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ABSTRACT: Data mining techniques depend strongly on how the data are represented and how distance between samples is
measured. High-dimensional data often contain a large number of irrelevant dimensions (features) for a given query. These
features act as noise and obfuscate relevant information. Unsupervised approaches to mine such data require distance measures
that can account for feature relevance. Molecular dynamics simulations produce high-dimensional data sets describing molecules
observed in time. Here, we propose to globally or locally weight simulation features based on effective rates. This emphasizes, in a
data-driven manner, slow degrees of freedom that often report on the metastable states sampled by the molecular system. We
couple this idea to several unsupervised learning protocols. Our approach unmasks slow side chain dynamics within the native
state of a miniprotein and reveals additional metastable conformations of a protein. The approach can be combined with most

algorithms for clustering or dimensionality reduction.

1. INTRODUCTION

The analysis of high-dimensional data is susceptible to several
pitfalls."~* Most unsupervised learning methods, such as
clustering or dimensionality reduction, require a notion of
similarity or distance between individual observations or
snapshots. If individual snapshots are vectors of high
dimensionality, most functional forms measuring distance lack
contrast, i, for a given query point the nearest and farthest
data points are almost equally far from it.”® Additional
problems arise because the data might contain a large number
of irrelevant features (dimensions), and because the importance
of features can differ for different data points or clusters.””” As
a consequence, the choice of a distance function offering
sufficient contrast can be more important than the choice of
learning method.'®~"* This calls for efficient protocols to derive
similarity measures that do not suffer from lack of contrast and
account for local feature relevance. These measures should be
accessible without an intricate understanding of the system
described by the data.

For high-dimensional data, it is common to select or generate
features that are deemed informative. When performed
manually, this process relies primarily on domain expertise.
Measures of relevance, such as entropy or mutual information,
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can serve as guides to nonexpert users.”> The term feature
extraction is commonly associated with techniques of
dimensionality reduction.”> Many of these techniques try to
generate new features that maximize a target property, eg,
variance in principal component analysis."* Low-dimensional
embeddings of high-dimensional data might be of limited use if
these data contain many irrelevant features, and if the chosen
distance function is unable to distinguish between similar and
dissimilar points. It has been noted that feature selection prior
to dimensionality reduction can improve the discriminatory
power of the latter.'> Lastly, the contrast level offered by a
given distance function may also depend on the position of the
two points in data space, and this is reflected in clustering
algorithms with locally adaptive similarity measures.””

Here we focus on high-dimensional data from molecular
dynamics (MD) simulations of biomolecules.'® At its core,
analysis of MD data is often concerned with identifying
metastable conformations of the simulated system.'’”"
Unsupervised learning methods for this purpose include
clustering and related techniques,'"**™>> classical dimension-
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ality reduction algorithms and modifications thereof, ***™* as

well as other approaches.”*** The success of all these methods
depends on the careful selection of features or an informative
distance function; however, a lot of trial-and-error is used in
practice to improve results.

In this contribution, we present an efficient method to either
globally or locally weight features according to a notion of
relevance. Recognizing that features exhibiting slow modes are
more likely to report on metastable states, we define weights
based on effective rates. Global weights employ the
autocorrelation function, while locally adaptive weights are a
function of transition rates within a time window along the
trajectory. We apply these approaches to an illustrative model
system and two data sets generated by MD simulations. The
first set of MD data originates from simulations of the
reversible folding of Beta3S,” a 20-residue peptide adopting a
three-stranded, antiparallel S-sheet fold. The second example is
a very long explicit solvent simulation of the conformational
dynamics of bovine pancreatic trypsin inhibitor (BPTI) within
its native state.”’ Throughout, we discuss problems that can
occur in conjunction with unmodified distance functions and
show how weights address them. Where possible, we compare
our results to analyses of the same data found in the literature.
We show that a comprehensive description of the free energy
surface can be extracted from MD trajectories of proteins by
including degrees of freedom such as side chains, flexible loops,
and terminal residues with appropriate weights. These features
are often dismissed a priori as noisy and uninteresting, which
entails the risk of losing important information.

2. METHODS

Weighted Distance Functions. Consider a set of N
observations with each observation corresponding to a data
vector of length D. The Euclidean distance between two
observations x(#,) and x(t;) gives equal weight to all their D
features:

D
d(x(t), x(8))* = D' Y} (x(k) — (1))

i=1

(1)

Conversely, the information content relevant for a given target
application may differ between features. Given a notion of
overall relevance expressed in a vector of weights, w, a weighted
Euclidean distance can take into account the heterogeneity of
the features as follows:

D

d(x(t,), x(t))* = Z w;

i=1

Z wi(x(t) — xi(tl))z
i=1 ()

The elements of w used in eq 2 can represent any notion of
importance. Here, we quantify the relevance of features by
measurements of net rates obtained independently for each of
them. Features associated with low rates are interesting as they
are likely to report on metastable states.”®*” It is expected that a
subset of features is homogeneous on the same time scale as the
life times of these states. In practice, for the weights in eq 2, we
set w; = max(R,(7), 0), where R,(7) is the autocorrelation
function of the i feature evaluated at a specific time lag 7. Note
that this corresponds to scaling the data and is different from
altering the metric itself, e.g, by changing the Euclidean (L,) to
a rectilinear (L;) norm. In the present work, we often use
dihedral angles and represent them by sine and cosine terms.
Rather than computing separate weights in this case, we simply

5482

keep the larger of the two values derived independently as the
resultant weight.

