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Abstract

The hippocampus and amygdala are functionally coupled brain regions that play a crucial role in processes involving
memory and learning. Because interareal communication has been reported both during specific sleep stages and in
awake, behaving animals, these brain regions can serve as an archetype to establish that measuring functional inter-
actions is important for comprehending neural systems. To this end, we analyze here a public dataset of local field
potentials (LFPs) recorded in rats simultaneously from the hippocampus and amygdala during different behaviors.
Employing a specific, time-lagged embedding technique, named topological causality (TC), we infer directed interac-
tions between the LFP band powers of the two regions across six frequency bands in a time-resolved manner. The
combined power and interaction signals are processed with our own unsupervised tools developed originally for the
analysis of molecular dynamics simulations to effectively visualize and identify putative, neural states that are visited
by the animals repeatedly. Our proposed methodology minimizes impositions onto the data, such as isolating specif-
ic epochs, or averaging across externally annotated behavioral stages, and succeeds in separating internal states by
external labels such as sleep or stimulus events. We show that this works better for two of the three rats we ana-
lyzed, and highlight the need to acknowledge individuality in analyses of this type. Importantly, we demonstrate that
the quantification of functional interactions is a significant factor in discriminating these external labels, and we sug-
gest our methodology as a general tool for large, multisite recordings.
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Significance Statement

We develop an analysis pipeline for neuroscience datasets. We test it on a published example of multielectrode re-
cordings of rats in a range of behaviors: running on a track, sleeping, collecting rewards, etc. We adopt nonlinear
analysis techniques that are able to quantify directed interactions between different signals, here oscillations of two
brain regions in different frequency bands. Using the entire recordings and, importantly, distinguishing each animal,
we provide a high-resolution overview of the functional interplay of the two regions. Putative neural states that the
animals can be in are derived from a time-aware clustering of the large datasets. When discriminating experimental
annotations like run speed, we provide evidence that ourmethodology outperforms common clustering techniques.
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Introduction
A variety of oscillation-related phenomena have been

identified within the hippocampus and amygdala, and
they are frequently associated with various learning and
memory processes that strongly rely on these two brain
structures (Paré et al., 2002; Buzsáki and Draguhn, 2004;
Colgin, 2016). The coordination between the local field
potentials (LFPs) of hippocampus and amygdala, in par-
ticular the basolateral complex [basolateral amygdala
(BLA)], was highlighted and shown to involve different fre-
quency ranges and interaction modalities (Bocchio et al.,
2017; Pesaran et al., 2018). Various studies investigated a
number of stimuli and behavioral aspects related to emo-
tional processing, in particular connected to fear and
safety, both in rodents (Seidenbecher et al., 2003; Popa
et al., 2010; Likhtik et al., 2014; Stujenske et al., 2014) as
well as in epileptic patients (Zheng et al., 2017, 2019;
Kirkby et al., 2018). These analyses often focus on se-
lected time periods, such as rapid eye movement (REM)
sleep or behavioral stages in experiments relying on con-
ditioned fear, and they investigate specific questions of
memory-related processes, such as consolidation or re-
trieval, in specific frequency bands (Bocchio et al., 2017).
All of these results suggest, as a whole, persistent yet

diverse ways in which hippocampus and BLA interact
with each other, and this set of coupled regions can be
extended to other parts of the brain, such as prefrontal or
entorhinal cortex (Bauer et al., 2007; Stujenske et al.,
2014). Clearly, these interactions might extend beyond
the specific cases observed so far in the literature.
Indeed, more recent studies shed light on additional func-
tions of both hippocampus and amygdala (Sawangjit et
al., 2018; Gründemann et al., 2019; Schapiro et al., 2019),
thus broadening the scope for the functions of interareal
communication patterns. To arrive at and/or test new hy-
potheses, it would thus be helpful to collect a global pic-
ture of this communication flow where no restrictions to
specific time frames or features are imposed, as well as to
explore new workflows to achieve this goal in an efficient
manner. The potential for new discoveries can, in princi-
ple, be maximized if all the information in the time series is
preserved. This stipulates that averaging operations, for
example, across time windows, sessions, or animals,
should be avoided as they may mask variance of interest.
In this work we propose a data-driven procedure to ex-

