheme with H = 24,
where at Z,/Z ~ 0.52 the barrier separating ag'g* from aag® is
eliminated. Importantly, the three main barriers, i.e., the one
separating the first basin from all the rest (Z,/Z =~ 0.11), the
one separating states accessible by one methyl rotation from
those accessible by two methyl rotations (Z,/Z ~ 0.39), and
the one separating gauche from anti states for the central
torsion angle (Z,/Z = 0.66), are all quantitatively invariant for
all cFEPs shown in Figure S.

This congruence is seen despite the fact that mesostate
volumes and numbers differ significantly between algorithms
(see Table 2). Consistent with Figure 2, the data in Table 2
show that the phase space partitioning obtained for the
proposed algorithm does not suffer from mesostate overlap
irrespective of the chosen H. If overlap were a significant factor,
one would expect the apparent phase space volume coverage to
be correspondingly larger than for the rigorous agglomerative
scheme. Instead, Table 2 makes the point that the proposed
algorithm is roughly on par with the agglomerative scheme and
clearly outperforms the Leader algorithm in this regard. The
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Figure S. Cut-based free energy profiles for n-butane. Data are
clustered with several algorithms and based on either dihedral angle
distances (panel A) or all-atom RMSD values of Cartesian coordinates
(panel B). Threshold settings used were #; = 7° and t; = 0.12 A,
respectively, with t;; = 100° and #; = 1.0 A as coarsest criteria for the
proposed algorithm. The lower part of each panel shows the actual
cFEPs for six different methods. The labels “Hierar.”, and “L-Fwd”
denote the rigorous agglomerative scheme and the Leader algorithm
with both search directions flipped, respectively (see Supporting
Information). Results for the proposed scheme are shown for three
different values of H. Green dashed lines indicate the positions of
prominent barriers in the cFEPs (see text) and are placed identically in
both panels. The top half of each plot shows traces for three different
algorithms that each depict the coarse state assignment for the three
dihedral angles in the system in correspondence with the progress
variable of the cFEP. The first (Leader) or otherwise the central
microstate of each mesostate was used to derive the state assignment.
Colors extend along the abscissa in accordance with mesostate
weights. The term E in the cut-based free energy corresponds to the
total number of microstate transitions, ie., 49 999. Only the 2000
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Figure 5. continued

largest mesostates are actually plotted in each case to keep the number
of objects displayed tractable. This does not noticeably alter the
appearance of the figure at typical resolution/enlargement.

Table 2. Statistics for the Data in Panel A of Figure 5 That
Are Based on DS4 and Dihedral Angle Distances®

algorithm # clusters (r.) Fy in %
Hierarchical 4338 6.37 23.8
Leader 5459 6.72 35.2
L-Fwd 5420 6.43 30.7
H=4 6348 571 25.2
H=38 7705 5.38 28.5
H=24 10161 492 25.7

“The total number of clusters (including those of size 1) for each
algorithm is given in column 2. The Euclidean snapshot—centroid
distance (r,) averaged over all mesostates with at least two microstates
is provided in degrees. From the mean radius, the fractional volume
occupation is computed by assuming uniform density and spherical
clusters as Fy, = N,(4/3)7[(4/3){r.}]*Vigiat Vipsa is simply the phase
space volume of 360° cubed (D = 3). Note that mesostates with only a
single microstate are included in N, but do not contribute to (r.).

differences in the numbers of mesostates do have quantitative
impact, viz, in the actual mfpt values. However, Figure S2
shows that at least in this particular case the changes are very
systematic and correspond to an overall shift in the mfpt
distributions.

Improved Performance on a Real-World Example.
Finally, we examine a realistic test case (DSS). At 330 K, the
miniprotein beta3S folds reversibly into a three-stranded p-
sheet topology on the high nanosecond time scale when using a
particular computational model, as discussed in prior work.*®
Unfortunately, discussing this system’s free energy landscape
and its intricacies'” would go substantially beyond the scope of
this article. Figure 6 shows cFEPs from a mesostate that is part
of the folded basin. The cFEPs are annotated by secondary
structure assignments according to DSSP distinguishing five
variants of f-secondary structure, three types of helices, turn-
like conformations, and highly curved (bent) regions. Panel A
of Figure 6 shows data based on RMSD-based clustering
comparing the proposed scheme to the Leader algorithm. As
can be seen from the DSSP annotations, the kinetic ordering of
states is similar in both cases. The data for the Leader algorithm
appear much more noisy because the DSSP strings for each
mesostate are derived from the microstate that originally
spawned the mesostate, and because that is not necessarily a
good representative of the actual centroid (see Figure 2). This
potential mismatch between properties of the first microstate vs
the added microstates does not mean, however, that drastically
different microstates are combined into a single cluster. To
show this, Figure S3 plots the same data using the maximum
likelihood estimate of the DSSP assignment string based on the
underlying distribution of snapshots constituting a given
mesostate. In Figure S3, the DSSP maps between algorithms
become very similar and—as expected—resemble very much
the original maps for the proposed algorithm as seen in Figure
6.