Global weights as used in eq 2 cannot reflect that the
importance of individual features might depend on where a
given observation is situated in the overall data space. We use
locally adaptive weights to account for this. Here, the notion of
“local” is derived exclusively from proximity in time, which is a
limitation. Unfortunately, the autocorrelation function com-
puted over a data window of width A becomes misleading if
transitions are absent. Instead, locally adaptive weights are
derived by counting the number of times a feature crosses its
global mean:

j=k+A/2

”ik(A) = Z H(_(‘xi(tj—l) - <xi>N)('xi(tj) — (xn))

j=k—A/2

wf = (0f(A) + )
3)

Here, H denotes the Heaviside step function, and o is a
parameter required to be positive. The weights in eq 3 are
expected to be low for features that sample unimodal
distributions. If a feature differs between states, eq 3 rewards
those features with locally small variances. False negatives can
be obtained if the global data mean coincides with a specific
peak position in a multimodal distribution. Distance is
measured as

d(x(t), x(t))* = [Z \ Wikwil] Z v Wikwil () — x(8))*
_ @

We note that the function d does not necessarily satisfy the
triangle inequality, i.e, eq 4 no longer represents a metric. This
may be undesirable. In the context of clustering algorithms, we
might also require a measure of distance between an individual
observation, x(f;), and a group of observations (cluster).
Representing the cluster by its unscaled centroid, ¢, we have

d(x(ty), o) = Z \/‘4’;'k14’iC z \/WikwiC (x(t) — Ci)2

©)

In eq 5, w® is the average weight vector across all observations
that are part of the cluster with centroid c.

Progress Index and SAPPHIRE Plots. Recently, we have
developed an algorithm for the analysis of long MD
trajecto1‘ies.34’35 The resulting SAPPHIRE (States And Path-
ways Projected with HIgh REsolution) plot is a comprehensive
visualization of the thermodynamics and kinetics of the
simulated system and is used here to study the performance
of the distance functions introduced above.

We briefly describe the method next and refer the reader to
the original publications for more details.”**> Specifically, all
snapshots are assumed to form a complete graph, and the
minimum spanning tree or an approximation to it is computed.
From a given starting snapshot, the snapshot connected by the
shortest available edge is added to a growing partition. The
resulting sequence, the so-called progress index, proceeds
through regions of high sampling density one after another and
avoids overlap of distinct states.”* The progress index can be
annotated to yield a SAPPHIRE plot as described in recent
work.”® Here, we employ the following annotation functions to
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highlight and interpret the states along the progress index. First,
we use a kinetic annotation function to localize the individual
states on the progress index. Specifically, for every snapshot i
along the progress index, we plot the average of the mean first-
passage times between A; and S, denoted 7yp, where A; is the
set of snapshots added to the progress index before i and §; is
the set of those added after i. The value of this annotation
function is low within a state and high in transition regions, and
barriers are highlighted reliably (although they cannot be
interpreted quantitatively).”* Second, we plot the actual
sampling time of the individual snapshots to illustrate when
and in which sequence the different states were sampled. Third,
we characterize the states themselves by structural annotations.
For Beta3S, we have used the secondary structure assignment
according to the DSSP algorithm® and the ; angle of Trp10.
For BPTI, we show selected dihedral angles using binning with
boundaries given in the Supporting Methods. The boundaries
were obtained from direct inspection of the individual
histograms for each angle. In addition, we show state
assignments according to Shaw et al.”” and Xue et al.*'

The method is implemented in the CAMPARI simulation
and analysis package (http://camparisourceforge.net). De-
tailed parameter settings are given in the Supporting Methods.
In contrast to previous work, we modify the underlying
spanning tree before computing the progress index (Vitalis,
manuscript submitted). In particular, we collapse the leaves into
their parent vertex, which means that they are added to the
progress index as soon as it encounters their parent vertex. This
places snapshots from the fringe region around regions of high
sampling density next to the snapshots from the closest state.
The procedure can be repeated a number of times, and this is a
controllable parameter. It is set by CAMPARI keyword
FMCSC_CPROGMSTFOLD, which was 1 throughout except
for Figure 2 (where it was 2).

Clustering and Cut-Based Free Energy Profiles. Besides
SAPPHIRE plots, we employ clustering and cut-based free
energy profiles™ (cfeps) to study the influence of the distance
function. Clustering according to a recent, tree-based algorithm
partitions the data into ti(ght clusters that have little overlap and
are of controllable size.”” Cfeps order the resultant clusters by
their kinetic distance from a chosen reference state. The
ordering is kinetically annotated with 7yzp, defined as above. As
for SAPPHIRE plots, the value of 7yyp is expected to be low
within a basin and high in transition regions. This is what allows
an immediate partitioning into metastable states.

3. RESULTS

To illustrate the problems that occur when analyzing data
without feature selection, we use a model system and two high-
dimensional real-world data sets from MD simulations of the
peptide Beta3S*° and the protein BPTI’” obtained in implicit
and explicit solvent, respectively. We highlight the performance
of the different similarity measures by employing a recently
developed algorithm for the analysis of dynamical systems that
uses a distance function as its only essential parameter.”* The
similarity (or better, dissimilarity) measures evaluated are the
unweighted Euclidean distance (UW), the Euclidean distance
weighted by the global autocorrelation function at fixed lag time
per dimension (GW), and a locally adaptive distance defined by
time-local transition rates (LAW). They are defined in eqs 1, 2,
and 4, respectively (see Methods). We demonstrate that the
weighted distance functions, GW and LAW, offer substantial
benefits in all cases investigated. For brevity, we will repeatedly
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refer to the three dissimilarity measures as UW, GW, and LAW
measures below.

