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ABSTRACT: Predicting the interaction modes and binding
a!nities of virtual compound libraries is of great interest in drug
development. It reduces the cost and time of lead compound
identification and selection. Here we apply path-based metady-
namics simulations to characterize the binding of potential
inhibitors to the Plasmodium falciparum aspartic protease
plasmepsin V (plm V), a validated antimalarial drug target that
has a highly mobile binding site. The potential plm V binders were
identified in a high-throughput virtual screening (HTVS) campaign
and were experimentally verified in a fluorescence resonance
energy transfer (FRET) assay. Our simulations allowed us to
estimate compound binding energies and revealed relevant states
along binding/unbinding pathways in atomistic resolution. We
believe that the method described allows the prioritization of compounds for synthesis and enables rational structure-based drug
design for targets that undergo considerable conformational changes upon inhibitor binding.

■ INTRODUCTION
Drug discovery relies on computer-aided drug discovery
(CADD) methods to accelerate this time-consuming and
costly process. In addition, CADD and particularly rational
(structure-based) design has gained a notable role in
identifying novel potentially active chemical sca#olds (through
virtual screening, docking, and similarity search), as well as in
hit-to-lead optimization and fragment evolution.1−3 Predicting
the interaction modes and a!nity of virtual compound libraries
allows the prioritization of compounds for synthesis or testing
and rationalizing structure−activity relationships.
A major challenge in applying structure-based drug design

remains the accurate estimation of the target protein−ligand
binding free energies (BFEs). This is essential for lead
optimization since it is the most time- and resource-consuming
step. Recent improvements in protein and ligand force fields,
molecular dynamics (MD) codes, and enhanced sampling
algorithms have made the calculation of relative and absolute
binding free energies more accurate and accessible.4−7

Currently, free energy perturbation (FEP) methods are
preferred for relative binding free energy (RBFE) calculation,
typically used in the hit-to-lead optimization stage.8,9 Lately,
significant progress has also been made in the calculation of
absolute binding free energies (ABFEs) using alchemical
approaches.10 These advances have made ABFE calculations
more accessible and attractive at the hit identification stage, as
well. There are, however, several drawbacks that hamper the

widespread use of perturbation-based methods. Most notably,
calculating accurate binding energies for systems that undergo
considerable conformational changes or systems that contain
charged and/or noncongeneric ligands is impossible due to the
inability to accurately sample pharmacologically relevant
conformations and describe pocket solvation/desolvation.11,12
Alternatives to perturbation-based methods are collective

variable-based free energy calculation methods, like metady-
namics, which permit ABFE calculation along a physical
binding trajectory.7,13−24 Metadynamics allows us to sample
target conformations relevant to the binding process and
explore transition states along the binding pathway. Besides, it
is usually advantageous to understand the inhibitor binding at
an atomic scale (key protein−inhibitor and protein−protein
interactions, ligand flexibility, solvation e#ects, etc.), as
information on inhibitor binding/unbinding pathway, potential
transition states can provide the basis for targeted lead
compound development to design compounds with higher
activity and specificity.18,25,26 The ability of metadynamics to
sample the complete binding pathway, including target
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flexibility upon ligand binding and unbinding, makes it an
excellent choice for ligand binding studies. In contrast,
alchemical methods rely on sampling only the end states of
the binding process and, thus, do not provide a mechanistic
insight into how the inhibitor binds/unbinds.
Drug targets containing flexible loops next to the binding

site or having cryptic or allosteric binding pockets are not
uncommon.27,28 One such drug target class is aspartic
proteases, in which a long β-hairpin structure covers the
binding site, usually referred to as a flap or flap loop. It is a
highly mobile region that is involved in substrate recognition.29
Here we applied metadynamics to study the binding of
potential inhibitors to the P. Falciparum aspartic protease
plasmepsin V (plm V), a validated antimalarial drug target. The
inhibitors were identified via high-throughput virtual screening,
and their plm V inhibitory potency was verified experimentally.
The study shows the potential of metadynamics simulations to
reveal the binding modes and energies of aspartic protease
inhibitors and to facilitate the discovery of new inhibitor
sca#olds.

■ EXPERIMENT DESIGN
Figure 1 outlines the research workflow, and critical aspects are
described below. In essence, the plm V structure that enables
nonpeptidomimetic inhibitor docking was prepared and used

to identify novel inhibitor sca#olds via high-throughput virtual
screening (HTVS). The inhibitors identified were verified
experimentally, and metadynamics simulations were applied to
characterize inhibitor binding modes and energies at an atomic
scale.

