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Figure S1. Clustering from the temporal annotation as described in Sec. 2.2.1 for n-butane.
(a) A 2-D histogram is created with bin sizes ∆PI and ∆t for the PI (x -axis) and ‘Time’
(y-axis) values, respectively. Stretches of similar occupancy along the PI axis are identified
along each row of the histogram (the green segment serves as a single example). Note that
the coarsness of the binning on the time axis influences the ability to isolate relatively short
visits of individual states. The minima and maxima of the stretches (for the highlighted
example, these are the red and blue dots) are then used to compute two different functions
as follows. (continued)
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Figure S1. (continued) (b) First, the frequencies of the occurrence of end points of segments
along the PI axes are smoothed by an integration/differentiation technique (lower panel).
The red and blue distributions correspond to left and right end points, respectively. The
peaks in these two smoothed profiles are used to derive an initial partitioning (blue and
red vertical lines in the upper panel). Note that the identity of the green stretch shown
in (a) is no longer directly relevant for the partitioning in (b), i.e. only its boundaries
matter, but they do so independently. (c) Second, Hellinger distances are computed between
the temporal distributions of each adjacent pair of putative partitions (lower panel). The
resulting value is compared to a null model distribution obtained by numerical simulation. A
Grubbs test is used to determine if the actual difference value is a significant outlier, i.e., if
the distributions are indeed sufficiently dissimilar to infer that they indicate visits of different
states. Differences deemed insignificant are shown as circled dots in the lower panel, and
only the retained partitions are shown as vertical green lines in the upper panel.
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Figure S2. Number of states obtained by Sapphire-based clustering (SbC) for different
settings. We show here how the number of clusters varies with respect to the number of bins
along the PI axis, nPI , to the number of bins along the ‘Time’ axis, nT , and to the type of
smoothing filter adopted for the kinetic annotation analysis. The filter was either a moving
average one or a Savitzky-Golay filter with degree two.
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Figure S3. Mean-first passage times (MFPTs) for Beta3S for larger numbers of clusters.
The circles show results for the ‘Direct’ MFPT estimates computed on the discrete trajectory
and can be compared directly to the red box plots in Fig. 6 in the main text. The dotted lines
and shaded regions represent MFPT estimates on the original sets of labels and their standard
errors, respectively. These latter data are the same as in Fig. 6. ‘Tree-based clustering’ is
a highly efficient, tree-based clustering method suitable for large numbers of clusters.1 The
construction of the short spanning tree (sST) actually relies on this clustering technique as
mentioned in Sec. 2.1 of the main text. The data demonstrate that discretization errors are
primarily to blame for the lack of agreement between the various direct estimates in Fig. 6.
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Figure S4. Statistical weight of macro-states A and B for Beta3S. Box plots indicate the
total weight of the macro-states inferred from the stationary distribution of the underlying
MSM. The models shown here are the same as in Fig. 6b. Red lines indicate the effective
weight of the macro-states extracted from the original trajectory based on labels alone. The
differences arise because the DSSP-based criterion is so strict that many of the snapshots
within large and relatively homogeneous clusters are not labeled. This is particularly true
for macro-state A.
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Figure S5. Chapman-Kolmogorov test of Beta3S for different clustering methods. Coarse-
graining of the trajectories into five macrostates was performed with PCCA+.2 Predictions
are computed from an unconstrained maximum likelihood MSM with lag equal to 5 ns.
Standard errors for the estimated values are shown as shaded regions.3
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Figure S6. Chapman-Kolmogorov test of Beta3S for different clustering methods. Coarse-
graining of the trajectories into five macrostates was performed with PCCA+.2 Predictions
are computed from an unconstrained maximum likelihood MSM with lag equal to 20 ns.
Standard errors for the estimated values are shown as shaded regions.3
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Figure S7. Cartoon illustration of the apo form of 3CLpro (PDB entry 6Y84).4 The color
code for the chains is the same as in Fig. 7 in the main text. The residues highlighted in red
are Cys44 to Asn51 (from bottom to top in the figure in both of the chains).
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Figure S8. Sapphire plot created from MD simulations5 of the apo form of 3CLpro (PDB
entry 6Y84).4 This figure is analogous to Fig. 7 in the main text except that here the
10 principal components encapsulating the largest amount of variance are used as features
including the first one. This first component contains high loadings for dihedral angles that
separate the two chains (see ‘Mix’ annotation), e.g., the χ-angles in residue Hie172.
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Figure S9. Sapphire plot created from MD simulations5 of the apo form of 3CLpro (PDB
entry 6Y84).4 This figure is analogous to Fig. 7 in the main text except that simple time-
lagged independent component analysis (tICA)6 with an autocorrelation lag equal to 100 ns
was used instead of principal component analysis. The source data were the same, i.e.,
the data set of sine and cosine values of 865 dihedral angles, and the 10 components with
the largest autocorrelation values were retained except that the first one was ignored (to
be directly comparable to Fig. 7). The 25 dihedral angles shown are the ones that have
the larges autocorrelation function value at the chosen lag. Because we concatenate the
trajectories of the two chains in time, it is not necessarily surprising that tICA isolates static
differences between the two chains as ‘slow’ modes, which are also visible in the dihedral
angle annotations.
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Figure S10. Computational cost of the SbC algorithm for different data set sizes and
different values of nPI(= nT ) when applied to different subsets of the Beta3S trajectory
(105 snapshots). The numbers of clusters identified by SbC are indicated. ‘Time’ on the
y-axis refers to the elapsed CPU time of an R implementation of the SbC algorithm. The
computational cost of the PI algorithm is not included. Both theory and data suggest that
the cost of SbC does not depend substantially on data set size for the ranges tested. This
implies that SbC is predicted to have a vanishing influence on the total computational cost
as data set sizes increases. This is because the construction of the Sapphire plot has a
best-case scaling of O(N logN) with data set size.7
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