Model System. Figure la schematically depicts a Markov
model of 4 states and its associated transition matrix with the
states identified by color throughout. A Markov chain (random
walker) is used to generate a continuous trajectory of length 2
X 10° snapshots, which means that even the least likely (red)
state is sampled sufficiently. To be able to meaningfully test
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Figure 1. Model system and its representation. (a) Schematic
description of the 4-state Markov model. The text within circles
gives the steady-state population of each state. Nonzero elements of
the transition matrix are shown as lines with the conditional
probabilities indicated. Coloring of lines is by source state. (b) Each
snapshot of the model is represented by 9 features. Features are
generated by independent, memory-free, Gaussian processes with
parameters that depend on the macrostate. On the left, we plot actual
histograms (black lines) from a trajectory of 2 X 10° snapshots along
with the generating functions scaled according to the steady-state
population of each state (shaded areas). On the right, weights
computed for the same trajectory are shown for each dimension for
both LAW and GW measures. Locally adaptive weights are averaged
separately for the true state the trajectory resided in and produced for
two different window sizes, A = 10 and A = 50, with a = 0.01 (see eq
4). Global weights are computed at two different lag times (z = 20 and
7 = 200).
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Figure 2. Evaluation of different distance functions for the model system in Figure 1. (a) The number of transitions between states in the progress
index is shown. The construction of the progress index relies on preorganization via clustering, and we made use of a recent improvement to the
algorithm (see Methods). Each condition for both types of weights was evaluated for 8 (GW, cyan lines) or S (LAW, dark red lines) different
clustering settings, and the medians (solid lines) and minima (dotted lines) are plotted. The black dashed line is the minimum value for the
unweighted case. (b) The exact state annotation (color bar) along the progress index is plotted for every 10th snapshot. Cumulative distribution
functions were analyzed and normalized independently for each state. From bottom to top, we show the data for UW, GW, and LAW measures,
respectively.

different distance measures for this system, it is represented by outperformed by both the GW and LAW measures irrespective
9 data dimensions (features). Every feature is generated from a of parameter settings. GW is inferior to LAW (in terms of peak
normal distribution whose parameters depend on the state the performance), and its performance appears to change relatively
system currently resides in. As seen in Figure 1b (left-hand little with lag time. The results for the LAW measure show a
side), no feature is informative for all states. The overlap is clear preference for window sizes that are considerably less than
generally large, and two features (#8 and #9) are completely the average life times of states, which is ~300 steps. We picked
uninformative. Despite the moderate dimensionality, this the respective top-performing cases for the results obtained
challenges the UW measure. with the UW, GW, and LAW measures and visualize the

In Figure 1b we also compare the resultant global and locally progress index in Figure 2b. Cumulative distribution functions
adaptive weights underlying the GW and LAW measures, resolved by state highlight the successive decrease in state
respectively. The global weights obtained from the autocorre- overlap when changing from UW (bottom row) to GW
lation function at fixed lag time de-emphasize features #5, #8, (middle row) and finally to LAW (top row) measures. We note
and #9 irrespective of lag time. At 7 = 20, all remaining the improvement of the localization of the red state in
dimensions have roughly equivalent weights, whereas at 7 = 200 particular. With the UW measure, this state would certainly not
features #2 and #7 dominate. These correspond exactly to the have been identified as a metastable state of the system.
histograms with the clearest peak separations. Since we know Beta3S. The first MD data set is taken from an implicit
the correct state for each snapshot, the locally adaptive weights solvent simulation of the 20-residue antiparallel S-sheet peptide
can be averaged separately for different states. These weights Beta3S.*® Multiple folding and unfolding events are observed
correspond to the inverse crossing rate of the global data mean during the total sampling time of 20 ps. The unfolded state
for a given feature (eq 4). This is why they emphasize features ensemble is characterized by the presence of several metastable
that have low variance for a given state, e.g,, #6 is particularly states that are enthalpically stabilized. The data set consists of
important for the magenta state or #7 for the green state. 10° snapshots saved at an interval of 20 ps. We represent the
Similarly, they also reflect whether a feature’s value in a given peptide via 99 dihedral angles. The rotation of 2-fold or 3-fold
state is far away from the global mean, e.g, #5 is only relevant symmetric groups consisting entirely of hydrogen atoms and y,
for the red state. Note that these synthetic data are memory- and y; angles of tyrosine were ignored. Dihedral angles enter as
free, i.., time correlation comes exclusively from state their sine and cosine values to avoid intricacies with circular
persistence. variables.*