plore an extensive dataset of recordings of LFPs and un-
veil potential neural states in the context of interactions
between regions. The unsupervised procedure is applied
here in the well-studied hippocampus-amygdala system,
but it can be applied equally well to other areas of the
brain. We use a dataset of simultaneous recordings in the
rat hippocampus and BLA (Girardeau et al., 2017a), pub-
licly available on https://crcns.org/ (Girardeau et al.,
2017b), which comprises multiple behavioral epochs. In
these experiments, rats run on a linear track with water re-
wards placed at the track’s ends. A negative (aversive)
stimulus in the form of an air puff is delivered in the run
epoch and only when the animal travels along one of the
two directions (Fig. 1A). During the non-REM (NREM)
sleep phases following each run epoch, reactivations of

joint neural activity of the hippocampus and the BLA were
found to be modulated by hippocampal sharp-wave rip-
ples (SWRs). Moreover, these reactivations were more
pronounced for signals corresponding to the direction
where the rat faced the aversive stimulus (Girardeau et al.,
2017a). The aforementioned results corroborate the hy-
pothesis that contextual, emotional memories derive from
the integration of hippocampal neural activity, which enc-
odes the spatial information, with activity in the amygdala,
which assigns an emotional value to specific events (Phillips
and LeDoux, 1992; Zelikowsky et al., 2014; Beyeler et al.,
2016; Kim and Payne, 2020), and shed light on new mecha-
nisms through which the two brain regions influence each
other.
We conducted a multistage exploratory analysis of di-

rected interactions between hippocampus and BLA and
of neural states associated with both activity and func-
tional connectivity patterns. The analysis focuses on the
mutual influence between LFP band powers in six differ-
ent frequency ranges across the two brain regions, and it
can be partitioned into three major steps. First, a standard
comparison of average interaction values is conducted
between relevant behavioral and physiological epochs.
Among the different interaction patterns, u oscillations
and SWRs in particular carry strong signatures that distin-
guish different epochs. Second, the information provided
by the interactions and LFP power is visualized at maxi-
mal time resolution on the global dataset, i.e., without re-
stricting the search to specific epochs or features. We
highlight four distinct patterns in these features that are
qualitatively identifiable across three different rats. Third,
an identification of distinct clusters, or states, in the hip-
pocampus-BLA system is performed in an unsupervised
way. More precisely, each state corresponds to a specific
pattern that combines both the internal activity within
each anatomical area, represented by the LFPs, and the
ongoing reciprocal interactions between the two regions.
We show that the contribution of interactions plays a sig-
nificant role for the quality with which such states explain
the, for example, behavioral labels that the experiments
are annotated with.
The full description of the dataset and techniques is

found in Materials and Methods, and the outcomes of the
three-stage procedure are presented in Results. For ease
of reading, the Results section also includes conceptual
explanations of our methodology, both in pictorial and in
text form. The analysis yields both expected and un-
expected insights, and in the Discussion section we pro-
vide an appraisal of these insights both in terms of our
chosen methodology and in terms of the biology of the
hippocampus-amygdala system.

Materials and Methods
Experimental design and behavior
A full description of the experiment is given in the origi-

nal article (Girardeau et al., 2017a). Here, we merely reca-
pitulate the salient aspects that concern our analysis.
Four male Long-Evans rats were trained to run back and
forth on a linear track to obtain water rewards placed at
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both ends. Three silicon probes were implanted above
the amygdala, left and right, and in the dorsal CA1 hippo-
campal region. The probes in the hippocampus had four
shanks with 32 recording channels in total (NeuroNexus
H32, A-style, Buzsaki32 design). The amygdala electro-
des featured eight shanks with 64 channels in total
(NeuroNexus H64, A-style, Buzsaki64 design) and were
lowered by 140mm every day at the end of each session.
Only LFPs from the right BLA were used in the analysis;
the number of selected channels recording in this region

varied from a minimum of 24 to a maximum of 56.
Recording sessions that exhibited low numbers of chan-
nels in the BLA, indicated signal degradation, or featured
too few aversive stimuli (air puff events) were discarded.
Eventually, we kept seven sessions for Rat1 and Rat2,
and six for Rat3. The rats analyzed here coincide with the
three animals, out of the original four, used in the reactiva-
tion analysis of Girardeau and colleagues. Specifically,
Rat1, Rat2, and Rat3 here correspond, respectively, to
Rat1, Rat3, and Rat4 of the published work (Girardeau et