The cFEPs themselves agree qualitatively well in that the
basin of folded states encompasses about 38% of the data. This
is followed by a region with increasingly disordered states
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Figure 6. Cut-based free energy profiles for beta3S (DSS). Data are
clustered with two algorithms and either based on RMSD values of
backbone nitrogen and oxygen atoms over residues 3—18 (D = 96,
panel A) or based on ¢,,@ angles over residues 3—18 (D = 48, panel
B). Threshold settings used were t; = 1.5 A and #; = 25°, respectively,
with #; = 10.0 A and t;; = 100° as coarsest criteria for the proposed
algorithm. The bottom half of each panel shows cFEPs similar to
Figure 5. Dashed lines correspond to positions of dominant barriers
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Figure 6. continued

identified in panel A. The top half of each plot shows traces for both
algorithms that each depict the DSSP letter assignment’? for the 20
residues in the system in correspondence with the progress variable of
the cFEP. The first (Leader), or the microstate nearest to the centroid
of each mesostate, was used to derive the DSSP string. The
significantly larger amount of noise in these maps for the Leader-
derived data stems from mesostate overlap and the poorly defined
relationship between mesostate centroid and the microstate that
spawned it. Colors extend along the abscissa in accordance with
mesostate weights. In addition to the colors identified in the legend,
unassigned residues (white in the plots) are interpreted to correspond
to extended coil states. E was 999 999, and only the 7500 largest
mesostates are actually plotted (see Figure S regarding pruning).

interspersed by a few enthalpic basins. The kinetically most
distant states are helix-rich, and here quantitative agreement
between algorithms is best. The most remarkable deviation is
the depletion of the first barrier for the Leader algorithm. It
shows that the proposed scheme not only is more efficient but
also provides a better mesostate partitioning. A higher barrier
means that the number of transitions between mesostates on
different sides of the barrier is lower, which most likely results
from reduced mesostate overlap. In high-dimensional spaces (in
contrast to the results for n-butane shown in Figure S), the
Leader algorithm essentially introduces kinetic shortcuts by
placing mesostates not in accordance with local density, but
arbitrarily. This leads to the actual barrier crossing being
obscured if structural distances to either side are comparatively
small. The latter point is illustrated by the congruence between
both algorithms in describing the barrier separating helix-rich
states form the remainder. Here, structural differences as
measured by RMSD are large, and the same result is obtained
for both algorithms. Panel B shows that the likelihood of
observing such shortcuts can depend on the chosen measure of
similarity. For dihedral angles, the density distribution in phase
space is obviously different and—in this particular case—
results in larger quantitative differences between the two
algorithms despite the qualitative nature of the cFEP and the
kinetic ordering being preserved both with respect to each
other and with respect to the RMSD-based network.
Parameter Dependencies and Robustness of Derived
Mesostate Networks for Real-World Example. One may
ask whether the lack of congruence between algorithms in
Figure 6 (that was not observed in Figure S presumably due to
much lower dimensionality) now also implies a dependency on
H. This is explored in Figure S4, where it is shown that changes
in H can give rise to minor, unsystematic deviations that are,
however, small in magnitude compared to the deviations seen
between Leader algorithm and the proposed scheme. Along
similar lines, the last question we explore is how robust results
are upon changing the threshold size of mesostates, t;. It is
expected that for larger values of t; the density-based location
of mesostate centroids will prove increasingly beneficial when
comparing the proposed scheme to the Leader algorithm. In
essence, the range of accessible conformations grows extremely
quickly with t, in high-dimensional spaces, and blind placement
may well create a mesostate that spans or extends into a barrier.
Figure 7 shows that this is precisely the case for the data on the
p-sheet miniprotein (DSS) explored in Figure 6. While at t,
0.27 both algorithms generate cFEPs that share similar
qualitative features and allow the identification of the same
number of basins, the deterioration in information content is
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much less dramatic for the proposed algorithm (panel A)
compared to Leader (panel B). For instance, at t; = 0.32, the
data in panel A resolve the same details as at finer resolution,
whereas in panel B all structure in the left half of the plot is
missing. Interestingly, in this case the tightness of mesostates is
no longer consistently higher for the proposed scheme, and the
total number of mesostates is no longer necessarily larger even
though H = 16 throughout. In fact, the summary statistics
reported in Table S1 can hardly explain the dramatic differences
seen in Figure 7. The similarity in overall statistics means that
differences must be almost entirely on account of the
anticipated superiority of the proposed scheme in situating
mesostates appropriately in high-density regions when D is
large. For instance, the number of microstates in the largest
mesostate is up to an order of magnitude larger for the
proposed scheme and shows much more systematic changes
with t; (Table S1). Finally, similar to the case for Figure 6,
Figure SS presents the same data as Figure 7 with the exception
that the DSSP strings utilized to create the color traces in the
upper parts of the plots are recomputed as maximum likelihood
guesses over all members of each respective mesostate. Figure
SS shows that the kinetic ordering is reasonably well-preserved
even for the rather featureless cFEP for the Leader algorithm at
t; = 0.40 and more importantly that the centroid description is
nearly indistinguishable from the maximum likelihood guess for
the proposed scheme.