We scanned a wide range of possible lag times and window First, we investigate how the use of locally adaptive weights
sizes, and the particular values shown in Figure 1b correspond affects clustering. We clustered the data according to both UW
to the top performing cases in the subsequent analysis, which and LAW measures using a recent, tree-based algorithm™” with
was performed as follows. Using a recent algorithm,”* we thresholds that yield a total number of clusters within 2% of
computed the progress index that corresponds to stepping one another. We identified two clusters in the region of highest
through an approximation of the minimum spanning tree (see sampling density (ie, in the native state) sharing the same
Methods for details). This procedure is very sensitive to the centroid. For adjacent lower density regions (see Figure S1 in
distance function in use. Ideally, it should arrange snapshots Supporting Information for details), we picked two clusters
exactly by their underlying states assuming they are geometri- whose centroids differ but which are of similar size and distance
cally separable. The large overlap seen in Figure 1b makes this from the native state. Because distance functions based on
task challenging. As a measure of sorting quality, we simply dihedral angles are putatively uninformative, we crosscheck
count the number of times the state annotation changes in the cluster definition against the most common and intuitive
progress index, and these data are shown Figure 2a (lower is distance function, viz., the root-mean-square deviation (RMSD)
better). It is clear that the UW measure is rigorously computed over the Cartesian coordinates of all atoms after

5484 DOI: 10.1021/acs.jctc.5b00618

J. Chem. Theory Comput. 2015, 11, 54815492


http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00618/suppl_file/ct5b00618_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.5b00618

Journal of Chemical Theory and Computation

pairwise alignment. For the native state, Figure 3 (left) reveals
that the quality of the clusters obtained by both UW and LAW

-<«uw —» 1
W10 alternative conformations \ ‘

Native Boundary

Y19

<«—LAW —>»

Figure 3. Ilustrations of clusters corresponding to the native state and
a lower density region, respectively. The clustering uses 99
nonsymmetric dihedral angles in conjunction with UW (eq 1) and
LAW (eq 4, A = 2 ns, @ = 1) measures. Further statistics are provided
in the caption of Figure S1. For both measures, we identified clusters
in the native basin and near its boundary. For the native state, two
clusters could be obtained from UW (35215 snapshots) and LAW
(33445 snapshots) measures, which share their centroid snapshot and
overlap to 82% identity. For the boundary case, the two clusters shown
were identified with the help of Figure SI (UW: 4013 snapshots;
LAW: 3883 snapshots). All cluster members were aligned to the native
state centroid (displayed as sticks). For each case, ~500 snapshots are
shown in ribbon representation (N-terminus is red). Magenta and
yellow spheres document the positions of the NE1 and OH atoms of
Trpl0 and Tyrl9, respectively. These data are shown for ~4000
cluster members. All graphics were rendered with VMD.*

measures is comparable, which indicates that excellent sampling
density may overcome weaknesses of the distance function.
However, more overlaps of alternative conformations are
obtained when omitting weights (recognizable most clearly
for Trpl0). This is confirmed by the RMSD histograms in
Figure 4a that exhibit a distinct tail for the cluster based on the
UW measure. Such a tail is absent when inspecting the
histograms for the UW measure directly (Figure 4b).

We next focus on a region of lower sampling density, viz.,
clusters situated in the boundary region of the native state (see
Figure S1). Figure 3 (top right) demonstrates that the UW
measure fails to produce an ensemble satisfying intuitive criteria
for what a cluster is. This is rectified by applying the LAW
measure, which produces a cluster ensemble that maintains
native topology albeit with much increased fluctuations, and
that has the side chain of Trp10 in a well-defined region distinct
from that of the native state (bottom right). This result is
quantified clearly by differences in the histograms of pairwise
distances using the RMSD measure (Figure 4c). Obviously, the
UW “cluster” contains a wide variety of structures with pairwise
distances exceeding 8 A. There is no difference between self-
similarity and similarity to the native state. This is improved
dramatically with the LAW cluster, for which the native state
clearly is a more dissimilar conformation than the other cluster
members.

Figure 4d suggests that the result in Figure 4c for the UW
measure is likely due to dimensionality problems, ie., the
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Figure 4. Distance histograms for the clusters in Figure 3. The
clustering uses 99 nonsymmetric dihedral angles in conjunction with
UW (eq 1) and LAW (eq 4, A = 2 ns, @ = 1) measures. The legend in
panel (a) applies to all panels. (a) For native-state clusters, a total of
~2 X 10° randomly selected and unique pairwise distances of the all-
atom coordinate RMSD were computed, and histograms are shown
along with complete histograms of distances to the native state
centroid (bin size of 0.05 A). (b) The same as (a) but using the actual
UW and LAW measures to compute distances. (c) The same as (a) for
the clusters from the boundary region of the native state. (d) The
same as (c) but using the actual UW and LAW measures to compute
distances.

distance distribution to a snapshot not part of the cluster is
almost the same as the pairwise distribution within the cluster.
This lack of contrast also holds when analyzing the distance
distribution of all snapshots with respect to the native state. In
fact, Figure Sa shows that the distribution remains nearly

1

—— no weights —— R(400 ps)
ol T (¢, ¥, )35 —— R(2ns)
—— R(20 ps) —— R(10ns)

R(80 ps)

Autocorrelation function ©

0

0 025 05 075 1
Distance to native

-9 -8 -7
log1o(t/s)

