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ABSTRACT

Classical atomistic simulations of biomolecules play an increasingly important role in molecular life science. The structure of current com-
puting architectures favors methods that run multiple trajectories at once without requiring extensive communication between them. Many
advanced sampling strategies in the field fit this mold. These approaches often rely on an adaptive logic and create ensembles of comparatively
short trajectories whose starting points are not distributed according to the correct Boltzmann weights. This type of bias is notoriously difficult
to remove, and Markov state models (MSMs) are one of the few strategies available for recovering the correct kinetics and thermodynamics
from these ensembles of trajectories. In this contribution, we analyze the performance of MSMs in the thermodynamic reweighting task for a
hierarchical set of systems. We show that MSMs can be rigorous tools to recover the correct equilibrium distribution for systems of sufficiently
low dimensionality. This is conditional upon not tampering with local flux imbalances found in the data. For a real-world application, we find
that a pure likelihood-based inference of the transition matrix produces the best results. The removal of the bias is incomplete, however, and
for this system, all tested MSMs are outperformed by an alternative albeit less general approach rooted in the ideas of statistical resampling.

We conclude by formulating some recommendations for how to address the reweighting issue in practice.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5063556

I. INTRODUCTION

Stochastic models have been widely used in fields such as
risk prediction,’ speech recognition,? bioinformatics,® etc. When
applied to discrete systems, they generally describe the relationships,
if any, between different states or entities captured in the model. In
the field of atomistic simulations of molecular systems, a common
strategy is to use an unsupervised data mining procedure (cluster-
ing) to discretize a complex system represented in a reduced but still
high-dimensional space. The resultant discretization defines states
whose interconversion can be described by stochastic network mod-
els, which are most often memoryless, i.e., they are Markov state
models (MSMs).*> A data-derived stochastic model allows predic-
tions to be made regarding the evolution of the system it repre-
sents. The usual axis of propagation is time, for example, for a
biomolecule evolving according to Newton’s equations of motion.®
MSMs are used to predict the different dynamic modes a system has
access to (usually in a hierarchical approach prioritizing the slow-
est modes), to define kinetic reaction coordinates like committor

probabilities” or mean-first passage times,® and to calculate relax-
ation/reaction rates that can be compared to observables extracted
from real data.>®

One of the most direct and useful predictions offered by MSMs
is the implied steady state, which, given that ergodicity holds, is the
unique distribution of probabilities across states that are station-
ary in time. It can be calculated as the eigenvector of the transition
matrix (T) associated with eigenvalue 1.0 but also iteratively by sim-
ply applying the transition matrix to an arbitrary initial distribution
until convergence. When applied to molecular systems, the steady
state is associated with the thermodynamic equilibrium distribution
as it is the predicted stationary distribution for an infinite amount
of sampling. There is one obvious caveat in this logic, however. If
both the states and the transition matrix are inferred, without adjust-
ments, from a single simulation of finite length, the steady state is
usually arbitrarily close to the sampling distribution.’® In this limit,
the MSM is merely a description of the data in a coarse-grained rep-
resentation. This means that the steady state offers no information
regarding convergence or sampling quality. In other words, it simply
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imposes the assumption of (global) equilibrium onto the sampled
trajectory.

For the prediction of equilibrium distributions from MSMs
to offer new insights, we thus require one of two additional crite-
ria, which can be combined. First, the underlying data can be an
ensemble of very many short trajectories instead of a single or few
long trajectories.' """ If the distribution of their starting points is
inconsistent with the steady state of a derived MSM, the predicted
equilibrium will differ substantially from the raw sampling weights.
Second, independent information can be used in deriving the MSM.
This can be either at the level of states or at the level of transitions.'*
In the former case, a prior definition of states allows an assessment of
sampling quality by consulting visitation frequencies and the recur-
rence of transitions to define well-sampled domains. In the latter
case, prior beliefs regarding the transition matrix can be incorpo-
rated, and this will alter the predicted MSM steady state. The goal
of our study is to analyze the efficacy of different ways of adding
information to the transition matrix for trajectory ensembles. It is
well-known that recovering the correct equilibrium distribution is
a nontrivial problem in the presence of the type of initial state bias
mentioned above.'®

Conceptually, every transition matrix element can be decom-
posed into a kinetic and a thermodynamic component.'® The lat-
ter is related to the weights of the target state at equilibrium and
does not depend on the underlying propagator or on the cho-
sen lag time (the effective time step of the MSM). The former
does depend on both of those. For example, consider a propaga-
tor describing Hamiltonian dynamics for a system with interactions
sufficient to achieve ergodicity. In this scenario, the kinetic compo-
nent will be influenced by velocity variables at very short lag times,
which leads to memory effects that are in conflict with the assump-
tion of Markovianity. As the lag time increases, for an appropri-
ate coarse-graining, the effective dynamics become diffusive.'”'®
Clearly, for the MSM to describe the true equilibrium distribution,
the kinetic components must gradually cancel out as soon as the
lag time approaches and eventually exceeds all relevant time scales
of the system. This restates the ergodic hypothesis (supported by
Liouville’s theorem), and it implies that the propagator must be
globally balanced. Detailed balance, i.e., requiring that the fluxes
for every pair of state are balanced, implies equilibrium'® and is a
sufficient but not a necessary condition to achieve global balance.
Steady states where microscopic equilibrium does not hold appear
in different areas of science?’?! and are more difficult to analyze
rigorously.??

For real-world applications, we typically want to infer simul-
taneously the kinetic and the thermodynamic component of every
transition matrix element from finite data. At intermediate lag
times, the matrix will still be highly sparse, and this sparsity is
part of the inference. Clearly, in this regime, many transitions can
be safely neglected because their kinetic likelihoods are vanish-
ingly small. However, for the ones that are marginal, i.e., those
that would, for the given sampling length, give rise to single-digit
transition counts, noise problems arise. There are several schools
of thought to address this problem. The first one has been to rely
on the theoretical fulfillment of detailed balance by the propaga-
tor to impose detailed balance onto the MSM, which removes local
flux imbalances (see Sec 11 A). This can be done on the entire
MSM or on individual strongly connected components.'? Detailed
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balance can be enforced in an MSM in various ways, and, given
the assumption of Markovianity, a constrained maximum likelihood
(ML) approach has been developed that should keep the inferred
transition matrix as consistent with the observed count matrix as
possible.* 1%

The second school of thought is the use of pseudocounts, which
are a way to use a specific class of prior distribution to improve
a purely likelihood-based inference (see Sec. II B). For a Markov
model, each transition is in essence a throw of an N-sided die, and
for this problem the most-used uninformative priors derive from
the Dirichlet distribution.?*>"?° It has to be pointed out that there
is no universally accepted truth of what are the best uninformative
or subjective priors for the problem of transition matrix inference.
A third school of thought is to construct the transition matrix from
scratch (see Sec. II C). This means discarding the raw kinetic infor-
mation available from the trajectories.?®?° In this framework, ele-
ments of T are assembled explicitly from their diffusive (using geo-
metric similarity) and thermodynamic (from a reweighting protocol
for biased simulations) elements. This strategy generally requires the
use of advanced sampling techniques and implies a constant rate of
diffusion across phase space. The latter does not usually hold for
geometric projections.® 630

