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A detailed understanding of the conformational dynamics of biological molecules is difficult to obtain
by experimental techniques due to resolution limitations in both time and space. Computer simulations
avoid these in theory but are often too short to sample rare events reliably. Here we show that the
progress index-guided sampling (PIGS) protocol can be used to enhance the sampling of rare events
in selected parts of biomolecules without perturbing the remainder of the system. The method is very
easy to use as it only requires as essential input a set of several features representing the parts of
interest sufficiently. In this feature space, new states are discovered by spontaneous fluctuations alone
and in unsupervised fashion. Because there are no energetic biases acting on phase space variables
or projections thereof, the trajectories PIGS generates can be analyzed directly in the framework of
transition networks. We demonstrate the possibility and usefulness of such focused explorations of
biomolecules with two loops that are part of the binding sites of bromodomains, a family of epigenetic
“reader” modules. This real-life application uncovers states that are structurally and kinetically far
away from the initial crystallographic structures and are also metastable. Representative conformations
are intended to be used in future high-throughput virtual screening campaigns. Published by AIP
Publishing. https://doi.org/10.1063/1.4996879

I. INTRODUCTION

Wet-lab experiments are the primary vehicle of discovery
in the life sciences. Yet, at the molecular level, limitations to
spatial and temporal resolution persist, and computer simula-
tions are now employed routinely to complement insights from
these experiments.1–3 However, simulations of biomolecules,
such as the ones carried out by integrating Newton’s equa-
tions of motion,4 are impaired by low scalability on general
purpose hardware and by the rugged free energy landscape of
atomistic models.3,5 Interconversion rates between metastable
states can be prohibitively low in conventional sampling (CS).
Unfortunately, it is precisely these slow structural transitions
involving many correlated degrees of freedom that are usually
of interest.6 The inability to sample the underlying free energy
landscape exhaustively limits the power of brute-force molec-
ular dynamics (MD) approaches as vast areas of phase space
will remain undiscovered.7,8 Techniques capable of enhancing
interesting conformational transitions of complex systems are
therefore desirable. The recently developed progress index-
guided sampling (PIGS) method, briefly outlined in this sec-
tion and explained in detail in Sec. II A and in the reference
publication, is one of those.9

A comprehensive review of enhanced sampling methods
is beyond the scope of this introduction and may be difficult
in general.10,11 We thus mention only those methods that,
to the best of our knowledge, are appropriate for focusing
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explorations on specific degrees of freedom, which is what we
achieve with PIGS. Force-12–16 and energy-biased methods
such as umbrella sampling and metadynamics17,18 are well-
established tools designed to enhance the sampling along (few)
collective variables. Extensions to more dimensions are not
trivial, however, especially from a practical perspective, even
though improvements in this direction have been made.19–22

Accelerated molecular dynamics is another popular approach
used to boost the sampling of specific degrees of freedom.23

It works by raising the minima of specific contributions to
the potential energy in a threshold-dependent manner. As a
result, it is difficult to enhance sampling in arbitrary collective
variables or to recover the correct thermodynamics. The latter
problem is due to the wide underlying energy spectra and the
heterogeneous nature of the barriers.24 For all methods utiliz-
ing an altered potential energy surface, it is not an easy task
to retrieve correct kinetics and transition paths from simula-
tions. This is because the connectivities between states and
the microscopic rates are themselves biased. To make infer-
ences in this regard, it may be necessary to impose plausible
transition rates based on equilibrium distributions, geometrical
proximity, and diffusivity.25

Adaptive sampling schemes are methods of a different
type. We do not discuss further those approaches aiming to
sample the pathways between a few main basins and/or along
progress variables.26–34 In general, adaptive schemes speed up
the sampling by guiding the dynamics of the system accord-
ing to the information on its evolution collected on-the-fly. A
seminal and well-known example in protein folding is found
in the work of Pande et al.35 where energy variance is used as
an indicator of large-scale transitions. The fundamental logic
of adaptive sampling approaches can be described as follows:
(1) simulations run, preferably in parallel, with an identical
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propagator, which is usually conventional MD; (2) informa-
tion from the trajectories is collected and analyzed to deter-
mine which instantaneous conformations are most promising;
(3) further generations of simulations take as starting points
the most promising candidates from prior generations. The
strength of these methods, aside from parallelizability, is pre-
cisely that the only bias they introduce to increase sampling
is from a judicious and non-Boltzmann choice of starting
conditions for each generation. In many cases, the notion of
“promising” can be tuned easily toward a specific goal.

The adaptive sampling of Markov state models,36 free
energy-guided sampling,37 diffusion map-directed MD,38

WExplore,39 and the recently developed fluctuation amplifi-
cation of specific traits (FAST)40 can be gathered along with
PIGS9 in this class. WExplore is an elegant method that builds
upon the weighted-ensemble framework by dividing the con-
formational space of a system into Voronoi polyhedra.31,32,39

A (possibly increasing) number of copies of the system are
evolved in parallel and a hierarchy is used to inform cloning
and merging operations to keep the sampling as uniform across
phase space as possible. The representation for the space dis-
cretization can in principle be chosen to exclusively enhance
specific degrees of freedom. Similarly, FAST uses phase space
discretization to construct Markov state models (MSMs) at
regular intervals.41,42 In addition, it rewards low sampling

weights and changes in a selected geometric transform such
as total energy or solvent accessible surface area.40 Both the
discretization and the reward function can thus be tuned to
focus the sampling enhancement without having to bias the
potential energy surface. Consequently, FAST, like the other
methods in its class, allows the data to be analyzed as locally
equilibrated trajectories.43,44

PIGS also returns a set of trajectories that can be ana-
lyzed naturally in the framework of MSMs. It is designed to
fit modern HPC resources as it evolves a constant and possi-
bly large number of replicas of a system in parallel and relies
on state-of-the-art scalable analysis algorithms to enhance the
sampling.9,45,46 Unlike in FAST40 or adaptive sampling,36 this
does not imply building MSMs on-the-fly. In short, PIGS
works as follows. From a starting condition, a selected num-
ber of replicas are evolved in parallel. Features are extracted
from them at regular intervals. PIGS mandates the selection of
features as a set of degrees of freedom, e.g., specific dihedral
angles, to represent the system and compute distances between
snapshots. It is these selections that enable PIGS to focus
the sampling enhancements in response to specific questions.
To accomplish this, all collected snapshots from all replicas
are arranged jointly in the so-called progress index (PI),46

which is analyzed to derive a ranking of the current end points
of the simulation stretches in a way that rewards sampling

FIG. 1. Sequences and segments of the bromodomains used in this study and cartoons of the atad2a domain. Cartoons are rendered with VMD71 and Tachyon
(http://jedi.ks.uiuc.edu/∼johns/raytracer). (a) Amino acid sequence alignment72 of the bromodomains. Background colors and text annotations distinguish the
different segments (helices in blue, ZA loop in purple, and BC loop in green). The residues that are part of the PIGS representations (Table I) are highlighted
in red. (b) The bromodomain of atad2a in cartoon representation exemplifies the common fold of bromodomains. Helix D is present only for atad2a. (c) 50
snapshots representative of different basins characteristic of ZA PIGS simulations of the atad2a domain are aligned and displayed as ribbons in the same color
code as (b). (d) Same as (c) for BC PIGS.

http://jedi.ks.uiuc.edu/~johns/raytracer
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uniqueness. The ranking is used to reseed (stochastically) those
copies sampling overlapping regions of phase space with more
interesting ones, which have arisen by spontaneous fluctua-
tions alone. After reseeding, the cycle starts anew. Notably,
PIGS can deal with a broad set of features, making it a flexible
tool suited to tackle different problems. It is also scalable, unsu-
pervised, and synergistic, viz., sampling benefits scale with the
number of copies used in parallel.