Figure 5. Weighted distance functions capture thermodynamics and
kinetics of Beta3S better than an unweighted one. (a) Distance
distributions for Beta3S with respect to a representative snapshot of
the native basin. Using 103 dihedral angles (including y, and y; angles
of tyrosine) and the UW measure, the distribution is essentially
unimodal (red curve). With manual feature selection, the distribution
has several distinct peaks that indicate coarse clusters in the data
(green curve). Here we used the backbone dihedral angles of residues
3—18 as in previous work.”® Increasing the time lag 7 for the GW
measure in this range leads to more and better separated peaks (blue
curves). The GW measure with a time lag of 7 = 2 ns and the
Euclidean measure with manual feature selection are correlated
(Pearson’s correlation coefficient p = 0.978). (b) Autocorrelation
functions of the distance time series used in (a). For this figure,
distances were only computed for every 10th snapshot in the
trajectory.
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Figure 6. SAPPHIRE plots for Beta3S. (a) SAPPHIRE plot for Beta3S obtained with the UW measure. The peptide is represented by the sine and
cosine values of 99 nonsymmetric dihedral angles. The progress index (x axis) represents a reordering of the trajectory snapshots that groups similar

snapshots next to each other (see Methods). It is annotated with kinetic information (7yp, 2 function whose value is low within states and h1§h
transition regions, black profile in the bottom), sampling time (red dots, only shown for one out of 10 simulation runs), DSSP assignment

by

residue (legend on top), and the y; angle of Trp10 (legend on top). (b) The same as (a) for the GW measure with 7 = 2 ns. (c) The same as (a) for
the LAW measure with A = 2 ns and @ = 1. All profiles in (a)—(c) start from the same snapshot. (d) Cartoon representations of two alternative
native state conformations marked by color-coded circles in (a)—(c). Sticks highlight specific residues.

unimodal. This is due to the presence of many irrelevant and
weakly coupled features. As a consequence, no threshold can be
defined to approximately separate the native state from
unfolded conformations, i.e., nearest neighbor relations become
meaningless.”'® Upon utilizing global weights, slow features
have more influence, and the distribution has several distinct
peaks that can be associated with native and unfolded
conformations, respectively. We emphasize that a featureless
distance spectrum is a fundamental and not merely a statistical
problem, ie., it is not rectifiable by increasing the overall
sampling density.

Figure Sb documents that on short time scales (<10 ns) the
GW measure yields higher values for the autocorrelation of the
corresponding distance time series than the UW measure. This
result implies that kinetic proximity can be represented more
accurately by weighted distance functions. The grouping or
ordering of snapshots to reveal kinetically homogeneous states
is precisely what Markov models,** diffusion maps,*"****** cut-
based free energy profiles” (see Figure S1), or SAPPHIRE
plots™ try to accomplish. The latter are an efficient tool for the
analysis and visualization of long MD trajectories. SAPPHIRE
plots offer an intuitive illustration of the states and sequence of
events encountered during the simulation (see Methods), and
we have previously used SAPPHIRE plots to analyze data from
MD simulations of proteln foldmg,34 25 the conformational
dynamics of proteins,”* and the binding of a peptide to a
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protein domain.”® We next use the method to further evaluate
the discriminatory ability of the UW, GW, and LAW measures.

Figure 6 shows SAPPHIRE plots based on all 3 measures.
The time lag for the GW measure was set to 7 = 2 ns, and we
used A =2 ns and a = 1 for the LAW measure. All profiles start
from a snapshot in the native basin of Beta3S (see Supporting
Methods for further details). The UW measure is unable to
discriminate between kinetically similar and dissimilar snap-
shots, which leads to a relatively featureless profile (Figure 6a).
The low height of the folding barrier at a progress index value
of 4 X 10° indicates that the cutting surface does not delineate
metastable states accurately. With weights, higher barriers are
obtained everywhere, and several metastable states can be
detected besides the native state (Figures 6b and 6c). We use a
secondary structure annotation resolved by residue that is based
on the DSSP algorithm™ to confirm that the individual basins
correspond to distinct conformations of the peptide. For
weighted distance functions, the kinetic annotation and the
sampling time reveal substructure in the native state of Beta3S,
some of which is the result of the dynamics of the y; angle of
Trpl0. This side chain samples two distinct conformations
within the native state as shown in Figure 6d. Previous analyses
did not capture this partitioning of the native basin because the
relevant features were omitted or because their effective weight
was too low.””**%*~* We show in Figure S1 that a
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backbone-centric RMSD distance places both of the con-
formations in Figure 6d in exactly the same basin.

In summary, Figure Sa illustrates why the inclusion of all
features with equal weight is generally infeasible. We provide
evidence for this in the context of three different unsupervised
learning protocols (Figures 3, 4, 6, and S1). Our observations
also point to the risks incurred by manual feature selection.
Specifically for the mining of MD data, the primary risk lies in
lumping kinetically separable states together as has happened
for the native state of Beta3S in prior analyses. We believe that
our approach of weighting the individual features according to
kinetic information is a suitable compromise between these two
extremes.

BPTI. We next analyzed the simulated dynamics of the 58-
residue protein BPTT as reported in a very long MD trajectory
containing 41250 snapshots saved every 25 ns.”” In these data,
BPTI explores several distinct, native-like states interconverting
on the ps time scale. Compared to Beta3S, the data are of
higher dimensionality, yet the overall variance is smaller.