Clearly, all three approaches are in danger of introducing biases
as they add information, but this type of information differs funda-
mentally. In this contribution, we focus on how this added infor-
mation influences the prediction of the steady state of MSMs con-
structed from ensembles of short trajectories with biased start-
ing positions. In this situation, deviations from the ground truth
arise both in the form of random errors due to limited sampling
and in the form of systematic errors due to the choice of start-
ing positions for the individual trajectories. We perform tests on
three classes of systems arranged hierarchically: (1) a discrete sys-
tem where Markovianity is a given; (2) a toy model where we apply
the full workflow of discretization and MSM construction on data
from a propagator in continuous space; (3) a real-world applica-
tion of molecular dynamics (MD) simulations of peptide folding.
Where applicable, we also compare results to a conceptually unre-
lated strategy derived from the idea of statistical resampling (see
Sec. I1 E).

Il. METHODS

A. Maximum likelihood inference and detailed
balance imposition

The simple solution for the maximum likelihood estimate of a
transition matrix is dependent on the choice of a likelihood function
that treats all transitions as independent (Markovian). Then,

N N .
Tz = max[L(C|T)] = |:Hnt,] ]:t,,_ - (0

In Eq. (1), C is the count matrix, and N is the number of states.
Detailed balance can be imposed onto a transition matrix in dif-
ferent ways. The two popular ways of doing this naively involve
deriving a symmetric count matrix C* either by letting ¢; = c¢;
= 0.5(cj+ci) or by letting ¢ = ¢; = max(cyci) (where
applicable, we used the latter in Sec. III). Bowman et al* and
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later Prinz et al."* proposed numerical strategies for maximizing the
(Markovian) likelihood with a symmetry constraint, i.e., to solve the
implicit relation

TppmL = maX[L(C‘T)‘(”itij = ﬂjtﬁ)\ﬁ,j]

N N

=max|[][]#"

i=1 j=1

(mitij = itji) 5 |- )

In Eq. (2), n(T) is the vector of predicted equilibrium proba-
bilities, which appears here in the detailed balance constraint,
(mity = T[jtji)vi,j' As with all derivations involving the likelihood L,
we are restricted to the shown (Markovian) functional form. For
a non-Markovian system, successive transitions become coupled,
and the probabilities are no longer independent. It is important
to spell out that the likelihood function and thereby all statistical
procedures relying on it become incorrect for systems that do not
exhibit memoryless behavior given the choices of hyperparameters
(coarse-graining and lag time).

B. Posterior inference of transition matrices

Each row of a transition matrix, t;, describes the conditional
probability of moving from state i to the putative target states j
(including 7). Because of the Markov property, this is equivalent to a
process described by a multinomial distribution, and each row can
be treated independently. Dirichlet priors, D(x; &), which depend
on “concentration” parameters a, are conjugate to the multinomial
distribution, and the resulting posterior satisfies®'

N
p(tilei) o< L(cilti) - D(ti; a4) o< H tquﬁ-a,-]—l oc D(ti; a3 +¢i) Va; > 0.

j=1
3)
The expected value of the Dirichlet distribution on the right-hand
side of Eq. (3) is
Qi + Cij
E(ty) = Nfif (4)
Y (o + i)
k=1

Thus, if we treat the a;; as pseudocounts, the expected values of the
t;j from the posterior distribution are straightforwardly computable
and resemble an augmented maximum likelihood (ML) estimate.?®
Empirically, pseudocounts are also known under the term additive
or Laplace smoothing.*? If all the a;j are 0.0, the expected value of
the posterior distribution is equivalent to the ML estimate. For the
uniform prior, all a;; are 1.0 instead. In this case, the more natural
correspondence of the ML estimate is with the maximum a posteriori
(MAP) estimate, which has a closed-form solution if all a;; > 1

aij+c;j71

MAP(t;j) = (5)

~ .
kZ (aix + e — 1)
=1

We can thus understand the solution in Eq. (4) equivalently as the
MAP estimate for a Dirichlet prior with pseudocounts of 1 + a;;. One
advantage of such a prior is that the ergodicity is guaranteed. A pop-
ular choice for a appears to be 1 + 1/N for all i and j [equivalent
to 1/N in the sense of Eq. (4)],® and all “MAP” estimates refer-
enced in the figures below used this value. The major downside is
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that the matrix becomes maximally dense, which limits the num-
ber of states one can investigate in routine applications. We note
that workarounds have been developed for specific tasks like the
computation of mean-first passage times.?”

C. De novo construction of transition matrices

As mentioned in the Introduction, every transition matrix ele-
ment can be decomposed into a kinetic and a thermodynamic com-
ponent.'® Because the kinetic component must “integrate out” as
long as the lag time is sufficiently large and the system undergoes
ergodic dynamics, all the information about the relative weights of
the states must be encoded in the thermodynamic components. Sup-
pose now that an independent assessment of the relative weights of
states is available, e.g., derived in coarse terms from an advanced
sampling calculation that yielded the potential of mean force along a
reaction coordinate. Converted to a set of MSM states, this becomes
a vector of state probabilities at equilibrium, p*/. How do we obtain
the kinetic component? Following the literature,?’"?° it is possi-
ble to derive the missing kinetic components with two additional
inputs: first, a geometric threshold for excluding which pairs of
states are deemed close enough to allow transitions at all; second,
a base rate. The idea of the geometric threshold is similar to that
of choosing a lag time in data-derived MSMs: a looser threshold
corresponds to a larger lag time and vice versa. More generally,
the threshold can be replaced by a continuous function H that
returns something akin to an effective diffusion “kernel,” i.e., a dis-
tribution of (squared) geometric distances available after an implicit
time lag 1. For the literature examples cited above, H was cho-
sen as a shifted Heaviside function, which is the functional repre-
sentation of a cutoff. The base rate parameter affects all rates and
is normally treated as a fitting parameter to obtain correct time
scales.?729

Unlike the formulation of Levy and co-workers,? who use the
rate matrix, we construct de novo transition matrices as follows:

tj = H(dy)/p}? Vs,

N
* *
tii =f —Ztij.