The ability to focus sampling enhancements with high
precision is of importance because many biomolecules, in
particular proteins, have functionally distinct regions such as
loops, surface patches, catalytic sites, allosteric binding sites,
structured cores, or disordered linkers. Epigenetic regulators
are members of different protein families that participate in
modulating DNA accessibility through covalent modifications
of chromatin. These include small “reader” modules called
bromodomains.47,48 Their conserved fold consists of four
α-helices (termed αZ, αA, αB, and αC), which are connected
by loops of different lengths, see Figs. 1(a) and 1(b).49 Bro-
modomains bind acetylated lysine side chains on histone tails
with well-defined hydrophobic pockets that are framed by
two nonadjacent loops, viz., the ZA and BC loops.50 Numer-
ous mutations in epigenetic regulators, including bromod-
omains, have been identified in several types of cancers.51–55

In general, epigenetic regulation is under dynamic control
and appears to be a feasible target for cancer therapies.56–60

However, in finding small molecule effectors, bromodomains
challenge standard in silico docking protocols in that the bind-
ing site shows considerable plasticity.61 It may thus be useful
to virtual screening approaches to have access to additional
conformations of the protein with differences first and fore-
most in the binding site.62,63 In particular, a metastable state

unique to a given bromodomain could enable the identification
of selective ligands.

Here, we use the ZA and BC loops of four different
bromodomains as prototypical examples to demonstrate that
PIGS is not only able to reach time scales and conformations
that are difficult to access with CS but that its design allows
enhancing the rates of phase space exploration for specific
parts of complex molecules without perturbing the remain-
ing parts directly. In the remainder of the text, we first review
the PIGS protocol followed by a sufficient description of the
simulation settings and analysis methods. We then summa-
rize the results, which show that it is a straightforward task
to obtain focused enhanced sampling with PIGS by selecting
the appropriate degrees of freedom. Importantly, the newly
discovered areas of phase space are meaningful in both a ther-
modynamic and a kinetic sense. We conclude by discussing the
gist of our results in the context of the general applicability of
PIGS.

II. METHODS
A. PIGS protocol

In addition to the description below, all technical details
can be found in the original paper.9 In PIGS, a set of N r replicas
of a system are propagated in parallel under the same condi-
tions by a stochastic sampler, e.g., Langevin dynamics, Monte
Carlo, or MD with a stochastic thermostat. Here, we used an
independent MD engine (GROMACS) for system propaga-
tion (see Sec. II B for settings). All copies were run for a
stretch of a given and fixed length (here, 100 ps), and snap-
shots sufficient to allow the extraction of the required features
(Table I) were saved at constant frequency. At the end of each

TABLE I. Dihedral angles used to represent the four bromodomains in the PIGS simulations, sampling times (per
copy and cumulative), and saving frequency of all runs. The residue numbering is congruent with the sequences
in Fig. 1.

atad2a (3DAI) baz2a (4LZ2) brpf1b (4LC2) crebbp (3DWY)

Ψ: L25, F27, V29, Ψ: D16, A18, P20, Ψ: T24, N26, I27, Ψ: P24, S26, P28,

ZA PIGS F30, P33, V34, P36, F21, P24, V25, P27, F28, P31, V32, L34, F29, P32, V33, P35,

torsional V39, P40, Y42, I46, V30, S31, Y33, I37, V37, P38, Y40, I44, L38, I40, P41, Y43,

angles P49, M50 P40, M41 P47, M48 V47, P50, M51

χ1: Y42 χ1: Y33 χ1: Y40 χ1: Y43

ZA PIGS 90 ns per copy; 90 ns per copy; 90 ns per copy; 88.8 ns per copy;

sampling 5.76 µs cumulative 5.76 µs cumulative 5.76 µs cumulative 5.68 µs cumulative

BC PIGS Ψ: N85, Y86, R88 Ψ: N76, E77, D79 Ψ: N83, A84, D86 Ψ: N86, R87, T89

torsional χ1: Y84, N85 χ1: F75, N76 χ1: Y82, N83 χ1: Y85, N86

angles χ2: N85 χ2: N76 χ2: N83 χ2: N86

BC PIGS ∼97 ns per copy; ∼90 ns per copy; ∼90 ns per copy; ∼75 ns per copy;

sampling 6.22 µs cumulative 5.76 µs cumulative 5.76 µs cumulative 4.84 µs cumulative

CS sampling 127.5 ns per copy per bromodomain; 8.16 µs cumulative per bromodomain

No. of atoms 60 779 60 703 60 736 60 725

Saving
frequency; 4 ps (all cases); 64 copies (all cases)
no. of copies
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stretch, all saved snapshots from all replicas were analyzed
concurrently by state-of-the-art analysis algorithms45,46 imple-
mented in CAMPARI (http://campari.sourceforge.net), which
are central to the PIGS protocol. Then, new stretches were
restarted according to the reseeding decisions made by PIGS.
Here, an entire PIGS simulation consisted of nearly 1000 such
cycles.

PIGS aims to reseed copies that are sampling overlapping
regions of phase space with putatively more interesting ones.
The progress index (PI) is at the core of PIGS. It is an unsu-
pervised analysis method able to reveal different free energy
basins and barrier regions explored by a stochastic dynamical
system such as a biomolecule in solution.46 PIGS exploits this
information to make reseeding decisions as detailed below.
The PI has as its only essential input parameter the choice
of features and metric function defining the conformational
(geometric) distance between two snapshots, and the choice
of features is what we vary in this contribution to achieve a
focused exploration.

In an approximate but scalable implementation, the
reseeding process happens in five main steps. First, the data are
preorganized into a multi-resolution clustering tree,45 which is
a data structure created by clustering all the snapshots from all
replicas into mutually similar groups at a number of resolutions
in a numerically efficient manner. Because the construction of
the PI relies on short distances only, this information is suf-
ficient to produce a very good approximation of the exact PI,
which implies that the preliminary clustering has a marginal
effect on the final outcome of the protocol. Second, we con-
struct the PI. Starting from the snapshot that is the centroid
representative of the largest cluster at the finest resolution, all
snapshots are arranged such that the next one ideally is the
snapshot closest to any of the ones already accounted for. The
approximation we use is to exploit the preorganization of the
data in the multi-resolution clustering tree to find closest neigh-
bors heuristically (rather than exhaustively) while maintaining
the scalability of the algorithm. This gives rise to the approxi-
mate PI.46 Third, the N r final frames of all copies, which are
the only states we consider for reseeding, are ranked according
to a consensus ranking from the following three criteria defin-
ing sampling uniqueness and interestingness: (i) their position
along the PI (right is better); (ii) the distance to the snapshot
on the left by which they were added to the PI (larger is better);
(iii) the smallest distance, as relative position along the PI, to
any other final conformation (larger is better). Criteria (i) and
(ii) evaluate favorably if a final frame resides in an area of low
sampling density whereas criterion (iii) indicates how likely a
final frame is to be dissimilar from the other final frames. The
consensus ranking of a replica ξ(R) is simply obtained as the
sum of the three individual components (smaller sum is bet-
ter). Fourth, the algorithm attempts to reseed the N r-N t lower
ranked conformations with the top N t ones. Specifically, for
every low-ranked copy, RL, a high-ranked one, RT, is drawn
uniformly, and the reseeding probability is computed as

p (RL → RT ) =
[
ξ (RL) − ξ (RT )

]
/
[
ξ (RWorst) − ξ (RBest)

]
.

(1)
This probability is compared with a random number drawn
from the [0:1] interval. If the probability in Eq. (1) is larger

than this number, the reseeding is putatively accepted. Fifth,
a heuristic is used to cancel reseeding events for those repli-
cas that are deemed to have been sampling a relatively unique
region of phase space during the last stretch. This check is
required because the final conformation of any replica being
reseeded is lost irrevocably for trajectory continuation. This
is the only heuristic to explicitly consider the position of all
snapshots in the PI, and it basically corresponds to a locality
criterion per replica. More precisely, if the difference between
the 3rd and 1st quartiles of the snapshots of RL within the PI
is less than the number of analyzed snapshots per replica, then
the reseeding is cancelled and the low-ranked copy contin-
ues to be propagated in the next stretch. Accepted reseedings
involve the replacement of all phase space variables (here,
positions and velocities) with those from another copy. Tra-
jectory divergence is achieved by the stochastic component of
the MD engine. After each reseeding cycle, the sampling his-
tory is forgotten completely, and this memorylessness ensures
the scalability of the algorithm. As described above, the con-
struction of the PI mandates as input a choice of how to define
conformational distances between snapshots, and this involves
selecting a set of geometric coordinates (e.g., a set of dihe-
dral angles or interatomic distances) as features. This selection
of specific coordinates, which the metric (here, Euclidean) is
based on, allows directing the protocol to focus the enhance-
ment of phase space exploration toward parts and questions
of interest, which is the key contribution in this manuscript.
The only sampling bias incurred by PIGS is due to the killing
and restarting of simulations in an unsupervised but non-
Boltzmann way. Initial condition bias of this type is inherent to
both CS and other methods using MSMs to guide the sampling,
and the MSMs themselves are commonly used to remove this
bias.40,43,44

B. PIGS and CS simulations

To enhance the sampling of the ZA and BC loops with
PIGS, we used two independent sets of segment-specific coor-
dinates, viz., the dihedral angles listed in Table I. PIGS sim-
ulations with these two sets gave rise to the ZA PIGS and
BC PIGS data sets for a given bromodomain. Table I pro-
vides further information about the simulations. Other possi-
ble representations and applications of PIGS are discussed in
Sec. IV D.