System Preparation. Plasmepsin V (plm V) is a
promising, yet unexploited, antimalarial drug target. It is an
essential protease that processes proteins for export into the
host erythrocytes and is located in the endoplasmic
reticulum.30 Plm V is a phylogenetically unique aspartic
protease that shares little conservation with human pro-
teases,31−33 making it less likely that its inhibitors will have
selectivity issues. Most known plm V inhibitors are
peptidomimetic30,33−37; for two of them, the crystal structures
have been solved (PDB IDs: 4ZL4 and 6C4G; from
Plasmodium vivax). Both structures34,35 originate from
complexes, where the flap loop (Tyr135-Gly147) is closed
over the active site. While no plm V crystal structure in
complex with a nonpeptidomimetic inhibitor has been
reported, it is known that binding of such inhibitors to other
aspartic proteases can lead to conformations with the flap loop
in a more open state (PDB codes 4Z22 and 2BJU).38 Since we
were interested in identifying nonpeptidomimetic plm V
inhibitors that could bind to the open flap conformation, we
prepared a docking model that would be able to accommodate

Figure 1. Schematic research workflow.

Figure 2. (A) Plm V-peptidomimetic inhibitor complex (PBD ID: 4ZL4) superimposed on plm II-nonpeptidomimetic open flap inhibitor complex
(PBD ID: 4Z22). The flap loop is shown in salmon. Peptidomimetic inhibitor WEHI-842 is shown as purple sticks, nonpeptidomimetic inhibitor
DR718A as teal sticks, and catalytic aspartate side chains as gray sticks. Hydrogens are omitted for clarity. (B) Plm V in complex with inhibitor
DR720 after 100 ns restrained MD simulation superimposed on the plm II-DR718A complex (PBD ID: 4Z22). Plm V is shown as a violet cartoon,
and plm II as a white cartoon. Catalytic aspartate side chains are shown as sticks. The plm II flap loop is shown in salmon. DR720 is shown as violet
sticks, and DR718A as teal sticks. Hydrogens are omitted for clarity.
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such inhibitors. To do this, a moderately active plm V inhibitor
(2-amino-4(3H)-quinazolinone DR720, IC50 = 64 μM),
identified from our in-house aspartic protease inhibitor
library,39−43 was modeled in the active site of plm V in a
pose similar to that of another 2-amino-4(3H)-quinazolinone
in complex with plm II (PDB ID 4Z22) (see Figure 2). The
Asp80 of the catalytic dyad was protonated, whereas Asp313
was deprotonated.44 This system was subjected to molecular
dynamics simulation with an aspartic dyad and 2-amino-
4(3H)-quinazolinone core intermolecular distances restrained
(see the SI Section 1).
HTVS. The minimized protein structure was used in a high-

throughput virtual screening (HTVS) of the drug-like
screening compounds from the MolPort stock compound
library (∼6 M comp.; 2020). Molecular docking was
performed using Glide, with scaling of the van der Waals
radii set to 0.9 for protein and ligand heavy atoms, and docking
compounds flexibly (see the SI Section 1 in the Supporting
information for more information). To retain only the unique
virtual screening hit sca#olds (i.e., the top-scoring compound

from each cluster), the top 3000 compounds scored were
clustered by applying Tanimoto similarity metrics to linear
molecule fingerprints. The top 300 compounds were visually
inspected for their ability to form hydrogen bonds with the
catalytic dyad and hydrophobic interactions with the flap
pocket residues. Molecules showing internal strains or
unsatisfied hydrogen bond donors were deprioritized. A total
of 28 potential plm V binders were selected for purchase.

Binding Metadynamics. The inhibitor binding/unbinding
pathway and respective binding energy were calculated by
using fully atomistic molecular dynamics simulations. This
approach describes the movement of flexible protein parts near
the binding site and considers the buried pocket solvation−
desolvation during the inhibitor binding/unbinding event.
Since inhibitor binding is a rare event and typically is far
beyond the reach of typical atomistic simulations, we exploited
an enhanced sampling method called metadynamics (metaD).
MetaD is a method where molecular dynamics simulation is
biased along a set of collective variables (CVs) using a history-
dependent potential. The Gaussian-shaped potential is applied