J#i

(6)

In Eq. (6), djj is the geometric distance between states i and j, H is
the aforementioned kernel function, and f is the term controlling
the base rate. Specifically, we choose f as a constant equivalent to the

N
maximum row sum of 3 #;; across all i plus a (positive) increment,
JEI
which is a free parameter. Larger values of f make the model slower
overall. The final T is then obtained from T* by row normalization.
It is important that the symmetry of the kinetic component can be
ensured easily because dj; = dj; for a proper metric. This will lead to
transition matrices that automatically imply detailed balance. Simi-
larly to the ML estimate with detailed balance constraint in Eq. (2)
above, strategies have been developed to introduce p*? as a constraint
rather than using it directly as in Eq. (6).5%

As mentioned in the Introduction, detailed balance is a suf-
ficient but not a necessary condition, and what ultimately matters
is that the kinetic components are globally balanced. This can be
illustrated using explicit Markov models where there is no notion
of geometric distance. Figure 1(a) shows three alternative models
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FIG. 1. Different balanced propagators integrate out. (a) The sparsity pattern of three different transition matrices is shown for the same circular graph layout. Nodes are
numbered in sequence, and colors differentiate the three matrices (gray: model #1; cyan: model #2; orange: model #3). Color intensity increases with increasing equilibrium
probability. The inset is shown to improve readability. Arrowheads are only drawn for connections between different states. We obtained many matrices similar to model #3
by randomly adding transitions in a symmetric fashion (both jj and ji) until ergodicity was reached. The example shown has 190 total nonzero elements. The p®? defined in
Eq. (7) enters the construction of T following Eq. (6) (see the text). (b) The normalized first eigenvectors of the matrices specifying models #1-#3 are plotted against the
ground truth, p®9. Results for different versions of model #3 were identical to numerical precision. The prediction for a flawed version of model #1 is included to emphasize

the role of balance in the propagator (see the text in Sec. [l A).

constructed for the same set of states. We apply the following peri-
odic potential, in reduced units of k, T, to the 50 discrete states
(indexed by n), which defines p*

pal o< exp[-V(n)] < V(n) = 70.6cos(%) - 0.4sin(;[—:). (7)
Equation (7) creates two major basins of attraction with unequal
weights and allows for simple visualization.

Thus, the models in Fig. 1(a) differ only in the kinetic com-
ponents of their transition matrices, which were constructed using
Eq. (6) but replacing the H kernel with binary functions that
switch on specific transitions chosen such that global balance is
preserved. For model #1, all states with neighboring indices are
connected. For model #2, these connections are made one-sided.
Finally, for model #3, random connections were chosen in a sym-
metric fashion until ergodicity was reached. Figure 1(b) shows that
these three network topologies, which are differentiated exclusively
by the propagator part, give exactly the same steady state. This
must be so if ergodicity holds and if the global balance condi-
tion is met. For example, we could understand the randomly con-
nected (#3) and the symmetric neighbor-only (#1) models as coming
from a Monte Carlo simulation (jumps are possible) and a molec-
ular dynamics (MD) simulation, respectively. Model #2, for which
one direction was eliminated relative to model #1, illustrates that
a propagator can be globally balanced without fulfilling detailed
balance.

D. Computing observables reweighted by MSMs

Trajectory ensembles consist of individual snapshots. To com-
pute expected values for an observable O from them, one typically

takes just the sample mean
, s
(0)" =57 31 0(s). (®)

In Eq. (8), s; indicates the conformation corresponding to the ith
snapshot, and § is the total number of snapshots. The MSM makes a
prediction for the population at equilibrium for clusters, and Eq. (8)
needs to be corrected (reweighted) accordingly

P’fggs o(si). ©)

MSM 1 S
(O™ =57

obs

Here, c; is the cluster that the ith snapshot belongs to, and wand p
are the vectors of the predicted equilibrium and the observed cluster
weights, respectively. In order to generate reweighted distributions
of observables, the same logic is applied to the construction of his-

tograms, i.e., the counts for snapshot s; are simply weighted by the
obs

factor 7., /pl”.

E. Casting PIGS in the framework of statistical
resampling

Progress-index guided sampling (PIGS)'? is an advanced sam-
pling strategy that works on a trajectory ensemble of constant size in
parallel. Here, we just review the method’s salient features relevant
to the scope of the manuscript. Initially, all replicas start from the
same configuration but their evolution is stochastic, which ensures
the divergence of trajectories with time. At regular intervals, the data
from all trajectories are pooled and analyzed**> to produce a rank-
ing of how likely the current conformations are to explore new or
undersampled areas of phase space. The ranking is used to propose
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stochastic reseedings favoring highly ranked replicas and disfavoring
those that are likely redundant. Accepted reseedings lead to the ter-
mination of some trajectories. There is no guarantee that a different
but geometrically similar trajectory will survive. There is no binning
of phase space involved, and the most critical hyperparameter of
PIGS is the choice of representation, which directly determines the
metric for measuring conformational distance. Interested readers
are referred to the original publication'® and two recent applications
for details.>657

The idea of evolving a number or replicas of a system and
using an informed criterion to guide the ensemble of trajectories
toward more interesting states is shared by many advanced sam-
pling methodologies.'"?3%42 If we consider individual trajecto-
ries as samples drawn from a well-defined distribution, the idea of
weighted, statistical resampling can be applied to the ensemble.**
For this, there are two processes to monitor, duplication and ter-
mination. The objective is to track these processes and update the
statistical weights of trajectories (and thereby snapshots). Duplica-
tion of a particular sample should lead to a proportional reduction
in weight, while termination should lead to a corresponding increase
in the weight of a similar sample. For this manuscript, this is all done
in post-processing, yet we use the acronym WE (weighted ensemble)
below due to the method’s origins.*'

In detail, suppose a trajectory ensemble of constant size is
evolving. Every so often, some trajectories are terminated and
reseeded, which is representable as an integer map, mj, where i
indexes trajectories, and r time (reseeding cycles). For a terminated
trajectory, m; # i. The instantaneous weight, w}, of a terminated tra-
jectory is distributed to one or more similar trajectories, which is
measured most often as being found in the same bin. For simplic-
ity, let us assume that this is also representable as an integer map, x.
Then

Eéilwifl
T .
if Y8 >0
r 3 . Oim >
wi=q ¥ 7 (10)
Wy else.

In Eq. (10), 8;; denotes the Kronecker delta. The top row shows
the joint lumping and splitting idea of statistical weights applied
at a given reseeding cycle. Trajectories that survive combine the
weights of any terminated trajectories they have been deemed sim-
ilar to (the map x) and normalize it by the number of replica-
tions (manifest in the map m). This includes the case of surviving
trajectories not involved in either lumping or splitting, for which
only the ith elements of m and x are equivalent to i and thus w;
= w/ !, Terminated replicas attain the resultant, updated weight of
their reseeding conformation (bottom row). This is illustrated in
Table I using an (arbitrary) example. A given weight w} applies to
all snapshots from trajectory i collected between reseeding cycles r
andr + 1.