To illustrate that angles decay on a wide range of time scales,
Figure 7a plots the autocorrelation functions of selected
dihedral angles. The time series of the slow y; and y angles
of Cys14 and Arg42, respectively, show that these angles likely
report on metastable states, i.e, jumps in these dihedral angles
coincide with jumps in the RMSD time series (Figure S2). In
contrast, no such conclusion is obtained for the time series of a
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Figure 7. Autocorrelation functions and derived weights for BPTL (a)
Autocorrelation functions of selected dihedral angles. For each
dihedral angle, the autocorrelation function was computed as the
maximum of the autocorrelation functions of its sine and cosine values.
(b) Weights w; = max(R/(1 us), 0) for 271 nonsymmetric dihedral
angles including y, and y; angles of cysteines. Here, R; is the
autocorrelation function of the i dihedral angle as in (a). The weights
were normalized such that their average is one and are ordered first by
residue and then by type (@, @, ¥, 11, -, ¥,) from left to right. Weights
pertaining to y; angles of disulfide bonds are assigned to the cysteine
with lower residue number. The weights are colored according to the
type of the corresponding dihedral angle. Secondary structure
elements found in the crystal structure (PDB ID SPTI)®" are indicated
on top. (c) Cartoon illustration of the crystal structure of BPTL The
residues having at least one dihedral angle with a normalized weight
above S are shown in a stick-like representation. The illustration was
rendered with VMD.*
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fast angle, eg, the y; angle of Leu6. These observations
corroborate our hypothesis that slow degrees of freedom are
more relevant than fast ones. In Figure 7b, we plot the global
weights required for the GW measure. The data confirm that
the slow dynamics are generally governed by the anchor points
of the Cys14-Cys38 disulfide bond as well as their immediate
surroundings and by the N-terminal helix.*”*° Interestingly, the
@ angle between Cys14 and Lys1S includes a component on
the high s time scale even though the peptide bond does not
isomerize during the runs (Figure S2). A cartoon illustration of
BPTT highlighting the slowest residues is given in Figure 7c.

Without weights (UW measure), we anticipate that a
distance function based on dihedral angles is unable to reveal
the conformational states of BPTIL Irrelevant features such as
the y, angle of Leu6 are expected to outweigh the impact of
important features such as the y angle of Arg42 (Figure 7a).
The SAPPHIRE plot” shown in Figure 8a confirms this
prediction. The kinetic profile lacks significant barriers. With
the help of the structural and sampling time annotations, 2
major and possibly 1 to 3 minor states can be identified. About
30% of the data seem to correspond to a heterogeneous
ensemble. Figure 8b demonstrates that this interpretation is
erroneous. The GW measure with 7 = 1 us allows the kinetic
and time series annotations to unmask several metastable states
that are structurally distinct. The notion of a heterogeneous
state with rapid interconversion is lost. The most populated
basin ranges from progress index values of about 1 to 16500.
The second most populated basin, found at progress index
values of about 24000 to 32500, contains those snapshots most
similar to the crystal structure (PDB ID SPTI).”' Both major
basins are observed directly in NMR experiments, albeit with
different weights.””**

The structural annotation in Figure 8b highlights that the
two major states and the conformations located between
progress index values of about 21500 and 24000 all exhibit
different arrangements of the Cys14—Cys38 disulfide bond. In
fact, this disulfide bond has been the focal point of several
studies of the native state dynamics of BPTL*>** In
particular, Xue et al. used the same MD simulation data in
order to improve interpretation of data from NMR relaxation
dispersion measurements.”’ They defined conformational states
based on the side chain dihedral angles of Cysl4 and Cys38,
thus neglecting all other degrees of freedom. Comparison with
their state decomposition as shown in Figure 8b demonstrates
that the conformational space of BPTI is captured surprisingly
well with these dihedral angles alone. The five well-defined
states do not overlap significantly. This annotation also
highlights the poor performance of the UW measure as seen
in Figure 8a. It is of course expected that states differing in
other parts of the protein are likely to be missed by the manual
feature selection of Xue et al. For example, the distinct basins
between progress index values of about 18500 and 21500
would be annotated as either the most populated state (red) or
as unclassified (gray) by Xue et al. Similarly, the small basin at
progress index values of around 33500 would be annotated as
crystal-like (blue), yet it differs from the crystal structure in the
orientation of the Cys30—Cys51 disulfide bond. We note that
the analysis of Shaw et al.”’ also failed to separate these minor
states despite selecting features that are putatively sensitive to
them (separate annotation in Figure 8).

In Figure 8c we study the same data set using the LAW
measure (A = 1 us, a = 1). The resultant picture is very similar
to the one based on the GW measure. We hypothesize that the
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Figure 8. SAPPHIRE plots for folded BPTI. We use the same algorithm34 as in Figure 6. (a) The (unweighted) Euclidean distance of the sine and
cosine values of 271 dihedral angles (UW measure) is used to generate the progress index (x axis), which is annotated with k1net1c information
(black curve), sampling time (red dots), and structural information (color annotation on top). We extend this SAPPHIRE plot®® by color-coded
state assignments according to Shaw et al¥’ (red, blue, green, magenta, and black for states 0 to S) and Xue et al. 4 (M1 - blue, M2 - orange, M3 -
magenta, mcy, - red, mcag - green, and other states - gray). The color-coded structural information uses binning of selected dihedral angles for clarity
(see Methods). All annotations except the kinetic one are plotted every 4th snapshot to keep the size of the original vector image manageable. (b)
The same as (a) for the GW measure with 7 = 1 ys. Dashed, gray lines indicate features of the plot discussed in the text. (c) The same as (a) for the
LAW measure with A = 1 ys and & = 1. (d) The same as (a) using the RMSD of all 699 nonsymmetric atoms as the distance function.