PIGS simulations were run using GROMACS64 coupled
to a custom Python script to perform the PIGS reseeding pro-
cess with CAMPARI v3b every 100 ps. Each of the 64 replicas
provided the features in Table I every 200 fs and the PI was
constructed from the combined data. Scalable calculations of
the PI require an approximation to the exact solution, which
relies on data preorganization by scalable clustering.45 Here, it
was feasible to employ an OpenMP parallelization of this step
on a single node (relative time cost below 10%). As param-
eters, this required a number of guesses (500) and clustering
settings (tree height of 12, fine and coarse thresholds of 10◦ and
55◦). The number of top-ranked replicas (N t), which are pro-
tected from being reseeded at the end of a given cycle, was 32.
Overall, these settings resulted in an average trajectory length
between successful reseedings of 1-3 ns for the different cases.

http://campari.sourceforge.net/
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TABLE II. Sets of atoms selected for computing RMSDs based on Cartesian coordinates. “N” and “O” refer to
backbone atoms. Side chain atoms were added only for the two loops. By visual inspection of crystal structures,
at most one atom per side chain, which appeared both informative and structurally constrained by the remainder
of the molecule, was picked.

atad2a (3DAI) baz2a (4LZ2) brpf1b (4LC2) crebbp (3DWY)

N, O: I23-S53; Cβ:
N, O: S14-S44; Cβ: N, O: R21-S54; Cβ:

V29, T31, V34, V39,
A17, A18, V25, V30; N, O: L22-F51; Cβ: V33, V47; Cδ1: Q31,

ZA loop
V43, T44, V45; Cδ1:

Cδ1: I36, I37; Cγ: L22, T24, V32, V37; Cδ1: I40, I46; Cγ: L27,

rep.
I46; Cζ: F27, F30;

N26, L29; Cζ: F21; I27, I44; Cγ: N26, L37, L38; Cζ: F29,

OH: Y42
Nε1: W19; OH: Y33; L34, L41; Cζ: F28 F44; OH: Y43; Oγ:

Oγ: S31 S26

BC loop N, O: L82–G91; Cγ: N, O: Q73-V82; Cζ:
N, O: L80-F89; Cβ: N, O: W83-V92; Cβ:

rep. N85; OH: Y84 N76; Oγ: S80
A84, T87; Cγ: N83; T89; Cγ: N86; Oγ:

OH: Y83 S90

Helix
N, O: T6-L21, N, O: E6-M12, N, O: T6-L19, N, O: E6-L19,

bundle
S54-I59, D69-A81, T45-L50, E60-C72, T52-L57, D67-C79, T55-L60, Q70-A92,

D92-I110 G83-R96 Y90-Q110 T93-V110

CS simulations simply ran GROMACS continuously with
identical numbers of replicas (these are referred to simply as
CS). We simulated the different bromodomains [Fig. 1(a)] as
described by the CHARMM3665 force field with modified
TIP3P water and an ionic background of ∼150 mM KCl in
the NVT ensemble at 310 K. All simulations were run on the
GPU nodes of the supercomputer Piz Daint. Temperature was
maintained by the velocity rescaling thermostat.66 All non-
bonded interactions employed a cutoff of 1.2 nm with the help
of Verlet neighbor lists, and we treated electrostatic interac-
tions with the generalized reaction field approach.67 Aside
from water molecules, which were held rigid with the SETTLE
algorithm,68 constraints were applied to all covalent bonds and
enforced by LINCS69 with default settings.

C. Root mean square deviation (RMSD)

As an independent measure of conformational distance
from reference states (see Sec. III B), we defined the sets
of degrees of freedom used in RMSDs with prior alignment
reported in Table II.

D. Principal component analysis (PCA)

PCA is a dimensionality reduction technique relying on
variance. Here, we computed the PC transformation and pro-
jected the raw data onto the first two principal components,
which are orthogonal linear combinations of input features

capturing the largest variance in the data set (see Sec. III C).
As input features, we picked the sine and cosine values of the
dihedral angles listed in Table III. These representations com-
bine both loops per domain and differ slightly from the ones
used in PIGS. This is intended as they are meant to also be able
to report on changes in the directly adjacent residues. Note that
all the available snapshots for a bromodomain were analyzed
jointly (ZA PIGS, BC PIGS, and CS).

E. Mean first passage times (MFPTs)

To understand the kinetic distances of states discovered by
PIGS from the crystallographic reference states, we first con-
structed mesostate networks by grouping conformations into
clusters with a tree-based clustering algorithm that is well-
known to perform well in preserving kinetic information.45

Subsequently, we derived transition networks to infer MFPTs,
for all clusters, to the cluster containing the structure clos-
est to the reference PDB (identified by the RMSD across all
Cα atoms). Here, unlike for PCA, we employed two distinct
representations (Table IV) and treated the individual simu-
lation groups (ZA PIGS, BC PIGS, and CS) separately (see
Sec. III E).

This means that 6 clusterings and derived transition net-
works were obtained for each bromodomain (3 simulation
groups times 2 representations, see Table V). Detailed bal-
ance of mesostate transitions was imposed by symmetrization

TABLE III. Dihedral angles used to compute principal components. For the PC analysis, all angles were included
in a joint representation, regardless the loop (ZA or BC) they were part of.

atad2a (3DAI) baz2a (4LZ2) brpf1b (4LC2) crebbp (3DWY)

PCA Ψ: I23-S53, Ψ: S16-S31, Ψ: L22-T24, Ψ: R21-L38, I40-S54,
torsional L82-P90 Y33-S44, Q73-V82 N26-F51, L80-F89 W83-V92
angles χ1: Y42, N85 χ1: Y33, N76 χ1: Y40, N83 χ1: Y43, N86
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TABLE IV. Dihedral angles used to group snapshots to derive transition networks. This is the same selection as
that in Table III only split into two sets corresponding to the ZA and BC loops.

atad2a (3DAI) baz2a (4LZ2) brpf1b (4LC2) crebbp (3DWY)

ZA loop Ψ: I23-S53 Ψ: S16-S31, Y33-S44 Ψ: L22-T24, N26-F51 Ψ: R21-L38, I40-S54
torsional angles χ1: Y42 χ1: Y33 χ1: Y40 χ1: Y43

BC loop Ψ: L82 - P90 Ψ: Q73 - V82 Ψ: L80 - F89 Ψ: W83 - V92
torsional angles χ1: N85 χ1: N76 χ1: N83 χ1: N86

of the count matrix to the maximum count per pair of states
at a lag time of 1.0 ns and a clustering resolution of 17◦.
Transitions between clusters were accumulated with a slid-
ing window approach. These settings were the same as those
for the global MSMs, which include all data (BC PIGS, ZA
PIGS, and CS) and are described in Sec. II F.