When applied to a PIGS data set, where m is known exactly
from the recorded reseeding history,'® the main difficulty is in deter-
mining the map x. Because PIGS does not bin phase space, the best
available guess is simply to lump the weight of a terminated trajec-
tory to the geometrically closest and surviving one. Without restrict-
ing ourselves to such a binary map, the best available guess would
be much harder to define. In any case, the resultant guesses can
be arbitrarily poor but are expected to be more robust for systems
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TABLE I. Scheme to illustrate Eq. (10). The values of the two integer maps, m and
X, are shown for five reseeding cycles and four replicas. Initially (r = 1), all trajectories
have equivalent weights of 1/4. The first reseeding is for r = 2, where trajectory #2 is
terminated and replaced with #4, and its weight is lumped into #3. This means that
the resultant weights (w?) will be 1/4, 1/8, 1/2, and 1/8 (for trajectories #1-#4). The
next event is at r = 4 where #3 is terminated and replaced with #4. Because its weight
is also lumped into #4, the updated w* will be 1/4, 1/8, 5/16, and 5/16. Finally, at r =
5, both #1 and #4 are replaced by #2, and their weights are lumped into #3. Thus, w®
will be 1/24, 1/24, 7/8, and 1/24.

r=1 2 3 4 5
m} 1 1 1 1 2
x 1 1 1 1 3
m} 2 4 2 2 2
X, 2 3 2 2 2
m} 3 3 3 4 3
X, 3 3 3 4 3
m, 4 4 4 4 2
X, 4 4 4 4 3

of lower complexity and larger numbers of replicas. The strategy
in Eq. (10) is, unlike the MSM-based protocols above, not a gen-
eral strategy, however. For example, it has no effect on an ensemble
of trajectories started from incorrectly (non-Boltzmann) distributed
but independent configurations. We note that the combination of
PIGS and statistical resampling is a rough analog of adaptive mul-
tilevel splitting*? when there is no reaction coordinate to define an
exploitation goal. For splitting methods, many useful properties of
derived estimators have been proven.**

I1l. RESULTS AND DISCUSSION

We present the results as follows: First, we study a toy system of
50 discrete states that is explicitly Markovian (Sec. ITI A). We use tra-
jectories from biased starting positions to highlight which methods
of transition matrix inference are able to remove this bias. The sta-
tistical resampling (WE) approach is not applicable to this setup (see
Sec. IT E). Next, we advance to a similar system but in continuous
space (Sec. III B). Because we employ an actual advanced sampling
technique (PIGS),"® and because we know the ground truth, the
resultant trajectory ensemble can be tackled with all of the meth-
ods we consider here. Finally, we turn to a real-world application,
viz., the conformational equilibrium of a 21-residue peptide prone to
form a-helices (Sec. 111 C).“> This is a published data set generated
by atomistic MD simulations.'®

A. An explicitly Markovian toy model

If the distribution of initial configurations for an ensemble
of trajectories is not the Boltzmann one, it is expected that dur-
ing the initial part there is an unbalanced probability flux toward
the stationary distribution.*® This flux imbalance is present in
the network unless a suitable relaxation period is truncated. This
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truncation strategy is commonly used for single or few simula-
tions of identical length, but it is not feasible for the often short
trajectories produced by many advanced sampling protocols.'® To
be able to compare different methods of transition matrix con-
struction, we remove all ambiguities regarding the coarse-graining
and the desired memorylessness by turning to an explicit Markov
model.

Of course, knowing the ground truth, Eq. (7), allows a straight-
forward (de novo) construction of synthetic transition matrices
(Sec. 1I C) with arbitrarily accurate results (see Fig. 1). Clearly,
the example in Fig. | masks the main difficulty with this approach
since in practice the ground truth [p®! in Eq. (6)] for the full phase
space explored by the trajectories can be extracted only crudely from
approaches like umbrella sampling“” or replica exchange.*® Thus,
the de novo method’s main application has been in predicting kinetic
properties. Figure 1 includes a flawed model that differs from model
#1 only in the fact that the propagator component from state 4 to
state 5 was reduced by a factor of 3.0. This stresses the importance
of maintaining global balance. When transition matrices are inferred
fully from data, imbalances can arise sporadically and independently
of p%, and this limits the accuracy of derived predictions. In the
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common case that there is no independent estimate for p®, this
means that imbalance problems due to the propagator cannot
be delineated from the effects of p®d. As outlined above, simple
approaches to this inference problem include mandating detailed
balance (Sec. I A) or using Bayesian logic (Sec. II B). The former is
linked to the known symmetry property of the propagator. As shown
below, these approaches can be harmful if the underlying imbalances
are not sporadic but systematic.

In order to compare the different data-driven methodologies
for the inference of T, we create synthetic trajectories from random
walkers on model #1 in Fig. 1(a). The initialization of a fixed num-
ber of trajectories was uniform except that they started with 10-times
higher likelihood in the first 25 out of the 50 total states [left side in
Fig. 1(b)]. This creates an initial state bias, which is what we hope
for the steady state to correct. For shorter trajectories, there is more
initial state bias, while for fewer trajectories, there is lower statistical
precision overall. Figures 2(a) and 2(b) show the exhaustively sam-
pled case (1.5 x 10° total steps), either in a scenario of vanishing
bias (0.15 x 10° steps per trajectory), (a), or in a scenario of a strong
and consistent initial state bias (150 steps per trajectory), (b). Among
the methods tested, only the unconstrained maximum likelihood
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FIG. 2. Local flux imbalances must be preserved for thermodynamic reweighting. (a) Data for 10 trajectories of 150 000 steps each. (b) Data for 10 000 trajectories of
150 steps each. (c) Data for 1 trajectory of 45000 steps. (d) Data for 300 trajectories of 150 steps each. The results in (c) and (d) are individual examples of noisy data sets.
(e) Tukey-rule boxplots of the Kullback-Leibler (KL) divergences between the ground truth and the predicted steady state for 100 repetitions of the settings in (c). See (f) for
the legend. (f) Tukey-rule boxplots of the KL divergences between the ground truth and the predicted steady state for 100 repetitions of the settings in (d).

J. Chem. Phys. 150, 104105 (2019); doi: 10.1063/1.5063556 150, 104105-6

Published under license by AIP Publishing


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

(ML) estimate of the transition matrix, Eq. (1), and the maximum
a posteriori (MAP) estimate, Eqs. (3)-(5), predict the correct steady
state in both cases. It is expected that the pseudocounts from the
prior distribution do not matter in this well-sampled regime. The
imposition of detailed balance, regardless of methodology, appears
to fix the steady state to the observed sampling weights. This is
appropriate only if the observed sampling weights are approximately
correct. The failure in Fig. 2(b) can be understood as the result of
explicitly removing local flux imbalances, which is precisely where
the initial state bias appears to be encoded. This phenomenon is
also highlighted effectively by considering the reverse-time transi-
tion matrix, which, consistent with this explanation, amplifies rather
than weakens the initial state bias.