Figure 1. Experiment, hippocampus-BLA interactions, and TC. A, Description of the experiment. In the pre-run epoch (left), the rat
runs back and forth freely on the linear track, receiving water rewards at both ends (;3min each). Successively, the animal is lo-
cated in a separate environment for sleeping (;2–3 h). In the run epoch (middle), back on the linear track, the rat experiences an air
puff in a fixed location but only when moving in one specific direction (;30min). This direction and the precise location of the air
puff are set randomly. The session is terminated by post-sleep and post-run epochs (right), which have the same modalities of the
pre-sleep and pre-run epochs, respectively. B, LFPs are recorded in the dorsal hippocampus and in the BLA. Only LFP oscillations
from the right BLA are used. C, Illustration of the TC method. Two different scenarios of interaction are shown. In the upper panels,
x driving y unilaterally implies that the mapping My!x preserves the local neighborhood of Y (the embedded space of y) when pro-
jected onto X (the embedded space of x). Conversely, when a neighborhood in X is projected onto Y, the points are scattered over
the whole dynamical space. This is because x evolves independently of the dynamics of y, which implies that Mx!y is ill-defined (its
Jacobian diverges everywhere). Instead, when the interactions are bidirectional (lower panel), X contains information about Y, so
that Mx!y is well-defined and preserves the local neighborhood of X when mapped to Y. D, Spectogram of 15-min recordings in the
hippocampus (top) along with the six different band powers extracted from it (bottom). Frequency ranges are indicated by colored
bars on the side of the spectrogram (ripples band extends up to 250Hz). Power densities in the spectrogram are z-scored within
each frequency bin. The band powers (bottom panel) are used to calculate the TC values. E, An example of a TC time series of
;90 s across different sleep phases (color labels on top) in both directions of putative influence. The actual values (solid lines) ex-
ceed the chance level (shaded areas, 95% quantile from shuffling test, see Materials and Methods, Topological causality) only for
short, sporadic intervals (black bars on top of the time series). In the final TC time series, non-significant values are zeroed explicitly.
The full description of the TC method is provided in Materials and Methods, Topological causality. The alignment of the embeddings
of the two time series of band powers is described in Materials and Methods, Alignment settings, and shown in Extended Data
Figure 1-1.
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al., 2017a) as well as to Rat08, Rat10, and Rat11 in the
online dataset (Girardeau et al., 2017b).
The position of the rat was tracked by the two LEDs at-

tached to the head of the animal. Speed was computed as
the average value between the two velocities but only when
both LEDswere active. Safe trajectory periods were identified
as those intervals between consecutive reward events, on
opposite ends of the track, when no air puff was recorded.
Conversely, we identified as “aversive” trajectories those in-
tervals between a reward and an air puff event, or between
multiple air puffs. The identification of different sleep phases
(NREM/REM) was done with the help of a k-means clustering
of the ratios of the d to u powers in the hippocampus (higher
ratios point to NREM and vice versa), which we extracted
from the spectrograms, see LFP preprocessing. The identifi-
cation of NREM/REM was performed independently for each
of the channels, and the final annotation was chosen as the
consensus across channels. These data were restricted to
periods of immobility, i.e., a sustained speed of below 3cm/s
for at least 30 s, with only brief (,0.5 s) stretches of exceed-
ing this threshold being tolerated (Maingret et al., 2016;
QuietPeriods.m and Brainstates.m in MATLAB toolbox
FMAtoolbox). Results from spike sorting, units of classifica-
tion (pyramidal/interneuron), and the SWR timestamps are
provided in the original dataset. The latter were identified by
the authors by filtering the hippocampal LFP between 100
and 200Hz, then squaring and normalizing it (z-score;
Girardeau et al., 2017a). SWR events were subsequently
identified as time windows starting at 1 SD, peaking at .4
SD, and remaining at .1 SD for .20 and ,130ms around
the peak.

LFP preprocessing
Power bands were computed using multitaper specto-

grams (MTSpectrogram.m in FMAtoolbox) between 0 and
250Hz with a window of 2 s, a step size of 50ms, and a
time-frequency bandwidth of three and five tapers
(Purpura and Bokil, 2008; Babadi and Brown, 2014). The
spectral density powers are estimated in the following fre-
quency domains: d (0.5–4Hz), u (7–14Hz in hippocam-
pus, 4–12Hz in BLA), b (15–30Hz in hippocampus, 12–
30Hz in BLA), low-g (30–70Hz), high-g (70–120Hz), and,
eventually, “ripples” and “fast” (both 120–250Hz) for hip-
pocampus and BLA, respectively (Buzsáki and Draguhn,
2004; Girardeau and Zugaro, 2011; Colgin, 2016; Bocchio
et al., 2017). Band powers were computed for all the elec-
trodes recording in the selected anatomical areas, i.e.,
right BLA and hippocampus. The 85% quantile value of
their distribution was computed and used throughout the
analysis. Note that the mapping of band powers to abso-
lute values of time is irrelevant as long as all power time
series are treated the same and as long as no other time-
resolved quantities are present. The latter becomes rele-
vant below, see Alignment settings.