F. Ensemble reweighting based on Markov state
models (MSMs)

Transition networks can not only be used to infer MFPTs
(see Sec. II E) but also to calculate the probability distribution
at equilibrium across clusters. This assumes that the trajec-
tory at the chosen lag time is a Markov process. If the MSM
is constructed from a set of short trajectories, the equilibrium
distribution will generally differ from the raw, count-based
sampling weights. We thus used MSMs to infer the equilibrium
(steady state) weights of the clusters in networks which, for
a given bromodomain, included all snapshots from ZA PIGS,
BC PIGS, and CS. The MSM steady state probabilities give
rise to snapshot-based weights for subsequent analyses calcu-
lated as wi = pss

c /p
raw
c where c denotes the cluster that snapshot

i is part of, and pSS and praw are the steady-state and raw sam-
pling weights of clusters, respectively. We constructed a set
of MSMs at different lag times and resolutions with the rep-
resentations in Table III. As in Sec. II E, we imposed detailed
balance and used the sliding window approach. We wanted a
consistent choice across bromodomains, and visual inspection
of the implied time scales lets us choose a lag time of 1.0 ns at
a clustering resolution of 17◦ (see Table VI and Figs. S7–S10
of the supplementary material). MSMs-derived weights were
used to compute reweighted histograms and averages wherever
noted.

G. Metastability analysis

Identical to the CS simulations described in Sec. II B, we
ran 64 copies of simulations from 2 additional starting states
per bromodomain: a representative of a newly discovered ZA
and BC loop conformation each (see Secs. III E and III F). The
positive controls are in fact the CS simulations which were run
from the crystal structures. The other simulations were run for
85 ns (instead of 127.5 ns) per replica, and, for the metastability
analysis alone (Sec. III F), we truncated the CS simulations at
85 ns to achieve exact comparability.

To estimate metastability, we relied on RMSDs as a func-
tion of time. RMSDs were calculated based on the union of sets
of atoms listed in Table II, which means that these RMSDs are
sensitive to changes in any of the parts of the bromodomain.
Thus, the approach is prone to underestimate local metastabil-
ity due to different processes contributing to conformational
drift. This is a particular issue for the BC loop due to the
size and disorder of the ZA loop. In general, however, we
deemed the approach acceptable since we are primarily look-
ing to derive a lower bound. Metastability was described by a
summary statistic, which is the characteristic (life) time of an
exponential fit, τ, calculated as 〈ti〉 where the time-dependent
probability for being in the initial state is p(t) = exp (−t/τ).
The individual ti escape times were counted with the help of
two RMSD thresholds spaced 1 Å apart. Initially, the RMSD
values are small and the system is in its starting state. A leav-
ing event and associated escape time were registered when the
RMSD exceeded the larger threshold. Reentries were allowed
and counted whenever the RMSD fell below the lower thresh-
old after a prior escape. Using this strategy, most trajectories
gave rise to only 0 or 1 leaving events for a range of thresh-
olds. We note that the estimate of τ as 〈ti〉 is the maximum

TABLE V. Numbers of clusters in the transition networks used for MFPT analysis. Because of the imposition
of detailed balance, the net statistical weight of the largest reversibly connected subset of clusters (the largest
strongly connected component) was always >99%. The parameters were the same throughout and inherited from
the global MSMs (Sec. II F): a resolution of 17◦ and a lag time of 1.0 ns. The tree-based clustering always utilized
a tree height of 16.

atad2a (3DAI) baz2a (4LZ2) brpf1b (4LC2) crebbp (3DWY)

Representation Representation Representation Representation

ZA BC ZA BC ZA BC ZA BC

BC PIGS 9 767 28 632 11 148 17 777 11 627 8839 9 412 26 332
ZA PIGS 53 683 985 58 688 689 69 636 1002 46 596 425
CS 12 649 875 14 336 813 17 532 853 20 114 631

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
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TABLE VI. Characteristic quantities of the MSMs used for deriving snapshot weights. Because of the imposition
of detailed balance, the net statistical weight of the largest strongly connected component was always >99%.

atad2a (3DAI) baz2a (4LZ2) brpf1b (4LC2) crebbp (3DWY)

No. of clusters in network 65 238 70 769 73 547 60 855
No. of edges in network 1 280 781 1 910 162 2 263 452 1 506 314

Network resolution 17◦

Lag time 1.0 ns

likelihood estimate for this parameter, which is biased toward
smaller values for small sample sizes. Again, this is acceptable
if we are interested in a lower bound.

III. RESULTS
A. Common bromodomain fold and representative
structures discovered by PIGS

As summarized in Fig. 1(a), we used PIGS to diversify
the dihedral angles of the ZA loop of four bromodomains
(ZA PIGS, Table I), the crystal structures of which have
PDB codes 3DAI (the bromodomain of the protein atad2a),
3DWY (crebbp), 4LC2 (brpf1b), and 4LZ2 (baz2a).48,70

ZA PIGS consists of 64 copies per domain, each spanning
∼90 ns. Analogously and independently, we ran 64 copies
per domain focusing on the torsional angles of the BC loop
(giving rise to the BC PIGS data sets). For comparison, we
also obtained data from CS simulations starting from the same
initial structures for each bromodomain. The CS simulations
consist of 64 replicas per bromodomain, each covering∼127 ns
(Table I). All simulations were, for the propagation stretches,
standard MD calculations in an explicit solvent (water and 150
mM of monovalent salt) and periodic boundary conditions run
with GROMACS 5 (see Sec. II B for details).64

Figures 1(c) and 1(d) provide a graphical manifestation
of the efficacy of the PIGS simulations. Despite the qualitative

and exemplary character of this analysis, it is readily appre-
ciated that the simulations succeeded in focusing the explo-
rations on the ZA and BC loops: the ZA loop of atad2a clearly
adopts more diverse conformations in Fig. 1(c) than in Fig.
1(d), and the opposite is true for the BC loop.

B. Distance from reference PDB

To quantify the visual hints provided by Figs. 1(c) and
1(d), we first calculated the distances of the trajectory snap-
shots from the respective crystal structures (3DAI for atad2a,
4LZ2 for baz2a, 4LC2 for brpf1b, and 3DWY for crebbp). A
coarse and simple way to do this is given by the root mean
square deviations with alignment (RMSD) of apposite sets of
atoms (listed in Sec. II C).

In detail, this means that an RMSD value for a specific
segment in Fig. 2 is obtained by aligning a given snapshot
to the reference PDB according solely to the coordinates of N
and O backbone atoms and a few side chain atoms (Table II) of
the segment in question. The actual RMSD is calculated across
this restricted set as well. Aside from ZA and BC loops, helices
αA, αZ, αB, and αC define a joint set (“Helices rep.” in Fig.
2). For a given bromodomain, all snapshots derive from one of
the three simulation groups: ZA PIGS, BC PIGS, or CS. We
thus report three results per segment, i.e., we can measure the
RMSD of the ZA loop in ZA PIGS, BC PIGS, and CS, and we
can do the same for the BC loop and the helix bundle. If focused

FIG. 2. RMSD time traces of various segments (ZA loop, BC loop, and helix bundle) comprising the typical fold of bromodomains. Each RMSD is computed
from the corresponding segment of the reference crystal structure after alignment to the same segment. Each multi-replica run (ZA PIGS, BC PIGS, and CS)
provides one RMSD trace per segment. In the top panels, (a)-(d), RMSD traces for the ZA loop and helix bundle are shown. In the bottom panels, (e)-(h), data for
the BC loop and helix bundle are plotted. Lines mark the average RMSD across all copies of a multi-replica run at a given time. The 2D histograms in time and
RMSD are in logarithmic scale, delineate the envelope across all replicas, and respect MSM steady state weights (see Sec. II F). (a) ZA loop and helix bundle
RMSD traces for the atad2a domain (ref. PDB 3DAI). (b) Same as (a) for baz2a (ref. PDB 4LZ2). (c) Same as (a) for brpf1b (ref. PDB 4LC2). (d) Same as (a)
for crebbp (ref. PDB 3DWY). (e) BC loop and helix bundle RMSDs for atad2a. (f) Same as (e) for baz2a. (g) Same as (e) for brpf1b. (h) Same as (e) for crebbp.
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explorations are successful, we expect to detect greater values
when the RMSD representation echoes the dihedral one used
in PIGS (e.g., “ZA rep. ZA PIGS” in Fig. 2) and to find smaller
values (comparable to CS) in the other cases (e.g., “ZA rep. BC
PIGS”). We also expect that CS results are comparable with
PIGS ones for all the segments that do not benefit from sam-
pling enhancement, helices included. Figure 2 confirms these
predictions: the ZA loop is not perturbed in BC PIGS beyond
its intrinsic flexibility but reaches much larger distances in
ZA PIGS runs [Figs. 2(a)–2(d)]. The analogous result holds
for the BC loop as evidenced by Figs. 2(e)–2(h). The helix
bundle in PIGS simulations never undergoes significant rear-
rangements indicated by the relevant RMSDs barely exceed-
ing ∼1 Å irrespective of simulation group or bromodomain.
Figure 2 shows histograms across replicas that account for
MSM weights but the impact, relative to using raw sampling
weights, is minor here (compare Fig. S1 of the supplementary
material).