Figures 2(c)-2(f ) demonstrate what happens as the amount of
overall sampling is decreased to 3% of that in (a)-(b). If the initial
state bias is small [only a single random walker was used, Fig. 2(c)],
the only estimator that deviates from the sampled distribution is
the ML-estimated transition matrix under the detailed balance con-
straint [Eq. (2)]; see Fig. 2(e). Rather than improving the estimate,
however, it worsens it slightly but significantly (Welch two-sample
t-test relative to straight ML estimate indicates difference in means
with ~98% confidence). The fact that the reverse-time ML estimate
exhibits no significant difference confirms that this simulation is at
equilibrium. In the presence of initial state bias [Fig. 2(d)], which
is theoretically identical in magnitude to the scenario in Fig. 2(b),
it becomes clear that the ML estimator performs best for this sys-
tem [Fig. 2(f)]. Importantly, the results from Fig. 2(b) are confirmed
when considering repeated but noisier measurements: detailed bal-
ance imposition performs similarly to the observed distribution, and
the reverse-time ML estimate amplifies the bias. Furthermore, the
ML estimate performs significantly better also than the MAP esti-
mate (Sec. II B). Indeed, all differences in Fig. 2(f) are highly signifi-
cant (p-values of 107 or lower) with a single exception: the observed
distribution and those from a naive imposition of detailed balance
are indistinguishable.

A few remarks are in order regarding the differences in
Fig. 2(f). First, the prior chosen for the MAP estimate is not in
the category of typical objective priors. It uses for the concen-
tration parameters in the Dirichlet distribution a fixed value of
1 + 1/N [see Eq. (5)]. For comparison, a Jeffreys prior, whose guid-
ing principle is for the posterior distribution to become invariant
with reparametrizations of the problem, would use a value of 0.5.
It thus seems as if the primary purpose of this prior in MSMs
is not necessarily to prevent bias or incorporate prior informa-
tion but to guarantee ergodicity in a “safe” manner. Second, the
detailed balance-constrained ML estimate predicts a steady state that
is slightly but significantly better than the raw sampling distribution.
Because this method introduces fractional counts, it appears to add
noise [see Fig. 2(c), in particular]. Evidently, this noise is not white:
it is slightly harmful at equilibrium [Fig. 2(e)] but slightly beneficial
in the presence of systematic biases [Fig. 2(f)].

B. A continuous space toy model

We next turn to a one-dimensional system. Like the sys-
tem in Figs. 1 and 2, it is characterized by having two main
states with unequal weights. However, we add the following ele-
ments that create a much more realistic use case. First, the system
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is defined and propagated in continuous space. This necessitates
coarse-graining as a post-processing step,®* which can introduce
errors by compromising Markovianity given a choice of lag time.
It also implies that all states have explicit and well-defined (mutu-
ally consistent) geometric distances from each other. Second, we
employ an actual advanced sampling method, PIGS,'® to gener-
ate a trajectory ensemble carrying initial state bias. This brings the
statistical resampling (WE) strategy for reweighting into play (see
the first paragraph of Sec. II E for a brief description of PIGS).
Third, there is an explicit propagator controlling the evolution of
individual trajectories outside of reseeding events. This allows us
to use this information to construct an alternative Dirichlet prior
for deriving a MAP estimate of the transition matrix as shown
below.

At equilibrium, the population of the second (right) state is very
low, so we represent positional distributions in logarithmic (free
energy) space. This low population and the relatively slow barrier-
crossing rate mean that distributions from 16 independent trajec-
tories with no reseedings (conventional sampling, CS) carry signif-
icant errors [Fig. 3(a)]. For the data set shown, there is only about
one crossing event per replica on average. Due to the absence of
reseedings, the WE post-processing is inapplicable to CS. Figure 3(b)
shows that the reweighting of these CS data with MSMs is largely
ineffectual. Similarly to the results in Fig. 2(e), the constrained ML
approach performs slightly but significantly worse. Given that initial
state bias appears to be present in these trajectories [Fig. 3(a), they
all started from the left state], it may seem confusing that MSMs fail
to detect and remove any flux imbalance [Fig. 3(a), top]. However,
as shown, the heuristic procedure of discarding the first half of the
data for every replica also fails. This means that the primary source
of error is not the initial state but the poor statistics, and these are
clearly not corrigible by any of the MSMs evaluated.

Unlike for the first toy system, here the assumed lag time
matters because the propagator operates in continuous space and
Markovianity is not a given. Figures 3(d)-3(f) show data from a
PIGS run using the same number of replicas and overall number
of steps as CS. In terms of observed counts, this data set dramati-
cally overestimates the population of the second state (on the right).
This is because PIGS penalizes sampling redundancy, i.e., trajecto-
ries are rewarded for visiting both states equally. However, Fig. 3(e)
demonstrates that, irrespective of lag time, all MSM-based reweight-
ing approaches except those imposing detailed balance provide a
better prediction of the ground truth than raw or reweighted CS
data. The only exception to this rule is the MAP estimator at short
lag times. For all other cases, the combination of the underlying
Monte Carlo sampler and the chosen discretization appear to lead
to the shortest possible lag time (we recorded data with a frequency
of 10 elementary steps) being most appropriate. Why does the per-
formance of the MAP estimator deteriorate at very short lag times?
Clearly, the network is very sparsely and locally connected in this
regime, and the propagator (see the Introduction and Sec. IT C) fun-
damentally limits the reachable states. The imposition of prior infor-
mation assuming complete connectivity thus violates the properties
of the propagator encoded in the observed counts. We hypothesize
that, as Fig. 3(e) shows, this can be harmful despite the relatively
low weight of the pseudocounts. An alternative to the uniform prior
is to use a prior distribution that is aware of the propagator, and
we show one possible strategy for this as the MAP+ estimator in
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FIG. 3. Results for a continuous space toy system. A particle was propagated in the potential shown in olive in (a) and (d) by a Metropolis Monte Carlo sampler using
a single move type at 298K: symmetric displacements sampled uniformly from an interval of 0.1a.u. All replicas started in the left basin throughout. (a)-(c) Data for 16
trajectories of 10° steps each with no reseedings (CS). The ground truth along with the potential inferred from the observed distribution is displayed in (a). Potentials from ML
reweighting are shown as well but the lines superpose with the observed data (clustering yielded 425 states). The top of (a) (second y-axis) is a measure of the direction of
the flux for two lag times (the same color code and x-axis apply). It is computed per state as the row sum of the matrix B where by = praw,i tj — Praw; £, and negative values
indicate incoming flux, while positive values indicate outgoing flux. Panel (b) shows KL divergences from the ground truth for all attempted reweighting strategies and lag
times. The point of best agreement across all attempts is highlighted. Finally, (c) shows the value of —z/1n A, where ), is the 2nd largest eigenvalue of the ML estimate of
T(t), and T is the lag time. Here, this corresponds to the time to cross the barrier between the two states. (d)—(f) The same as (a)—(c) for a PIGS data set of identical extent
(clustering yielded 445 states). In addition to the analogous data shown in (a)—(c), we add here the WE result in panels (d) (dashed line) and (e) (orange-red symbol). In
panel (d), both ML results overlap with the ground truth. Note the y-axis discontinuities in (e). Figure S1 shows the same data analyzed with regular space binning instead of

clustering. KLD is an abbreviation for KL divergence used throughout.