relevance of individual features stays roughly the same be less important how the slow dihedral angles are weighted
throughout the conformational space sampled, which is with respect to one another. This is critical since it means that
composed of metastable states with high mutual similarity. an accurate estimation of the true autocorrelation function at
Consequently, a locally adaptive distance function is not fixed lag time is not needed, thus preserving applicability of the
essential for this particular system. Figure 8d demonstrates that method to cases where sampling is still poor (several smaller
a SAPPHIRE plot employing the RMSD of all nonsymmetric states in both Figures 6 and 8 are visited only once as indicated

atoms as the distance functions captures most states. However, by the time series annotations).
it does not capture the mcsq (green) state in the model of Xue We can take this point further by considering a very slow
et al, a conformation for which there is experimental backbone dihedral angle that undergoes no significant
evidence.">* transition for a given finite data set. Due to slow modes not
An obvious question to ask regards the dependency of our actually being sampled, the autocorrelation function at large
approach on the time domain parameters, 7 (GW) and A enough lag time would in all likelihood be close to zero, thereby
(LAW), and the accuracy of the derived weights. It is well- giving a very slow degree of freedom a negligible weight.
known that estimators of second moments or related quantities However, this seemingly misleading result is beneficial for the
have poor convergence properties with the numbers of samples. analysis as it reduces the weight of a feature containing no
For time correlation measures, this is exacerbated in cases useful information (lack of variance). This example illustrates
where the raw data do not sample the span of the underlying that the weights in the GW measure are data-driven, ie., they
distribution recurrently. Surprisingly, Figure S3 demonstrates respond meaningfully to the finite samples available and need
that the results obtained with the GW measures are largely not be informed by the true distribution in a hypothetical limit.
preserved even with radically different choices for the The same argument can be extended to the LAW measure
parameter 7. This indicates that the main benefit of the GW using the same example. The data-driven origin of weights also
measure for BPTI lies in reducing the influence of fast dihedral implies that 51mu1at10ns using biased Hamiltonians, e.g,
angles (compare Figures 7a and S2). Conversely, it appears to umbrella sampling,’* can be analyzed in the same way as
5488 DOI: 10.1021/acs.jctc.5b00618
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shown here. The caveat that the true dynamics are unlikely to
be represented faithfully by the data does not concern the
analysis per se. Other simulation approaches yield ensembles of
short trajectories at a given condition, e.g., the replica exchange
method.”® Trajectory ensembles mean that limited amounts of
data are available for inferring the time correlations underlying
the GW and LAW measures, which is exacerbated for large lag
times (7) and window sizes (A). We are currently investigating
the use of these measures with small values for 7 and A in the
context of a recent trajectory ensemble sampling method.*®

To summarize, Figure 8 provides evidence that the weighted
GW and LAW measures provide a richer picture of the
conformational space of BPTI than two reference approaches,
viz, the use of (nearly) complete sets of features with
equivalent weights for either dihedral angles or coordinate
RMSD. We show that both of the latter bear the risk of
lumping distinct states together. We characterize these states as
distinct because they are structurally and kinetically homoge-
neous as highlighted by the annotations in Figure 8. An
accurate definition of states is required to appropriately study
state-dependent processes such as the exchange of the internal
water molecules of BPTL®’

4. DISCUSSION

We propose to weight features in the evaluation of the distance
between high-dimensional vectors, e.g., dihedral angles recorded
along MD trajectories. Specifically, the two approaches
introduced are as follows. For the GW measure (eq 2), we
globally weight (i.e., scale) individual features according to the
autocorrelation function at fixed lag time. For the LAW
measure (eq 4), we count transitions across the global mean of
a feature in a time-local window. Both approaches are designed
to enhance the influence of slowly varying degrees of freedom.
We have provided evidence that both the GW and LAW
measures improve the quality of information that can be
extracted from large sets of MD snapshots. The weighted
distance functions have been tested on a 9-dimensional model
system and on two data sets from MD simulations in
conjunction with different unsupervised learning methods.
The feature weighting method has unmasked slow dynamics of
side chain packing within the native state of Beta3S (Figure 6)
and revealed metastable conformations of BPTI that were not
resolved in previous analyses (Figure 8).

A significant advantage of our method is that it is
predominantly data-driven, ie., little prior knowledge about
the system is needed, and potential sources of human bias are
eliminated. The weighted distance functions reduce the impact
of features lacking or failing to sample slow modes. The weights
do not correct for heterogeneous variances and cross-
correlation effects. The use of dihedral angles may be
advantageous in both regards. The GW measure is expected
to define a metric space offering increased contrast between
similar and dissimilar data points for data of this type. The same
holds for the LAW measure with the caveat that the rigorous
notion of a metric is lost (see Methods). The method is easy to
implement, and the weights can be computed in linear time
with respect to the number of snapshots. Evaluating the
resulting distance function scales linearly with the dimension-
ality of the data. For the LAW measure, the major limitation is
given by the saving frequency, which has to be high enough to
resolve state-specific fluctuations over a time window that does
not exceed lifetimes of the states of interest. This limitation is a
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result of using time (rather than geometric) locality to derive
locally adaptive weights.