As a second result, Fig. 2 confirms the large flexibility
of the ZA loop observed in prior studies.61 The example of
crebbp [Fig. 2(d)] appears to suggest that an enhancement of
sampling is not needed in this case. However, some consider-
ations are in order. First, the ZA RMSD in ZA PIGS does in
fact reach larger values than in BC PIGS or CS. Second, the
ZA PIGS group features a wider spectrum of RMSD values
than the other two groups. This implies that ZA PIGS samples
structures both further away and closer to the crystal than BC
PIGS or CS. It is generally expected that PIGS runs contain
a wider spectrum of basins also in terms of kinetic distance
from the initial condition, and this spread is likely beneficial
to achieve locally equilibrated trajectories. In Fig. 2(d), we

also note a rapid increase in ZA loop RMSD in BC PIGS,
which eventually converges onto the same plateau level as the
CS data, albeit with a narrower distribution. It is important to
understand that the PIGS protocol reseeds system snapshots
globally. This means that reseeding decisions, which are more
frequent at the beginning of a run, can have a stochastic impact
on the distribution of degrees of freedom that are not part of
the PIGS set. This is the likely reason for the result in Fig. 2(d)
and for the generally narrower envelopes of ZA loop RMSDs
in BC PIGS runs.

Figure 2 demonstrates quantitatively that unsupervised
focused explorations with PIGS are possible and successful,
and that structural changes do not automatically propagate
spatially or along the sequence. This is likely the result of
the choices made for the sets of degrees of freedom and,
more importantly, of bromodomain architecture. Bromod-
omains are not expected to propagate signals allosterically as
they are primarily competitive binders and help in the recruit-
ment and assembly of complexes that regulate transcription
and/or modify the histone code.49,73–75 In general, however,
spatial couplings can and will be exposed by PIGS between
different parts of a system, e.g., two adjacent monomers
in an aggregate.76 This suggests to us that PIGS can be
used precisely to discover the presence (or lack) of allosteric
effects, which are known to be difficult to predict and/or
simulate.77,78

C. Conformational envelopes

RMSDs become dramatically degenerate as the actual
value increases. Therefore, as a complement, Fig. 3 presents a

FIG. 3. PC projections colored by simulation set of ori-
gin (ZA PIGS, BC PIGS, or CS). We computed PC
transformations based on sine and cosine values of the
dihedral angles in both loops for the combined data sets
for each bromodomain (Table III). The plotted probabil-
ity densities (logarithmic scale) reflect the steady state of
underlying MSMs (see Sec. II F), which here have only
a small effect (compare Fig. S2 of the supplementary
material). The positions of the corresponding reference
PDB structures are highlighted in each panel by their clos-
est representatives (distance was calculated as the RMSD
across all Cα atoms). (a) PC projection for the atad2a bro-
modomain (ref. PDB 3DAI). (b) Same as (a) for baz2a
(ref. PDB 4LZ2). (c) Same as (a) for brpf1b (ref. PDB
4LC2). (d) Same as (a) for crebbp (ref. PDB 3DWY).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
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two-dimensional projection onto principal components (PCs,
see Sec. II D).79 The components are derived by using the
sine and cosine values of the dihedral angles of ZA and BC
loop residues in a joint representation (Table III) for all the
snapshots of a given bromodomain combined. In the his-
tograms, we can then partition densities by their simulation
condition of origin: ZA PIGS (magenta), BC PIGS (green),
and CS (orange). Projections utilize the first two components,
which capture between 30% and 40% of the total variance. As
seen in Fig. 3, the low-dimensional PC projections highlight
conformational envelopes and their overlap regions much more
clearly than Fig. 2. In particular, Fig. 3 establishes unequivo-
cally that the overlap between ZA and BC PIGS is restricted to
the phase space area near the snapshot closest to the reference
crystal structure. The lack of overlap elsewhere demonstrates
that ZA and BC PIGS explore different areas of phase space
with enhanced rates. Since PCs are based on variance, it is
reasonable to expect that the envelopes are larger for ZA PIGS
than for BC PIGS given that the ZA loop is both longer and
more flexible.

Importantly, Fig. 3(d) addresses the concern regarding the
ZA loop RMSD trace in BC PIGS discussed in the context
of Fig. 2(d). Clearly, the observed rapid increase is not due
to overlapping coverage of the ZA loop phase space by BC
PIGS. The overlap between BC and ZA PIGS is indeed small
also for crebbp and lower than the one between ZA PIGS
and CS. In general, CS simulations tend to overlap more with
ZA PIGS than BC PIGS runs. This is owed to the structural

characteristics of the ZA loop and particularly evident in
Fig. 3(d). The ZA loop is reasonably described as intrinsi-
cally disordered and conformations diversify spontaneously
in CS, albeit at a much lower effective rate. Figure S3 of the
supplementary material shows the same data as Fig. 3 in raw
probability scale and confirms that the phase space discov-
ered is not reachable by CS on the 100 ns time scale. The
fact that BC PIGS runs have a lower coverage of the ZA loop
phase space than CS was addressed above already; it is almost
certainly related to the BC loop-based reseeding decisions.
Because these decisions terminate replicas and duplicate oth-
ers, there may be, relative to a CS simulation with the same
number of replicas, a loss of information in degrees of freedom
not covered by the PIGS representation.

D. Discovery of states

In Fig. 4, we consider an explicit measure of the number
of states discovered by PIGS and CS runs along with the per-
residue average α-helical content.80

The number of discovered states is a direct indicator of
the exploration rate and of interest to any enhanced sampling
method. We define a 3-dimensional conformational space
based on the values of backbone dihedral angles of 3 consec-
utive residues. Each residue’s instantaneous φ- and ψ-values
are mapped to 1 of 8 different coarse states, e.g., the PPII-basin
(see Fig. S4 of the supplementary material).81,82 Thus, there
are 83 possible states for a given stretch along the sequence

FIG. 4. Number of states discovered by PIGS and CS runs and averageα-helical content per residue. States are defined based on per-residue torsional assignments
along 3-residue long stretches (see text and Fig. S4 of the supplementary material). Helical content is based on the DSSP algorithm and respects MSMs weights
(see Sec. II F and compare Fig. S5 of the supplementary material). Values for the crystal structures are displayed as well. The legend in panel (a) applies to all
panels. (a) Data for the atad2a domain (ref. PDB 3DAI). (b) Same as (a) for baz2a (ref. PDB 4LZ2). (c) Same as (a) for brpf1b (ref. PDB 4LC2). (d) Same as
(a) for crebbp (ref. PDB 3DWY).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
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of a bromodomain. By scanning the per-residue assignments
along the sequence (excepting the residues closest to the ter-
mini), we increment the count of discovered states any time
that a stretch is found in a state not previously sampled by
it. The final count is assigned to the central residue of the
stretch in question. In general, we expect to find larger counts
for loop residues, in particular the ZA loop ones and negligi-
ble counts for residues that are part of the helix bundle. We
also expect that for ZA PIGS and BC PIGS, respectively, the
counts clearly exceed the ones encountered in CS for the ZA
and BC loops, respectively (but not the other way around).
Figure 4 demonstrates that this is the case. It is striking how
the PIGS enhancement leads to the discovery of more states
for precisely the residues in the respective sets, and how PIGS
appears to have no influence elsewhere, i.e., how it accom-
plished focused exploration. As mentioned above, if the two
loops were allosterically coupled, we would have expected a
propagation of discovered states between them. This is clearly
not the case here since for residues not in the respective PIGS
set, the curves are similar across all domains and compare very
well with CS. The only exception is the ZA loop of crebbp.
In BC PIGS, considerably less states are discovered than in
CS, which is consistent with the data presented in Figs. 2(d)
and 3(d) and corroborates again the arguments made above in
this respect. In addition, while ZA PIGS discovers more states
than CS for the ZA loop, the numbers are more similar than for
the other domains. This could indicate that the implied time
scales of the ZA loop of crebbp are shorter (as confirmed in
Sec. III E below). Figure 4 also plots the average per-residue α
content, 〈α〉, which is always close to 1 for the helical residues
as it is for CS. The only consistent exception seems to be the
C-terminal cap of the αB helix in BC PIGS. This is an intuitive
near-neighbor effect given that the cap is directly adjacent in
sequence to residues that are part of the PIGS representation.