Fig. 3. It is derived by changing the a; for the Dirichlet prior as
follows:
N
aij o< pops(dij) and Y ey =1. (11)
j
This means that for each row, we add a total pseudocount weight
of 1.0. However, rather than distributing it uniformly, it is added
preferentially for geometrically reachable states, where p,s is the
estimated distribution of snapshot-to-snapshot distances connected
in (temporal) sequence, which is conditional upon the propagator,
metric, and lag time. As in Eq. (6), d;; is the geometric distance of
states, here represented by their cluster centroids. In practice, we
estimate p,;,, independently of the discretization by considering all
time-connected pairs of snapshots (using a sliding window approach
for lag times differing from unity). These data are binned finely,

truncated to 99% of the cumulative distribution function, and finally
rebinned to exactly 50 bins. This is to achieve consistent noise levels
when analyzing the same data with different settings while avoiding
the requirement to fit a function. The estimate of p,; is frequently
zero (when dj is large), and the distribution of pseudocounts resem-
bles the structure of the ML-estimated transition matrix itself. How-
ever, this approach still adds prior information and thus works as a
regularizer. For example, for the system in Fig. 3, for a case with 486
clusters of the particle position and a lag time of 1000 elementary
steps, the raw data gave rise to ~15% of nonzero elements in T. While
the uniform prior obviously ensures that all 100% of the elements are
not zero, application of the nonuniform one still resulted in ~34%
of all possible links having nonzero weights. As seen in Fig. 3(e),
the MAP+ estimator performs as well as the ML one for all lag
times.
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The apparent absence of issues with Markovianity in Fig. 3
and Fig. S1 results from the relatively fine discretizations. We next
asked what would happen for a much coarser partitioning, in par-
ticular the one that is informed by the true nature of the (free)
energy landscape. Figure S2 shows results where the MSM was
constructed with only two states, one to the left of the barrier and
one to the right. Artifacts due to lack of Markovianity now appear,
as expected, at short lag times. They arise because the states are so
large that at short lag time the real system has significant memory
as to where it was within a state. As seen in Fig. S2, these errors
are avoidable by simply choosing larger lag times. With only two
states, the pseudocounts added by the MAP methods are inconse-
quential. The important conclusions from Fig. S2 are (i) that the
imposition of detailed balance is equally harmful as in Fig. 3; and (ii)
that the reweighting with the ML and MAP MSMs still works quan-
titatively, albeit with the caveat that the resolution is limited [see
Fig. S2(d)].

The final question we pose for this system regards the mech-
anism of reweighting. As shown in Figs. 3(d) and 3(e), MSMs are
able to reweight a PIGS data set to high precision. The WE strat-
egy also performs well although it carries more noise and slightly
underestimates the weight of the right state. We were thus curious
whether the sets of MSM- vs. WE-derived snapshot weights are com-
parable to each other. Figure 4 reveals that the MSMs are able to
recognize the two-state nature of the system and allow the infer-
ence of weights that correct directly for the flux imbalance across the
boundary. These weights are constant within a cluster. In contrast,
the weights from statistical resampling can vary with each individual
trajectory and are much noisier overall. They appear to differ funda-
mentally but, upon averaging, a similar albeit slightly more erratic
curve is obtained.
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FIG. 4. Comparison of weights for the continuous-space toy system of Fig. 3.
For an example PIGS run, per-snapshot weights are compared for the WE,
Eq. (10), and MSM strategies [the latter are given as T, /pg’”, compare Eq. (9)].
Individual weights are plotted as a function of position as dots, and averages
across bins in position space (width of 0.1 a.u.) are shown as steps.
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C. A real-world application: Molecular dynamics
simulations of the FS-peptide

The final system we consider in this manuscript is a 21-residue
peptide with sequence Acetyl-As(AAARA);A-N'-methylamide
simulated using a Cartesian Langevin dynamics integrator in
implicit solvent. At low enough temperatures, this peptide, known as
FS-peptide, undergoes reversible folding transitions between states
rich in a-helix, coil-like states, and collapsed globules in the chosen
computational model. We showed previously that the application
of PIGS to this system uncovered a complex network of states with
many low-likelihood but significantly metastable states. At the time,
we did not attempt to reweight the observed distribution to a pre-
dicted equilibrium one, and this is the objective pursued here. For
this, we reanalyzed the published data sets obtained at 250 K,'®
which are described further below.

Compared to the one-dimensional system considered above,
the FS-peptide poses the same tasks to address. The complexity is
massively increased, however. Even when considering a simplistic
model of two states per residue, the resultant state space is of size
2*!. Thus, we are forced to rely on a data-driven discretization (here,
tree-based clustering),** and the choice of representation is non-
trivial. The metrics used for generating the PIGS data were high-
dimensional and based on either 76 dihedral angles (DPIGS below)
or 145 interatomic distances (RPIGS below). For the analyses pre-
sented here, we focused instead on a single representation composed
of the ¢/y-angles of the 17 central residues of the FS-peptide. In
such high-dimensional spaces, phenomena summarized under the
umbrella term “curse of dimensionality” come into play. In par-
ticular, the spectrum of conformational distances becomes highly
compressed, which means that neighbor relations are difficult to
establish in purely geometric terms.

Before presenting the new analyses, it is important to recapit-
ulate relevant findings from our earlier work.'® First, we use raw
results from long MD trajectories as our gold standard (GS). This is
justified because we showed that, for two completely different start-
ing conformations, the distributions of simple order parameters like
size and helicity converged to the same distributions. This was also
true for PIGS runs for two different metrics. Importantly, the resul-
tant PIGS distributions differed systematically from the GS ones, and
the observed bias was not only independent of the starting confor-
mations but also nearly independent of the metric. Thus, at least in
low-dimensional projections, we face a statistically robust bias that
we wish to remove. We also noted that the GS simulations did not
visit all of the states explored by PIGS. For a high-dimensional sys-
tem, it is inevitable that the limits of the sampling domains differ
between data sets, which means that it is unclear how reliable the GS
actually is. This is why it is important that the aforementioned two
starting conformations were either the dominant state (straight a-
helix) or one of the nonhelical states discovered only by PIGS. Due
to the clear convergence between those results and additional results
from replica exchange simulations,'® we are prone to trust the GS
quantitatively.