Figure 3. Virtual screening hits against plm V. Compound molecular structure in its highest scoring protonation state, MolPort ID, and
experimental IC50 value (μM) against plm V are given on top; the docked pose of the respective compound in complex with plm V is given at the
bottom. Inhibitor and key amino acid residues are shown as teal and gray sticks, respectively. The flap loop is shown in salmon. Hydrogens are
omitted for clarity.
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at regular intervals to escape any local minima along the CV
space and to visit previously unexplored regions in the CV
space. Selecting the appropriate CVs for the process studied is
crucial and often is the most challenging step. The most
apparent CV in the ligand−protein binding studies is the
distance between the ligand and binding site atoms. This CV
alone, however, is unsuitable for systems where the protein
binding site is highly flexible, as it has no control over the
protein binding site flexibility and might result in situations
where the protein conformational space of interest is poorly
explored. The intermolecular distance CV can be combined
with CVs that describe protein flexibility.22,45 However, since
the computational cost to reconstruct the free energy surface
(FES) grows exponentially with the number of CVs used, it is
undesirable.
To overcome the limitations above, we used path CV that

enables the exploration of complex multidimensional processes
along a predefined pathway. In this method, two CVs describe
the process: s, the progress along the predefined reference
path, and z, the distance orthogonal to the reference path.
Furthermore, introducing CV z allows the exploration of
configurations that di#er from the reference path; thus, if the
reference path provided is not entirely accurate, the system can
deviate from it and discover more probable pathways.

■ RESULTS
Virtual Screening. Following the virtual screening

approach described above, we selected and purchased 28
chemically diverse top-scoring compounds. These compounds
were tested for plm V inhibition potency in a FRET-based
assay, and 7 showed micromolar potency (IC50 in the range
from 4.4 to 70 μM; see Figure 3; complete list of tested
inhibitors in Table SI1). Additionally, the inhibition potency of
three cross-inhibition markers, human cathepsin D (catD) and
digestive plasmepsins II and IV, was measured for the
compounds that showed measurable activity against plm V.
Compounds 1, 5, and 6 showed considerable selectivity and no
inhibition of cross-inhibition markers was observed at 100 μM
concentration (see Table SI1). Identification of compounds
that show selectivity over human cathepsin D prompted
preliminary structure−activity relationship (SAR) studies of
commercially available 1, 5, and 6 analogues which were
outside the scope of the project and are summarized in SI
Section 2.1.
All of the hits identified had several common features: (a)

hydrogen bond donor and acceptor in a configuration that
mimics the transition state of an enzymatic reaction and is
capable of forming hydrogen bonds with catalytic dyad; and
(b) hydrophobic substituent forming hydrophobic interactions
under the flap loop once the ligand core hydrogen bond donor
and acceptor groups are interacting with the catalytic site. The
transition state mimicking group alignment in the binding site

Figure 4. (A) Ligand transition state mimetic group hydrogen bond donor (D) and acceptor (A) atoms used to define ligand position on the
binding/unbinding path depicted on the plm V-DR720 complex. The flap loop is shown in salmon. DR720 is shown as violet sticks and catalytic
aspartate side chains as gray sticks. Hydrogens are omitted for clarity. (B) Fifteen superimposed frames define the ligand binding/unbinding
pathway. Atoms defining path (shown as spheres) are Cα atoms of residues involved in β-sheet secondary structures within 1.5 nm from Ser87, and
ligand atoms (A, D) from subfigure (A). Color gradient shows progress along the binding/unbinding pathway, where purple conformation
corresponds to the bound state, tealunbound. (C) System position on the binding/unbinding path as a function of metadynamics simulation
time in the case of the plm V-comp.4 system. Colors correspond to the states given in subfigure B: purplebound state; tealunbound. (D) FES
of compound 4 binding to plm V was obtained after reweighing48 PathMetaD simulation. Isosurfaces are shown every 1 kcal/mol. The deepest FES
basin I corresponds to the bound state, similar to the docked pose. Basin II corresponds to the protein−ligand encounter state where the ligand
interacts with the plm V flap loop, whereas state III corresponds to the unbound state where the ligand is not interacting with the protein.
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matches other nonpeptidomimetic aspartic protease inhibitors,
where ligand hydrogen bond donor and acceptor bind
coplanarly with aspartic dyad residues. The most commonly
observed functional group interacting with the aspartic dyad
was primary amide, whereas heterocyclic compound cores
were represented by quinazoline-2-amine, pyrimidine-2-amine,
and triazoledione. Quinazolin-2-amines and pyrimidine-2-
amines with substituents at various positions have been
reported as aspartic protease inhibitors before,43,46 whereas
triazoledione and primary amide-based compounds, to our
knowledge, are novel. The hydrophobic substituents were
predominantly aromatic systems interacting with flap pocket
residues Tyr135, Tyr139, Ile145, Phe180, and Val188. In
addition to the interactions mentioned above, compounds 4
and 6 interacted with the Ser316 side chain, forming hydrogen
bonds via sulfonamide and methoxy groups, respectively.
Binding Energy and Pathway Calculation. Once a set