We want to point out that a memoryless and time-
normalized version of the number of discovered states as
plotted in Fig. 4 would provide for a measure of the speed of
interconversion between dihedral states at the single residue

level in terms of per-replica sampling time. As we will see
more clearly below, this masks an underlying separation of
time scales for the enhanced segment, i.e., states discovered
by PIGS are not only more numerous and more diversified
but also kinetically more distant from the crystal structures.
This hypothesis is testable by first grouping the snapshots
with metrics that describe the torsional states of the BC or ZA
loop residues wholly. The second step is then to extract the
slow time scales from derived transition networks as shown
next.

E. Mean first passage times (MFPTs)

By using grouping (clustering) strategies based on either
BC loop or ZA loop torsional angles (Table IV), we construct
specific transition networks (Table V) from the sets of tra-
jectories. A PIGS simulation is essentially an ensemble of
short trajectories with well-defined start and end points, and
the implied cluster connectivity is fully accounted for in our
analysis. The transition networks are used to compute steady
state weights and MFPTs (see Sec. II E) to the cluster con-
taining the snapshot closest to the reference crystal structure.
The groupings are performed on BC PIGS, ZA PIGS, and CS
data sets separately. This way, we obtain 3 MFPT curves for a
given representation, e.g., BC loop MFPTs for BC PIGS, ZA
PIGS, and CS.

In Fig. 5, the reference cluster is always leftmost on the
x-axis, and all other clusters are ordered according to their
MFPTs to it. It is clear that the MFPTs are much larger
whenever there is a match between the enhanced and the ana-
lyzed segment; BC MFPTs reach between 0.2 µs and 0.9 µs
in BC PIGS and ZA MFPTs reach between 3 µs and 14 µs in
ZA PIGS, depending on the bromodomain. ZA MFPTs in ZA
PIGS have to be compared to the hundreds of ns reached in
the absence of an enhancement of sampling, and this includes
the case of crebbp [Fig. 5(d)]. It is a necessary result that the
time scales in CS cannot dramatically exceed the simulation
length of an individual replica, and this rule extends to PIGS

FIG. 5. Mean first passage times to the cluster that con-
tains the structure closest to the reference PDB (dis-
tance measured by RMSD across all Cα atoms). Snap-
shots were clustered with torsional metrics. Clusters are
ordered by MFPT and spaced by their MSM steady state
weights (see Sec. II E). The cumulative sum of these
weights constitutes the relative partition function. Each
curve refers to a specific subset of the data (see legend
in the middle, which applies to all panels). Diamonds
highlight those clusters we selected for investigating their
metastabilities (see Secs. III F and II G) (a) Data for the
atad2a domain (ref. PDB 3DAI). (b) Same as (a) for baz2a
(ref. PDB 4LZ2). (c) Same as (a) for brpf1b (ref. PDB
4LC2). (d) Same as (a) for crebbp (ref. PDB 3DWY).
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FIG. 6. BC MFPTs, cut-profiles,83 and torsional state annotations for the brpf1b domain in ZA and BC PIGS. The MFTPs plotted in panels (a) and (c) are
the same ones as in Fig. 5(c) for ZA and BC PIGS, respectively. MFPTs are also used to order the clusters along the x-axis, which are spaced by their steady
state weights. The cumulative weight defines the relative partition function. Cut profiles (black lines) report on the barriers between all clusters to the left and
all clusters to the right at a given point. Torsional annotations are at the top, and the axis labels are found both left and right to improve legibility. The angles
included in the BC PIGS representation (Table I) are written in green. For each angle, the value of the centroid of each cluster is taken as a consensus value
(vertical white lines are due to resolution limitations of raster images). The color wheel in (a) for the torsion angle values applies to all panels. (a) ZA PIGS,
τ = 1.0 ns, and detailed balance is imposed with naı̈ve symmetrization of the count matrix (see Sec. II E). (b) ZA PIGS, τ = 4 ps, and detailed balance is not
imposed. (c) Same as (a) for BC PIGS. (d) Same as (b) for BC PIGS.

data sets for segments that were not enhanced. It is impor-
tant to note that MFPTs exceed the CS background level for
70%-90% of the MSM-weighted data, i.e., PIGS does not just
discover a small number of low likelihood states that are kinet-
ically distant from the reference state. In general, the BC loop
time scales are intrinsically smaller than those for the ZA loop
possibly because the small space allows only few events for
structural diversification.

It is evident from Figs. 5(c) and 5(d) that low likelihood
events can and do of course occur in non-enhanced sampling,
e.g., in BC MFPTs for ZA PIGS on brpf1b or ZA MFPTs for
CS data in crebbp. In the brpf1b example, the jump in MFPT
is caused by a transition in a single slow coordinate. This is
revealed by comparing the MFPTs, cut profiles,83 and torsional
annotations of the brpf1b BC loop [Fig. 6(a)]. We can see that
the (pseudo-)free energy barrier and resultant jump in MFPT
coincide with the isomerization of the Ψ angle of residue K81
in ZA PIGS simulations. This transition is undersampled, and
the actual interconversion rate cannot be estimated with high
precision. In fact, without detailed balance imposition (see
Sec. II E), the network becomes fractured and the isomerized
state is cut off [Fig. 6(b) shows the largest strongly connected
component only]. Furthermore, this transition is not sampled
by BC PIGS [see Figs. 6(c) and 6(d)] as the Ψ angle of K81
was not part of the BC PIGS representation (Table I). This
observation highlights how accurately the protocol can focus
sampling enhancements.

Figure 6 demonstrates that the BC MFPTs and cut profiles
of ZA PIGS are much more featureless than the BC PIGS ones,
and that each dihedral coordinate visits at most two states.
Conversely, when the sampling enhancement is on the BC
loop, barriers are crossed repeatedly, and this achieves bet-
ter connectivity and the discovery of more torsional states.
Even when detailed balance is not imposed [Fig. 6(d)], the
time scales by BC PIGS do not change dramatically [relative
to Fig. 6(b)], and the largest strongly connected component
still encompasses almost 100% of the data. This suggests
that the BC loop, constrained by helices αB and αC, is sam-
pled almost exhaustively in BC PIGS. The main effect of
detailed balance imposition at large lag time for BC PIGS
is a smoothing of the barriers and a moderate increase of
the MFPTs. The second example mentioned above, viz., the
ZA MFPTs for CS data in crebbp [Fig. 5(d)], is analyzed in
Fig. S6 of the supplementary material and allows the follow-
ing conclusions: the increase in CS MFPTs is associated with a
combination of events [Fig. S6(a) of the supplementary mate-
rial]; ZA PIGS robustly samples slow transitions beyond the
CS time scale [mainly associated with residue Y43, Fig. S6(b)
of the supplementary material]; both networks remain well-
connected when detailed balance is not imposed [Figs. S6(c)
and S6(d) of the supplementary material]; while the MFPTs
drop more considerably than in Fig. 6 without detailed bal-
ance, the desired time scale gap between CS and ZA PIGS
persists.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
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FIG. 7. Metastability of the crystal structure reference states and one kinetically distant state per bromodomain selected from ZA PIGS and BC PIGS each.
Metastability was assessed explicitly in 64 independent copies run from the same initial structure (solvent and protein) for 85 ns. A 1 Å-band in RMSD from the
initial structure was used to measure escape with the position of the band varied systematically (see Sec. II G). The data were smoothed by the supsmu filter84

in R85 with a span of 425 ps. (a) Cartoon views of the initial backbone conformations of the proteins in cyan (reference), purple (ZA PIGS-selected state), and
green (BC PIGS-selected state) after alignment on the entire domains. (b) Metastability of BC PIGS-selected states. We plot life times from exponential fits
(symbols and solid lines) along with the number of replicas contributing to this estimate (dashed lines). (c) The same as (b) for ZA PIGS-selected states. (d)
The same as (b) for crystallographic reference states. This analysis is based on the CS data described in Sec. II B and Table I truncated at 85 ns to ensure 1:1
comparability.