Figure 5(a) shows a comparative analysis of distributions of
the radius of gyration. For the FS-peptide, this quantity has a main
peak close to 10 A that is due to the straight a-helix.“° In contrast,
the peak (or peaks) at smaller values results from a mix of compact
states including both helix bundles and nonhelical states. In the raw
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FIG. 5. Reweighting of the radius of gyration from three data sets using ML
inference. RPIGS and DPIGS are PIGS runs whose only difference was in the
metric (see the text). CS stands for conventional sampling, and the cumulative
simulation time was identical to the PIGS runs. The gold standard (GS) is the raw
distribution from CS. (a) Only results from the best-performing MSMs for the three
data sets are shown (all are based on ML inference with lag time and clustering
resolution given in the legend). (b) KL divergences from the GS. The measure has
to ignore empty bins in the GS. Data are shown for networks differing in cluster-
ing resolutions and lag times. MSMs constructed for CS data have a negligible
impact on the distribution. The point of maximal agreement is highlighted for every
data set. (c) The slowest time scale is shown as a function of lag time and in rela-
tive units (to facilitate visualization on the same graph). The value corresponds to
—7/1n A, where A3 is the 2nd largest eigenvalue of the ML estimate of T(t), and
Tis the lag time. The normalization is by the corresponding maximum value within
each data set (CS, DPIGS, or RPIGS). Only trends derived from a single cluster-
ing are shown for each data set, and the best-performing MSMs are highlighted
as in (b). The color of the symbols indicates the KL divergence (color legend on
top). Note that the CS-ML result overlaps with the GS in (a), and that all CS results
overlap in (b).

PIGS data, the population of the straight helix is much lower than
that in the GS. The limited view offered by a projection onto a rele-
vant geometric variable like the radius of gyration is enough to make
the following point. Even fine discretizations of very large data sets
(6.656 x 10° snapshots, up to 268 342 states) coupled to an exhaus-
tive scan of lag times do not allow us to find an MSM that is able
to quantitatively recover the GS distribution. This holds for either
PIGS data set. Clearly, the MSMs do detect a flux imbalance and the
reweighted distributions are closer to the GS than the unweighted
ones, but the performance is not comparable to that in Fig. 2 or
Fig. 3. Thus, in practice, if there is no estimate of the GS, it will
be difficult to deduce much more than a direction for the required
correction.
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From Fig. 5(b), it becomes clear why a regularization of T
is often desired. The lag time and resolution dependencies of the
deviations [Fig. 5(b)] are generally systematic and suggest that both
too short and too long lag times as well as too coarse representa-
tions are inappropriate (unless the data are already at equilibrium as
for CS), which is in accord with observations and recommendations
by others." 5% However, these systematic trends are interrupted by
individual outliers, which arise preferably for smaller lag times and
finer resolutions. For these particular MSMs, the prediction of equi-
librium deteriorates dramatically, and this feature is mirrored in
kinetic analyses. The slowest relaxation time scales shown in Fig. 5(¢)
follow a similar trend for the two discretizations of PIGS data shown:
clear outliers in kinetics appear to be predictive of the failure to
reweight. This can be explained, for example, by a very poorly
balanced transition into a normally insignificant state. Conversely,
the general trend of increasing relaxation time with increasing lag
time is not predictive of MSM performance. There is no consistent
plateau for the three different data sets in Fig. 5(c), yet the perfor-
mance metric in Fig. 5(b) has already stepped through a minimum
region.

We were of course curious to see if the various regularization
schemes could improve the reweighting. As expected, a naive impo-
sition of detailed balance leads to a very well-behaved transition
matrix that performs no appreciable reweighting (Fig. S3). While
such a matrix may be useful to study specific kinetic processes, its
utility as a quantitative prediction tool is limited. This has been noted
in recent applications in the literature.*”>' The constrained ML
scheme [see Eq. (2)] unfortunately seems to combine the downsides
of both worlds: it neither makes T well-behaved nor is the equilib-
rium distribution reweighted appreciably (Fig. S4). With the simple
Bayesian regularizer (MAP, flat prior), we are constrained here by
the fact that it creates a maximally dense matrix. As a result, numbers
of states exceeding ~10* are difficult to deal with routinely because of
the numerical complexity. Figure S5 shows that, possibly due to the
limits on clustering resolution, the best-case reweighted efforts are
worse than those for the ML case seen in Fig. 5. The MAP+ prior has
the advantage that it retains the sparsity of T to a significant degree.
In the analysis here, this is the alternative to the ML estimate that gets
closest in peak performance (see Table IT below). However, there
is no real gain as the results are both worse and more erratic than
those for the ML estimate (compare Fig. S6 to Fig. 5). Figure 6 shows
equivalent data for another observable, viz., a-helical content. Here,
the raw PIGS data underestimate the sampling weight of helix-rich
states and (correspondingly) overestimate that of nonhelical states.
This is not fully corrigible by any of the evaluated MSMs (see also
Figs. S7-S10).

The remaining errors in Figs. 5 and 6 can originate from at
least two sources: poor statistics as in Fig. 3(a) or a failure to find
a suitable combination of discretization and lag time to preserve
Markovianity. In the above, we have restricted ourselves to MSMs
built on the idea of a unique and exhaustive mapping from con-
formation to states. A rich body of literature exists on using objec-
tive functions rooted in kinetic properties (metastability) to derive,
improve, or optimize such models.>*¢ An important alternative is
to drop the requirement of a unique mapping. For example, transi-
tion state theory and transition path sampling are concerned with
sets of states that leave the transition regions between them unas-
signed.>”-5¢ In this logic, the state vector changes only when the
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TABLE II. Comparison of KL divergences from the GS for the best cases for the reweighting of PIGS data. The
numbers provided are the minima across the two PIGS data sets and, for MSMs, across all lag times and resolutions we
scanned. Results are provided separately for the tested inference methods. The MSM representation was always the same,
viz., the ¢- and y-angles of the central 17 residues of FS-peptide. The WE approach has no parameters except the metric

with its underlying representation (here, Rq and a-content).

Markov state models based on TORS rep. (34 ¢/y angles)

Statistical resampling

Observable ML Cons. ML Naive sym. MAP MAP+ 34 oy 2D rep.
R 0.15 0.61 0.59 0.27 0.23 0.07 0.01
a-helicity 0.13 0.91 0.92 0.25 0.25 0.10 0.03

domain of a new state is entered, which means that the same con-
formation can be assigned different states based on where that par-
ticular trajectory originated from. This logic has been taken further

(a) < GS
07 CS 1.5ps ML 60°
06l = DPIGS Orig. Data
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FIG. 6. Reweighting of a-helical content from three data sets using ML infer-
ence. This figure is completely analogous to Fig. 5 only that data for the peptide’s
a-helical content are shown. This quantity was computed using a functional form
as published.>2 The a-region was a circle of 35° radius centered at —50°/—60°
($hy), and the decay parameter was 0.002 deg=2. (a) Comparison of distributions.
(b) KLDs from the GS. (c) Slowest time scales. The spikes in (a) occur because
the measure is a smoothed version of the (integer) number of residues in the a-
basin. As in Fig. 5, the CS-ML result overlaps with the GS in (a), and all CS results
overlap in (b).

in methods based on milestoning®® where MSMs are built based on
(few) metastable states.>36961 These are attractive methods if the
dynamical properties of the system allow for their applicability. An
alternative approach for allowing the mapping to become inexact
is to take a probabilistic view of state memberships.®? It is clearly
possible that the reweighting quality could be improved further by
some of these methods. We emphasize again, however, that it is also
possible that the statistics are simply too poor, i.e., that the remaining
errors are sporadic.