of verified plm V inhibitors and inactive compounds was
identified, studies focused on characterizing the compound
binding at a molecular scale. Ligand binding pathway studies
were initiated by creating a reference ligand binding/unbinding
path, which was generated from a trajectory obtained during an
initial funnel metadynamics simulation (comp. DR720
unbinding from plm V; see SI Section 1). It consisted of 15
equally spaced configurations, prepared using Plumed47
pathtools. The Cα atoms of the binding site (within 15 Å
from Ser87, which sits under the central part of the flap loop)
and two ligand atoms were used to define a path describing
both the binding site flexibility and ligand position during the
binding process. The two ligand atoms defined within the path
were hydrogen bond donor and acceptor groups interacting
with catalytic aspartates. This configuration allowed us to use
the same path for all potential inhibitor simulations and specify
the ligand orientation with respect to the binding site. During
the preliminary runs, it was observed that ligands occasionally
deviated considerably from the path provided. Therefore,
upper wall restraint potential was introduced at RMSD 0.1 nm
for the CV z. This allowed the ligand to explore the binding
pocket while restricting the space explored in the unbound
state.

The PathMetaD simulations were performed for all 28
ligands considered, ranging in simulation time from 1 to 3 μs.
During these simulations, multiple ligand binding and
unbinding events were observed, and ligands explored both
bound and unbound states (frames 1−3 and 13−15 on the
path, respectively; see Figure 4B,C). The unbiased probability
distribution of the system was obtained through reweighting,48
which allowed us to construct the FES associated with the
binding process (see Figure 4D; the FES for the rest of the
verified plm V inhibitors is given in Figure SI1) and calculate
the ligand binding free energy. A randomly selected, verified
plm V inhibitor (compound 4) was used to optimize metaD
parameters (see the SI Section 1) and is used as a
representative case throughout the study.
The converged ligand binding/unbinding trajectories were

used to calculate ligand binding free energies and identify key
protein−ligand encounter states along the binding pathway.

Ligand Binding Free Energy. The ligand binding free
energy was calculated as a di#erence between the global
minima that represent the state where the ligand is interacting
with the catalytic dyad (state I) and the mean energy of the
state where the ligand is completely solvent exposed and does
not interact with the protein (state III) (see Figures 4D and
5A). The ligand binding mode corresponding to the global
FES minima I identified in PathMetaD simulations generally
was in line with the docked pose for the verified plm V
inhibitors, with ligand heavy atom RMSD values ranging from
2 to 5 with respect to docked poses (see binding pose
comparison in Figure SI2). Notably, the unbound region III is
flat, indicating the presence of isoenergetic states once the
ligand is su!ciently distant from the protein. The convergence
of the binding energy was estimated by monitoring the
evolution of the absolute binding free energy throughout the
simulation (Figure 5A,B). Figure 5 shows that for the plm V-
compound 4 system, the free energy converges after ∼1000 ns.
Similar behavior was observed for the rest of the inhibitors.
The IC50 values were determined for the compounds with

more than 50% plm V inhibition at 100 μM concentration. For
these verified active compounds, it was possible to estimate the
experimental ligand binding energy as ΔGexp = −kBT ln(IC50).

Figure 5. (A) FES as a function of ligand core−aspartic dyad distance d1 obtained by reweighting the metadynamics simulation every 50 ns (for
comp. 4). The color gradient indicates reweighting time: the lightest blue linereweighting up to 50 ns; the darkest bluereweighting up to 3.0
μs. The binding site region is up to ∼1 nm, while fully solvated at >3 nm. FES basing numbering is consistent with Figure 4D. (B) The binding free
energy (ΔG) of the HTVS hits, and plm V is calculated every 50 ns throughout the simulation. Blue indicates verified inhibitors and orange
indicates inactive compounds. The thick blue line represents the reference comp. 4. The compound 4 estimated binding energy of −7.8 ± 0.5 kcal/
mol is slightly higher than the experimental value (calculated from the IC50) of ∼ −6.6 kcal/mol. C The violin plots of estimated binding free
energy (ΔGcalc) for the experimentally verified active and inactive compounds. Gray-shaded area indicates binding free energy corresponding to
IC50 > 100 μM. (D) The estimated binding free energy (ΔGcalc) plotted against experimentally determined (ΔGexp) values (calculated from IC50
values as ΔGexp=-kBT ln(IC50)).
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The violin plots (Figure 5C) of the estimated binding free
energy (ΔGcalc) indicate that the PathMetaD binding energy
estimate allows us to distinguish experimentally verified active
and inactive compounds. Moreover, the scatter plot of the
calculated and experimental binding energy (Figure 5D)
demonstrates that PathMetaD binding energy estimate falls