The reported MFPTs are important as they point out
clearly that the states discovered by PIGS are not just fluctua-
tions around the initial basin but span time scales inaccessible
by the CS data. We next confirm that selected discovered states
are not just kinetically distant but also metastable.

F. Steady state probabilities and kinetics
of metastable states

Figure 6 and Fig. S6 of the supplementary material
suggest, in two examples, that PIGS discovers a rich free
energy landscape with many states separated by well-defined
free energy barriers. This implies that these states should be
metastable, i.e., remain self-similar on a time scale of at least
nanoseconds. Because PIGS does not rely on energetic biases,
it is practically impossible to sample regions of phase space
that are enthalpically very unfavorable. In fact, the spontaneous
fluctuations promoted by PIGS are extremely unlikely to visit
high-energy states, due to the exponential decay in probability.
This is often an advantage, as energy-biased approaches may
spend a considerable amount of time in states with very low
sampling weight. In Fig. 7, we demonstrate that kinetically
distant states picked in an ad hoc fashion (we required only
that snapshots were available with full coordinates, includ-
ing solvent, which were saved at a much lower frequency)
are indeed metastable to a similar extent as crystal structure
representatives.

To measure metastability, we performed additional inde-
pendent simulations for the selected states and relied on the CS
data for the crystallographic references, which serve as positive
controls. Relaxation clearly proceeded in two stages, a very
fast local relaxation on the ps-time scale followed by slower
escape processes. To illustrate both, we measured escape from

the initial structure with a moving RMSD-threshold band as
described in Sec. II G and the caption of Fig. 7. It is clear
that a band extending from 1 to 2 Å is the smallest possible
choice to describe the slow modes. For lower thresholds, all
the way up to 2.5 Å, the life time estimates do not change by
more than a factor of ∼2 in most cases. These life times are
comparable in their absolute values (20-50 ns). Notable excep-
tions are the ZA PIGS-selected states for atad2a and baz2a
[Fig. 7(c)]. As seen in Fig. 7(a), here the ZA loops extend
far into the solvent, and it seems reasonable that the inher-
ent amplitude of conformational fluctuations is larger, thus
explaining the generally lower values at all thresholds. It is
interesting to note that these two proteins tend to appear the
least metastable also in Fig. 7(b) and, partially, Fig. 7(d), sug-
gesting that the conformational rigidity differs in general. As
pointed out in Sec. II G, the life time estimates are likely to
be severe underestimates. This is highlighted in Fig. 7 by the
often small number of trajectories contributing to a given life
time.

It is important that residence times of 20-50 ns explain
why degrees of freedom in CS and also those in PIGS that are
not part of the PIGS representation [e.g., BC loop residues in
ZA PIGS as in Fig. 6(a)] cannot converge on the chosen time
scale for individual replicas (∼100 ns). Thus, any predictions
regarding the thermodynamics of sampled states are heavily
biased by the chosen initial condition(s), and the resultant free
energy landscape can be a dramatic oversimplification [as in
Fig. 6(a)].

IV. DISCUSSION AND CONCLUSIONS

In this contribution, we have addressed a problem of inter-
est, namely, how to focus sampling enhancements to specific

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-004743
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parts of proteins to drive the discovery of relevant conforma-
tional states. These parts are described by sets of degrees of
freedom of dimensionalities as high as 15 (Table I). Complex
systems often exhibit emergent behavior that is not known
beforehand and difficult to predict, and this difficulty can arise
precisely because there are delicate and nonlinear correlations
between degrees of freedom, for example, as seen in protein
allostery. PIGS ultimately achieves a diversification in a target
space, and if this space is chosen appropriately, both the sam-
pling enhancement and the focusing thereof can be achieved
with ease.

Specifically, the data in Figs. 2–4 demonstrate that PIGS
widens the envelope of discovered states dramatically relative
to a CS run even when slightly more resources are used for
CS (Table I). Importantly, it does so for a real world appli-
cation, viz., a protein domain of >100 residues in explicit
solvent. The biggest obstacle to brute-force MD is the large
time scale of processes of interest. CS offers only limited
scaling when deployed to HPC resources, and this problem
is thus a fundamental one.3 Here, PIGS routinely increased
the covered time scales (Fig. 5) by up to two orders of mag-
nitude in a focused manner. Given that PIGS returns a set of
locally equilibrated trajectories (if the simulation stretches are
of reasonable length), we employed a reweighting approach
based on MSMs (see Sec. II F) to establish the thermo-
dynamic stability of the discovered states. In all cases, we
found that MSM-weights are similar to the raw sampling
weights indicating that these states would in fact be sampled
spontaneously in much longer MD simulations. To corrob-
orate this result, we analyzed also the kinetic stability of a
small selection of states (Fig. 7) and determined residence
times comparable to that of the crystallographic reference
states.

Below, we summarize some basic recommendations on
how to use PIGS efficiently and discuss advantages and limita-
tions in relation to alternative protocols that modify the energy
landscape. This is followed by a brief discussion on what
emerged regarding bromodomain architecture and an outlook
commenting on future developments and the applicability to
other systems.

A. What makes an appropriate selection of features
for PIGS?

For the present system, a general knowledge of the bro-
modomain function and architecture was sufficient to make
the choices in Table I. This of course implies knowledge of
experimental structures, which were a prerequisite to begin
with. We suggest the following three guidelines for selecting
the PIGS representation to practitioners:

1. Degrees of freedom that diversify rapidly in CS given
a target simulation time should be excluded from the
PIGS representation. These are usually weakly coupled
variables, e.g., the rotamer states of solvent-exposed
side chains in a protein. This suggestion applies to any
PIGS simulation. The presence of many weakly cou-
pled degrees of freedom evolving quickly creates a com-
binatorial explosion of states in this high-dimensional
space. This combinatorial increase means that all replicas

rapidly appear diversified, which deteriorates the reseed-
ing rate. This ultimately results in all “slower” degrees
of freedom failing to receive sampling enhancements.
This issue is in theory addressed by increasing the num-
ber of replicas. While in our experience this is indeed
helpful, the combinatorial growth in the number of states
means that resource limitations come into play extremely
quickly.

2. It is not necessary to include all in a set of closely coupled
degrees of freedom. In many cases, couplings are directly
apparent, e.g., sets of interatomic distances involving the
same pair of protein side chains will be highly correlated.
Similarly, next-neighbor couplings in backbone dihedral
angles result directly from steric considerations rather
than system-specific issues (compare Table I). While
the presence of additional but tightly coupled variables
generally should have little influence on the PIGS reseed-
ing decisions, their inclusion decreases computational
efficiency. This is again a general rule.

3. For focused explorations, there is an additional concern:
it is almost certain that not all slow “modes” a system
offers are of interest, and some may even be detrimental
to a given study. In the concrete example here, observing
the onset of the unfolding transition by including helix
residues, albeit interesting per se, would have created
an undesirable overlap of long time scales, which would
have prevented clear statements about the states accessi-
ble to the two loops and their intrinsic time scales in the
folded state. Of course, the system must allow for this
separation. If loop conformations were invariably linked
to the folding equilibrium for bromodomains, this overlap
would have been both the inevitable and the biologically
relevant result.

B. A comparative assessment of virtues
and limitations

As mentioned in Sec. IV A, complex systems can pose
the difficulty that several slow processes overlap in time scale.
If one is interested in only one or a few of these processes, the
ability to focus the sampling enhancement is critical. This is
precisely one of the appealing properties of low-dimensional
collective variables used as reaction coordinates in methods
like umbrella sampling. However, systems of as high a dimen-
sionality as the bromodomains investigated here challenge
many advanced sampling methods because low-dimensional
reaction coordinates become difficult to define, and because
the energy spectrum is unfeasibly wide and the number of rel-
evant states can be so large that approaches requiring explicit
human supervision become intractable.