B DISCUSSION AND CONCLUSION

In this contribution, we have presented a novel algorithm for
the efficient construction of mesostate networks from (bio)-
molecular simulation data. The scheme adopts its architecture
and some of its ideas from the BIRCH clustering algorithm46
that is optimized for spatial constraints and low dimension-
ality.>® One may ask whether the broad literature available on
the subject contains alternative solutions to the problem as
stated in the Introduction. The main issue in identifying
appropriate algorithms is that few approaches state the problem
exactly in identical fashion; for example, we require mesostates
(clusters) to be homogeneous, nonoverlapping, and of
controllable size, whereas typical ways of posing the problem
focus on allowing arbitrary cluster shapes and sizes.”” Here, we
will briefly discuss different classes of algorithms explicitly and
touch upon the reasons why they may violate one or more of
our peculiar requirements. Readers are referred to the excellent
review by Xu and Wunsch®® for further details.

First, density-based algorithms such as DBSCAN,*®
DENCLUE,* or OPTICS® employ a local density threshold
criterion to delineate regions of high density (clusters) from
those of low density (background). These techniques will often
fail to work in high-dimensional spaces due to inhomogeneous
density distributions, and all violate our requirements for
mesostates to be of homogeneous size and for all data to be
important. Second, many established partitioning algorithms
such as the aforementioned K-medoids or similar algo-
rithms®"%* scale unfavorably with data set size if the desired
number of mesostates is large. This remains true for many
improved variants,**** and consequently they are of little use
when applied to very large simulation data sets irrespective of
their individual virtues. Moreover, the stipulation to provide the
number of clusters K upfront is inconvenient, as a priori it is not
possible to relate K to a mesostate volume. Third, algorithms
that explicitly impose an underlying class of distribution
functions onto the data such as popular variants of the

dx.doi.org/10.1021/ct200801b | J. Chem. Theory Comput. 2012, 8, 1108—1120



Journal of Chemical Theory and Computation

A Ofr MR @Bt MEBr HEPr
= e O3 M@ B Turn O Bend
H :
| | ( a 13
< uuu g
5 |i N\ :
< l\ ‘ :
\f ﬂ “
[l ]
o T il EE
Te]
= 1,=0.27
. 42028
$4=0.29
Bl £,=0.30
£~ £1=0.32
8 s £,=0.34
= = 14=0.36
Ty ‘ = =040
N o . = Leader, t1=0.27
o[ .
K i
1 \
Sr \\\
o~
L 1 1 1 L L
0.0 02 0.4 06 0.8 1.0
Progress Variable Z4/Z
B OB M @Bt @EABwy EPur
mo b3 [En M Turn O Bend
]| u{u allhl T ,lu \m\ ITLTETTT .
.‘ '\'IH\ | } \I :
=
ol e P il |
2 | 5
L i ‘“‘ |\'
L l '\i\ :
M ‘ | l H ‘ “ :
& ||h il i J |f H \||||\ M ‘ \\' |H| z
(e
= $4=0.27
. 4,028
£1=0.29
S| £=0.30
%* ,=0.32
e = f1=0.34
= = 4,=0.36 .
4 = $,=0.40 A
], « H=16,1,2027 | !
Ct")
5
]
ol
o~
1 1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0
Progress Variable Z,/Z