Related work on distance learning for MD data ranges from
manual and application-specific feature selection to defining
new functional forms***” and modifying classical methods for
dimensionality reduction. Among the latter, sketch-map is a
version of multidimensional scaling® focusing on matching
intermediate distances.”” If the distance function used in the
original high-dimensional space lacks contrast, such an
intermediate distance separating similar from dissimilar data
points cannot be defined. Locally scaled diffusion map is an
extension of diffusion map®”*"*’ using a Gaussian kernel with
data point-dependent local scales.”* At present, both methods
give equal weight to all the original features no matter how
noisy or irrelevant they are, which might reduce their
effectiveness in capturing the kinetics of the system if no
additional feature selection is performed.

The so-called time structure-based independent component
analysis (TICA)®"®! provides a linear (but not orthonormal)
transformation of the input data to yield components with
maximal autocorrelation function at a given lag time. This
method is conceptually similar to our GW measure, and we
provide a direct comparison in Figure 9 for an attempted
embedding in 2 dimensions. Comparison of Figure 9a with
Figure 9b highlights that standard signal processing tools such
as variance normalization can hurt rather than help the
resolution of a projection based on principal component
analysis (PCA). The GW measure is representable in PCA by
scaling the input features according to factors of \/w; (eq 2, 7 =

PCA (UW) (b) wf
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Figure 9. Two-dimensional embeddings for folded BPTIL All data
points in all panels are colored according to the model introduced by
Xue et al,*' ie, M1 - blue, M2 - orange, M3 - magenta, m¢,, - red,
myg - green, and other states - gray. (a) Projection of the data (sine
and cosine values of 271 nonsymmetric dihedral angles including y,
and y; angles of cysteines) onto the first two principal components
without prior scaling of the input features. (b) The same as (a) for
input features scaled to have unit variance. (c) The same as (a) for
GW-PCA and a lag time of 7 = 1 ps. (d) Projection of the same data
onto the first two time structure-based independent components using
a lag time of 7 = 1 us. Note that components are swapped to highlight
similarity to other panels.
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Figure 10. Comparison of TICA and GW-PCA for BPTL Simplified SAPPHIRE plots are shown as in Figure 8 with only two annotations and the
kinetic cut function plotted. (a) TICA eigenvectors and eigenvalues were computed for the raw data (Euclidean distance of the sine and cosine
values of 271 dihedral angles) using a lag time of 7 = 1 us. Components were ordered by eigenvalue (value of the autocorrelation function). Data
were then transformed and different numbers of those features with the largest eigenvalues were retained as indicated. (b) The same for GW-PCA.
PCA was applied to data scaled by the global weights as defined for the GW measure and a lag time of 7 = 1 us. When retaining all 542 features, the
progress index becomes identical to that in Figure 8b because PCA yields an orthonormal transformation.

1 ps). The resultant GW-PCA approach (Figure 9c) separates
the data much better, and numerous states emerge. In contrast,
the TICA approach (Figure 9d)°" appears to overemphasize a
particular slow mode leading to excellent separation of a small
subpopulation but dramatic overlap of everything else. As an
additional point, Figure 9 emphasizes that the usefulness of the
weights is not specific to the analysis methods employed in
Figures 2, 3, 6, and 8.

To test this result further, we recomputed the progress index
for BPTI using both GW-PCA and TICA with a wide range of
retained dimensionalities. It emerges that an appropriate choice
of dimensionality is critical in TICA but not in GW-PCA
(Figure 10). The best-performing TICA case retains 20
teatures, which correlates well with the eigenvalue spectrum
(not shown). However, even this case is not obviously adding
to the information provided by GW-PCA, which appears robust
for most of the tested dimensionalities. Importantly, the full-
dimensional GW-PCA case is equivalent to the original GW
measure in Figure 8b and performs as well or better than any
TICA example shown. We note that TICA fails dramatically at
high dimensionality and provides even less information than
the UW measure (Figure 8a).
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Based on Figure 10, it is clear why recent TICA applications
resort to a low-dimensional embedding of the transformed
data.***” A common limitation of TICA and GW-PCA is their
inherent linearity although kernel-based extensions might
capture nonlinear structure in the data.”” A method similar to
the LAW measure is that by Singer et al.”*** who propose the
semimetric

d(x(t), x(t)) = (x(t) +x(0)" (T + T ) (x(t) + x(1)

where X, is a local covariance matrix associated with x(t). It
can be determined bzr running short stochastic simulations
starting from x(t,),°>®" which is not feasible for the large MD
data sets considered in the present study, or from the data
within a short time window along the trajectory around x(t,) A
similar to what we have proposed here (eqs 3 and 4). Other
approaches directly take advantage of kinetic information to
determine relevant features before applying any unsupervised
learning protocol. The method of McGibbon and Pande learns
a distance function that tends to return low values for pairs of
data points that are close in time and large values for those pairs
that are far in time along the trajectory.’® This task is
formulated as a complex optimization problem depending on
several parameters. When the approach was applied to MD data
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of the protein Fip3S, side chain and peptide bond dihedral
angles were discarded a priori, suggesting that manual feature
selection is still needed.

All the algorithms used here have been implemented in the
free software package CAMPARI (http://campari.sourceforge.
net), and the current development version is available upon
request (campari.software@gmail.com). Ongoing work is
focused on combining the framework of weighted distances
with the RMSD metric in order to study processes involving
multiple molecules such as ligand binding to receptors.
However, external motion complicates the definition of weights
for atoms.

In conclusion, we have developed a data-driven method for
feature weighting to improve the contrast of distance functions.
Our method reveals metastable states in the reversible folding
of Beta3s and the native state of BPTI, which were not resolved
in previous studies of the same data sets.
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