Unlike umbrella sampling, PIGS, like the many other
adaptive methods, uses no energetic biases along collective
variables. Instead sampling enhancements are achieved by
detecting and rewarding spontaneous fluctuations within a (rel-
atively) high-dimensional feature space, which can be tailored
to accommodate different needs. The lack of an energetic bias
prevents PIGS from sampling states that have very low statis-
tical weight purely on account of their enthalpies. In turn, it
is thus reasonable to expect that newly discovered states are
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indeed metastable rather than being located outside of local
free energy minima (Fig. 7). In contrast, methods biasing the
potential energy always run the risk of spending significant
resources on exploring practically irrelevant states. As a down-
side, the lack of an energetic bias also means that PIGS does
not provide clear benefits when a barrier is fully enthalpic,
e.g., in the cis/trans isomerization of a single polypeptide ω
bond. In practice, interesting free energy barriers are proba-
bly not generally of this type but rather tend to involve many
degrees of freedom. As we showed in Ref. 9, globular states of
an α-helix-forming peptide found at low temperatures, which
seemed enthalpically trapped, were readily diversified with
PIGS.

It is useful to recall a general limitation of focused
approaches (regardless of methodology): it is never possible
to rigorously ensure the equilibration of degrees of freedom
in parts of the system that the sampling enhancements were
not focused on. This means that the system’s intrinsic explo-
ration rates are no longer uniform (as they are in CS), which
implies that initial conditions persist to different extents for
different parts of the system. In umbrella sampling, this lim-
itation is known as the difficulty to achieve equilibration of
orthogonal degrees of freedom.86 In focused PIGS, it is mani-
fest clearly, for example, in Figs. 3 and 4. The view of the state
space is partial when focusing on one loop at a time, and states
with joint kinetically distant states of both loops are absent in
this data set. Importantly, the likelihood of such states can be
predicted a posteriori by taking the products of MSM proba-
bilities from the two ensembles of PIGS simulations. There is
also no fundamental limitation to enlarge the representation to
include both loops in the PIGS representation simultaneously
(see Secs. IV A and IV C).

An additional advantage of PIGS is the absence of any
supervision once a representation has been chosen. Bearing
the caveat in mind that weakly coupled and “fast” degrees
of freedom should be avoided (see Sec. IV A), PIGS offers
the favorable property that those degrees of freedom most
amenable to spontaneous change can drive the diversification,
and that these coordinates can and do emerge on-the-fly in an
unsupervised manner, i.e., they are effectively learned by the
algorithm.

C. Insights into bromodomain architecture

Bromodomains have the conserved helical fold shown in
Fig. 1(b). Our results show clearly that it is possible to specif-
ically enhance the time scales of exploration and the explored
conformational space for either the BC or the ZA loop with-
out significantly altering the properties of the other loop or the
helix bundle relative to CS. Because PIGS provides a relatively
gentle way of enhancing the sampling in a focused manner,
the diversification is unlikely to propagate to parts that are not
directly enhanced unless their conformational fluctuations are
tightly coupled. In this study, we always kept the two loops
separated, and our results demonstrate implicitly that there is
little allosteric cross talk between the BC and ZA loops for
any of the domains. We have suggested ZA loop disorder as a
recruitment vehicle in recent work,87 and the lack of coupling
would consequently imply that the recruitment step cannot
predispose the BC loop toward conformations compatible with

binding. However, this may indeed be unnecessary: Fig. 5 sug-
gests that the BC loop of bromodomains is less likely to be the
kinetic bottleneck in rearrangements upon the (un)binding of
natural and pharmaceutical ligands than the ZA loop, which
changes conformations on time scales that reach well into the
µs-regime.

Based on Figs. 3 and 4 in particular, it is clear that our
state space is truncated, i.e., kinetically distant states for both
loops are not populated jointly. While it would require using
a larger number of replicas to maintain a comparable reseed-
ing rate, it is both feasible and meaningful to include the two
loops in a joint PIGS representation. We have chosen not to
do so here because we wanted to highlight focused sampling
enhancements. From a modeling point of view, the construc-
tion of chimeric structures as receptors for virtual screening
campaigns on bromodomains should be possible. Such a piece-
wise reconstruction may obviously be more useful for larger
systems with multiple independent components.

Clearly, both the ZA and BC loops are directly adjacent to
the helix bundle both in sequence and in space. However, aside
from a minor cap effect visible in Fig. 4, we detected no influ-
ence of loop diversification on the helix bundle. This suggests
that the rearrangement of the bromodomain tertiary structure
and the onset of unfolding transitions are either much slower
in time scale or at most weakly coupled to loop conformation
(or both). This is different from the critical role turn sequences
are known to play in the formation of β-sheets.88

D. Applicability to other problems and outlook

While for the bromodomains, no significant coupling
between the two loops emerged, focused conformational
explorations with PIGS do not mandate that this be the
case. Allosteric effects caused by strong couplings have been
revealed by PIGS in other types of systems, e.g., amyloid fib-
rils.76 This means that degrees of freedom not part of the
PIGS representation will automatically respond to the sam-
pling enhancement because the spontaneous fluctuations are
necessarily coupled themselves. In general, the strength of
allosteric effects depends on the physical and chemical prop-
erties of the system, and they are difficult to assess a priori.
PIGS could be used precisely to answer questions regarding
their strength.

We thus predict that the possibility to focus phase space
explorations on a broad set of degrees of freedom (from one
to many, from dihedral angles to collective variables, etc.)
in a simple and yet precise manner can be useful in many
applications. In computer simulations of biomolecules, these
applications could include the diversification of receptor con-
formations or the discovery of allosteric binding sites for drug
design, studies of the propagation of signals through structural
changes and binding/unbinding processes, or the disorder-
to-order transition of molecular recognition features.89 It is
important to realize that PIGS works as long as there is sam-
pling redundancy. It is therefore not the right choice for sys-
tems that diversify spontaneously in CS on the affordable time
scale or that already offer multiple and heterogeneous initial
conditions, e.g., an expanded intrinsically disordered protein
in solution. Even then, it may still be possible to tailor the
representation of the system toward a feasible goal, e.g., by
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using coarse collective variables as features such as the radius
of gyration or secondary structure content.

In our experience with biomacromolecules, representa-
tions based on torsional angles or interatomic distances are
both well-suited to drive conformational changes in ordered
systems, and we have used anywhere from 2 to about 150 of
these “atomistic” features at once. RMSD with alignment can
be used as well even though the alignment operation slows
down the data analysis steps. We have also explored other
types of features such as contact patterns or solvent accessi-
bility measures. Interested readers are referred to the avail-
able publications9,76 and to the documentation of CAMPARI
(http://campari.sourceforge.net). As a more technical conclu-
sion, we demonstrated here that the analysis algorithms in
CAMPARI can in principle be applied to implement PIGS with
any propagation code. The PIGS reseeding decisions will work
as intended so long as the parts of interest of the system undergo
stochastic evolution with the potential for sampling recurrence
and overlap. Thus, outside the life science community, PIGS
can be potentially useful in applications as diverse as numer-
ical optimization using Monte Carlo algorithms, agent-based
simulations of financial markets,90 or, of course, any type of
particle-based molecular simulations. By splitting the reseed-
ing heuristic and the propagation engine, PIGS is a versatile
tool deployed easily on most HPC architectures.

Ongoing work explores a number of avenues. First, we
continue our efforts to parallelize the data mining steps effi-
ciently across the entire set of resources allocated to a given
PIGS run. Second, we want to fine-tune the representation
according to the evolution of the system. Specifically, the idea
is to use feature weights capable of dynamically emphasiz-
ing degrees of freedom for which no or little diversification
has been detected. This would allow these features to benefit
maximally from the sampling enhancements and avoid that
fast motions mask redundancy in the replicas, especially in
high-dimensional feature spaces (as described in Sec. IV A).
Another approach would be to use dimensionality reduction
techniques.91 Third, we are trying to understand any poten-
tial fault lines in the MSM-based thermodynamic reweighting
process employed here. The removal of initial state bias is a
tricky problem, and an error estimation and reweighting strat-
egy specific to PIGS would be of particular interest. Forth,
we are using PIGS to tackle challenging problems, including
the (un)binding of disordered peptides from/to bromodomains
or amyloid (proto)fibrils.76 Given the success demonstrated
here, we anticipate that PIGS can be useful in a large number
of specific research questions involving molecular systems.

SUPPLEMENTARY MATERIAL

See supplementary material for additional Figs. S1-S10
mentioned in the main text.
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