within ∼1.3 kcal/mol of experimental data (all calculated and
estimated binding energies are summarized in Table SI2). Such
accuracy is comparable to other MD-based binding energy
calculation methods.49 The one distinct outlier for the
enzymatically verified plm V inhibitors is the binding energy
estimate for the comp. 5 with a calculated binding free energy

Figure 6. (A) Sketch map of combined verified plm V inhibitor binding to plm V was obtained by mapping the binding trajectory’s three-
dimensional space to a 2D representation. The map is color-coded according to ligand core−catalytic dyad distance d1. The key states along the
binding pathway are indicated as IA-F and II, and the unbound state as III. The rectangle indicates the region where the inhibitor interacts with the
binding site residues and is compared in subfigure (B). The corresponding binding modes along the binding pathway are shown alongside the map.
The ligand is shown as green sticks, selected binding pocket residues and catalytic dyad residues are shown as gray sticks, and the flap loop is in
salmon. Hydrogens are omitted for clarity. (B) Comparison of experimentally verified plm V inhibitor binding sketch maps and reference map
shown in subfigure (A). Gray, reference sketch map from subfigure (A). The color coding matches subfigure (A).
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of −3.7 kcal/mol versus the experimental value of −6.5 kcal/
mol. The calculated binding energies for the experimentally
verified inactive compounds ranged from −0.76 to −6.68 kcal/
mol. According to the above equation, these compounds′ free
energy of binding should be less negative than −5.5 kcal/mol
(since IC50 > 100 μM). Four experimentally verified inactive
compounds showed slightly better binding energy. The
accuracy of the binding energy estimate is typically hindered
by insu!cient sampling and imperfect force field parameters.
Here, the ligand extensively explored both bound and unbound
states (Figure 4C). Therefore, contributions from even minor
parameter imprecisions in the protein force field, protonation
state, ligand parametrization, and water model could cause
unexpected outcomes.
Binding Modes. Besides the lowest energy state I in Figure

4D, an additional basin (basin II in Figure 4D) was observed
for most ligands, indicating the presence of transition state(s)
along the ligand binding pathway. While path CVs easily
discriminate between the bound and unbound states, they do
not provide in-depth information on the binding mode(s) and
possible transition states. Such information, however, can often
be accessed by reweighing the trajectory and reconstructing
the FES as a function of alternative CVs that allow for
decoupling states that otherwise would overlap in the initial
CV space. Here, reweighting the trajectory to construct FES as
a function of ligand−protein catalytic site distance d1 and
ligand torsion with respect to protein binding site t1 (see
Figure SI4) did not provide clear information on key transition
states along the binding pathway. The FES constructed had
broad global minima corresponding to two similar binding
modes, one in a pose similar to the docked one (basin IA in
Figure SI4C) and another with hydrophobic flap pocket
substituent slightly twisted to fill S3 pocket (basin IB in Figure
SI4C). No information was obtained on intermediate state II
observed in the biased path CV space (s, z) and one-
dimensional FES (distance d1) at ∼2.5 nm. Therefore, a
dimensionality reduction method that allows for the mapping
of high-dimensional processes to low-dimensional space was
employed. Here we exploited the nonlinear dimensionality
reduction algorithm sketch map, based on metric multidimen-
sional scaling and specifically designed to deal with atomistic
simulation data.50,51 This method accurately reproduces the
relative positions of adjacent basins and can often generate an
intuitive representation of complex pathways. The two-
dimensional (2D) map generated (using data from all verified
plm V inhibitor simulations; see the SI Section 1) and
representative structures are shown in Figure 6. Here,
numerous well-localized basins were identified, and basins
that contain structures that are expected to be next to each
other on a binding pathway are located in close proximity and
connections between these clusters become visible. For
example, the binding mode with a ligand slightly twisted and
hydrophobic substituent filling the S3 pocket (basin IB; see
Figure SI3 for the aspartic protease binding site subpocket
naming scheme), as well as clusters representing transition
states where the ligand is next to the catalytic dyad but
interacting with a flap loop (basins IC and ID in Figure 6A)
are located next to the bound state basin IA. Basins located
further from the bound state correspond to states in which the
ligand is outside the binding site. The most populated of these
is basin II, where the inhibitor interacts with a flap loop tip and
flexible loop on the opposite side of the binding groove.38 This
is the first ligand and protein encounter on the binding