Figure 7. Impact of ¢, on cut-based free energy profiles for beta3S (DSS). To facilitate fast and correct computation of cluster properties, the sine/
cosine values of the ¢y, angles over residues 3—18 (D = 96) served as input data (compare panel B in Figure 6). Data are clustered either with the
proposed scheme using H = 16 and t;; = 1.0 (panel A) or with the Leader algorithm (panel B). Nine different values for ¢, ranging from 0.27 to 0.40
were explored (see Table S1 for associated network statistics). DSSP traces are shown in analogy to Figure 6 for the case of t; = 0.40 to highlight the
differences in robustness between algorithms. Results for ¢, = 0.27 for both algorithms are plotted in both panels to facilitate direct comparisons. E
was 999 999, and only the 7500 largest mesostates in each case are actually plotted (see Figure S regarding pruning).

expectation-maximization scheme® require the data to conform subspaces (such as in CLIQUE,* OptiGrid,"” or the very
approximately to the assumed shape. Fourth, projection-based recent Halite algorithm®) or try to improve cluster separability
approaches either utilize information in lower-dimensional by increasing data dimensionality coupled to the so-called
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kernel trick (for instance, in support vector clustering®). These
are both promising strategies for analyzing molecular
simulation data but involve a fair number of parameters and
are not always easy to use by nonspecialist researchers. In
addition, dimensionality reduction techniques bear the danger
of introducing kinetic shortcuts into derived networks, whereas
dimensionality increases may be difficult to keep computation-
ally tractable. Fifth, among grid-based approaches, there are
those that do not scale up to large values of D, such as
WaveCluster.”’ In addition, there are several grid-based
methods including CLIQUE®® and OptiGrid®’ that manage
to overcome the usual inapplicability of grid-based approaches
to cases when D is large. However, CLIQUE scales poorly with
data dimensionality (~D?) in time, whereas OptiGrid leaves
choices for required heuristics open. Overall, the sheer number
of proposed approaches and the large overlap between them
highlight again the fact that the problem of clustering can be
posed any number of ways. Moreover, nearly all algorithms are
reported to outperform earlier counterparts, which makes a
quick evaluation of their potential weaknesses difficult.

In conclusion, the proposed algorithm (Figure 1) was
specifically designed to deal with the challenges posed by
coarse-graining molecular simulation data into networks of
mesostates that preserve important information regarding free
energy basins and barriers. It has the following properties:

I. It operates in near-linear time with respect to data set
size (Figure 4).
II. Its results are not strongly dependent on the choice of
input parameters, ie, primarily the tree height H
(Figures 3, S, and S4). The choice for t; and the
interpolation scheme are coupled to the chosen H, but
thus far linear interpolation and choosing f;; to match
approximately the maximum distance in the data have
proven sufficient.
It creates mesostates that are of consistent size (set by t;
and H) and free of overlap (Figures 2, 3, and S1).
Mesostates track local density well, which is essential for
describing network connectivity (kinetics) in high-
dimensional spaces in authentic fashion (Figures 6 and
7 and Figures S3 and SS).

We believe that the algorithm will be useful to the
biomolecular simulation community. It has been implemented
in the open source software project CAMPARL’" and a current
development snapshot of the source files is available upon
request via campari.software@gmail.com. We did not specifi-
cally look for other problem domains to which to apply the
proposed scheme, but it may well prove suitable to applications
with similar criteria. Finally, ongoing research is concerned with
utilizing the inherent multiresolution nature of the output of
the algorithm to incorporate and extract kinetic information
directly, and with the development of inexpensive measures of
network robustness and quality.

I1I.

B ASSOCIATED CONTENT

© Supporting Information

Derivation of efficient formulas for computing intrinsic and
relative cluster properties. Implementation of other clustering
algorithms. Moments of inertia as fluctuating weights. Table
(S1) detailing statistics regarding data underlying Figure 7.
Supporting figures (S1—SS5) on mesostate boundaries (Figure
S1), mfpt-correlation analysis for n-butane (Figure S2),
robustness of results on Beta3S (DSS) as a function of H
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(Figure S4), and alternate versions of Figures 6 and 7 (Figures
S3 and SS). This material is available free of charge via the
Internet at http://pubs.acs.org.
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