Of course, we also applied the WE strategy to our PIGS data.
Since the underlying data are now high-dimensional, the choice of
metric becomes a parameter. As explained in Sec. IT E, PIGS does
not guarantee that, for a given reseeding event, a surviving trajec-
tory is available that is also geometrically nearby. Intuitively, met-
rics of lower dimensionality should thus perform better as long as
they are coupled to the observable of interest because they offer a
higher chance of proximity/overlap. Incidentally, this is the same
reason why low-dimensional projections onto geometric variables
are difficult to use without optimization in transition-based analyses
like MSMs.85865766 Figure 7 presents the reweighted distributions
for both observables we obtained by using different metrics in the
WE formalism. These results are compared to the GS and to the
best-case scenario for MSMs, and the respective KL divergences are
summarized in Table II.

From Fig. 7, the WE approach relying on a low-dimensional
metric composed from observables of interest emerges as a viable
strategy for the thermodynamic reweighting of simulation data on
complex systems carrying initial state bias. While the agreement
is not perfect, these results correctly identify that the statistical
weight of very compact, nonhelical states is very low despite their
demonstrated metastability.'® It is also an important observation
that the equilibrium estimate obtained with the same metric as that
used to construct the MSMs is still improved. This is despite the
fact that there are no parameters to optimize as we did for the
MSMs. Taken together, Fig. 7 and Table II suggest that the WE
strategy is superior for the purpose of the removal of initial state
bias from suitable trajectory ensembles, at least for low-dimensional
observables and when the underlying data are high in dimen-
sionality. This contrasts with the results for the one-dimensional
system of Fig. 3 where we found MSMs to be quantitatively
superior.
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FIG. 7. Comparison of the quality of MSM-based reweighting with the WE approach. The acronym “TORS rep.” stands for the representation of the data by 34 dihedral
angles (phy-angles of the 17 central residues). “2D rep.” instead stands for a two-dimensional representation composed of the two observables we analyze here, viz., Ry
and a-content. (a) Data for the radius of gyration. Only the best MSMs obtained with “TORS rep.” are shown for the two PIGS data sets, and resolution and lag time are given
in the legend. (b) The same as (a) for a-content. Some of the symbols for the GS are omitted in the left half of the plot to improve readability.

IV. CONCLUSIONS

In summary, our results give rise to the following conclusions.
We formulate these conclusions with a specific but common task in
mind: to recover correctly weighted equilibrium distributions from
data sets marred by initial state bias. Examples for those data sets
are trajectory ensembles generated by advanced sampling method-
ologies that explore phase space in an adaptive manner. However,
we emphasize that the vast majority of biological applications of
molecular simulations suffer from this bias regardless of sampling
strategy as they typically rely on an experimentally derived starting
structure.

e Markov state models are theoretically sound tools to
reweight simulation data carrying initial state bias (Figs. 2
and 3). The use of a purely data-driven methodology for dis-
cretization (clustering) is not problematic per se. The bias
has to be consistent for it to be removable, i.e., it must not
derive from (randomly) poor statistics for undersampled
transitions [Fig. 3(b)].

e Consistent flux imbalances found in the raw data must be
preserved in the Markov model of the data for the reweight-
ing to be successful. This rigorously excludes all approaches
imposing detailed balance onto the transition matrix from
being useful for the reweighting task, in line with prior
observations.'® We showed this to hold even for a toy system
that is, by construction, Markovian and free of discretization
artifacts (Fig. 2).

e Markov state models may fail in recovering the correct
equilibrium distribution if the underlying data are of high
dimensionality (Fig. 7). Finer discretizations can work bet-
ter than coarse ones but are also more erratic, and this may
be difficult to diagnose.

e A plateau in relaxation time with lag time is not a use-
ful criterion to find optimal models for thermodynamic
reweighting. In the cases studied here, the suggested lag
times based on this heuristic would almost all have been too
large (Figs. 3, 5, and 6).

e The use of prior information generally fails to improve
the predictions made based on the maximum likelihood

inference of the transition matrix (Figs. 2, 3, 5-7). This holds
for all the approaches we evaluated.

e For data sets that can be cast in the logic of a statistical
resampling procedure, the WE approach is a viable alter-
native. If the raw data are of high dimensionality, a partic-
ular advantage is that it allows the metric to be optimized
for observables of interest (Fig. 7), which is unfeasible for
MSMs.

o The use of an advanced sampling technique along with a
successful reweighting approach allows phase space to be
explored more rapidly and, potentially, also more correctly
(Fig. 3) than by investing the same computing time into
long, independent simulations.

From these conclusions, we formulate the following strategies for
high-dimensional data derived from complex systems such as pro-
teins. When applicable, the raw data should be reweighted with
the WE methodology using both general representations (like the
34 dihedral angles in our case) and observable-specific represen-
tations. If there is an approximate consensus among these, this
will provide strong evidence that the reweighting is meaningful.
It is unfortunately not possible to trust the WE results uncondi-
tionally, which has two main reasons. First, in our data sets, we
were restricted to use the closest available trajectory for absorb-
ing the weight of a terminated one. This is, by definition, inexact.
Second, the repeated splitting and merging of weights will some-
times reduce the effective sample size dramatically and in a non-
random manner, i.e., it can introduce noise that is difficult to inter-
pret. For example, reweighting the DPIGS data set with the orig-
inal DPIGS representation fails completely, and both the afore-
mentioned problems likely contribute to this. In a second step, the
reweighted distributions could then be used to construct a de novo
kinetic network model following Eq. (6) where the similarity ker-
nel, H, can be inferred from the data as we did for the MAP+ prior
[Eq. (11)].

For traditional MSMs aiming for a complete and unique map-
ping from conformation to states, we recommend a pure likelihood-
based inference of T for a fine-grained set of states. In our expe-
rience, scanning a number of resolutions for discretization and a
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number of lag times is necessary to distinguish robust trends from
erratic results (Figs. 5 and 6 and Figs. S3-S10). This is labor-
intensive, both in computational and in human terms. Unfortu-
nately, the prediction from an individual MSM can be arbitrarily
wrong, in particular, in the most promising regime. Our coarse-
resolution results for the MAP estimate (Figs. S5 and S9) show that
there is some value in restricting oneself to a “safe” regime, but
this comes at the cost of reducing the quantitative correctness of
the reweighted result further. Relaxation times can be used to diag-
nose outliers but should not be used to guide the choice of lag time
and resolution based on the notion of plateauing. Two additional
directions for future research may be to explore general ways to cast
arbitrary trajectory ensembles as statistical resampling problems and
to develop the MAP+ prior further.

SUPPLEMENTARY MATERIAL

Figures S1-S2 (related to Fig. 3), S3-S6 (related to Fig. 5), and
S7-S10 (related to Fig. 6) are included in a single file as supplemen-
tary material.
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