pathway. Interactions formed here guide the ligand deeper into
the binding site to finally form hydrogen bonds with the
catalytic dyad. Configurations corresponding to the unbound
ligand state (basin III) are widespread, indicating no preferred
configuration once the ligand is away from the protein.
Similar binding pathways are expected for all of the

inhibitors identified. Therefore, trajectories of verified plm V
inhibitors were projected on top of the reference sketch map
discussed before (see Figure 6B). All inhibitors have several
binding modes captured in the reference sketch map. Basins
IA, IB, IC, and ID were observed for all the ligands studied;
however, the population of each of them varies from ligand to
ligand. The most populated basin for all ligands except comp. 6
was ID, where the inhibitor is situated right next to the flap
loop in a hydrophobic groove. For comp. 6, the most
populated were basins IB and IC, where ligand flap loop
substituent is located under the flap and fills the S3 pocket.
Basin IC was one of the most populated basins for comp. 4 and
6, while it was mostly under-represented for the rest of the
ligands. This, most likely, was because only 4 and 6 can
simultaneously interact with flap loop Gln173 and nearby
Tyr286. The basin IA represents configurations similar to the
docked ones, with a minor di#erence in that the flap loop
substituent is slightly twisted to partly interact in the
hydrophobic region right next to the flap.
Besides binding modes observed for all studied ligands,

additional binding modes IE and IF were observed for comp. 2
and 7, respectively. Basin IE corresponds to the transition state
where the inhibitor core interacts with Gln183 and/or Gln184
in a substrate binding groove, whereas basin IF corresponds to
the binding mode where the inhibitor transition state mimetic
group is wedged between the flap loop and nearby α helix.
Here inhibitor hydrogen bond donor and acceptor groups
form hydrogen bonds with His173 and Glu176, and the flap
pocket substituent is involved in aromatic stacking with
Phe180 (see Figure SI2).51,52

■ CONCLUSIONS
We have presented here a method for inhibitor binding free
energy estimation and protein−ligand encounter state
identification. The method was applied to characterize
compound binding to validated antimalarial drug target
Plasmodium falciparum aspartic protease plasmepsin V. The
proposed approach utilizes path metadynamics, where the
process of interest is studied by exploring the space of
unbinding paths starting from a predefined reference one.
Here, the reference path that describes inhibitor binding
contains not only the coordinates of the potential inhibitor but
also the coordinates of selected binding site residue atoms to
sample relevant target conformations. This is one of the most
significant advantages of the proposed method, as it accurately
characterizes binding to flexible targets, which is typically
problematic using free energy perturbation-based methods.
Furthermore, metadynamics CV selection and parameter

optimization usually are tedious and time-consuming. There-
fore, the fact that the proposed approach allows the same
binding path for all compounds of interest greatly simplifies the
simulation setup. The method also enables sampling complete
inhibitor binding and unbinding pathways, including relevant
transition states that might provide additional information for
targeted lead compound development.
Moreover, we also demonstrated an approach to identify

states that are shared between various structurally unrelated
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inhibitors (or are unique to a specific inhibitor) using the
dimensionality reduction method sketch map. This could be
particularly useful in lead compound selection to identify
inhibitors that meet a specific requirement. In addition to
demonstrating the method’s applicability, the study provides
new, verified plasmepsin V inhibitor sca#olds that can be
further developed into potential antimalarials. Overall, our
results suggest that it is possible to use a path-metadynamics-
based approach to study systems where inhibitor binding is
associated with considerable conformational changes. This
technique can be easily deployed to determine accurate
binding free energies. We believe that the approach described
might prove useful in drug development pipelines where the
binding of a large set of structurally diverse ligands needs to be
characterized.
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Swenson, D. W. H.; Tiwary, P.; Valsson, O.; Vendruscolo, M.; Voth,
G. A.; White, A. Promoting Transparency and Reproducibility in
Enhanced Molecular Simulations. Nat. Methods 2019, 16 (8), 670−
673.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00826
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

J