Topological causality (TC)
TC relies on Takens’ theorem and the theories of time-

lagged embedding that it forms the foundation of (Takens,
1981; Kantz and Schreiber, 2004; Bradley and Kantz,

2015; Harnack et al., 2017). A time-lagged embedding of
dimensionality m refers to the procedure where a time se-
ries is converted to a sequence of vectors in an m-dimen-
sional space, and each dimension is defined by a specific
time lag (see below for the mathematical formulation). In
simple terms, Takens’ theorem states that, given a partial
observation of a dynamical system, e.g., of a time series
of only one out of three effective variables in the system, a
suitable embedding procedure will allow the (re)construc-
tion of an attractor preserving any true underlying attrac-
tor in a topological sense. This will hold if the dynamics
are deterministic and couple the evolution of all underlying
variables. TC exploits the theorem and its underlying
theory, which is where the attribute “topological” derives
from. Specifically, TC allows the quantification of the di-
rected influence of two time series, which are assumed to
be coupled with no requirement for linearity, on each
other by essentially imposing Takens’ theorem and meas-
uring the consistency of the data with it. The numerical
method to estimate it closely follows the one suggested in
the original study (Harnack et al., 2017). The actual imple-
mentation starts by transforming the data points in the
time series under investigation into their empirical cumu-
lative distribution values (this is referred to as a quantile
transformation in Harnack et al., 2017). This is done to
achieve invariance of the TCs with respect to the actual
distributions of the underlying sequences. In our case, the
time series, i.e., band powers, were transformed sepa-
rately within each behavioral epoch.
The actual TC values are derived as follows. Given a

scalar variable x, the m-dimensional reconstruction-
space vectors are constructed as XðtÞ ¼ fxðtÞ; xðt� tÞ;
:::; xðt� ðm� 1ÞtÞg. We chose the time lag t as the 1/e
characteristic decay value of the average mutual infor-
mation (Fraser and Swinney, 1986; Bradley and Kantz,
2015). Next, Sugihara’s simplex projection method is ap-
plied to identify a suitable embedding dimension in a range
of values from 2 to 10 (simplex in R package rEDM; Sugihara
and May, 1990; Sugihara et al., 2012) where 10 turned out to
be a sufficient upper limit in our case. t and m are obtained
independently for each of the two time series x and y under
investigation. In the actual embedding for the evaluation of
TCs, each time series maintains its own t while the actualm
used is the larger among the two (Cao et al., 1998; Arnhold et
al., 1999; Hegger et al., 2000).
Given the embedded vector X(t), the k=2m nearest neigh-

bors are found. Here, we applied also the Theiler correction
that excludes the points belonging to a temporal neighbor-
hood of radius t (m – 1) from this search (Arnhold et al., 1999).
The time indices of these k neighbors are extracted and used
to identify the respective projection of X in the other embed-
ded space Y. Let us denote as Kx and Ky the k�mmatrices
representing, respectively, the neighborhood of X and its pro-
jection in the embedded space of Y. We wish to compute
the local Jacobian matrix Jty!x of the mapping from y to x.
This is done by performing a principal component analysis
(PCA) on the joint matrix ½KX ;KY �, followed by calculating
Jty!x ¼ PXP

�1
Y where PX (PY ) are the projections of X (Y) onto

the first m principal components. The singular values s t
k;y!x

of the Jacobianmatrix yield the TC components as follows:
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TCt
x!y ¼

1

11log
Y
k

maxð1;s t
k;y!xÞ

� � : (1)

In order to assess the statistical significance of the
obtained value, we eliminate the notion of geometric
neighborhood from the calculation. To do so, we select
the k projections of X on Y randomly and recompute the
TC value. By repeating this N=100 times, we are able to
generate a chance level distribution in the TC domain
[0, 1]. Because of the modest number of trials, which
we were restricted to for computational reasons, a
bounded density estimation with a b kernel and a band-
width equal to sN2/5 (R package bde; Chen, 1999) was
adopted for increasing robustness. The true TC value
was deemed significant if it was larger than the 95%
quantile of the chance level distribution, otherwise it
was set to zero. The false discovery rate is controlled
with the Benjamini–Yekutieli correction (Benjamini and
Yekutieli, 2001), which was applied at every time step
based on pooled data across the 72 TC indices
(Sheikhattar et al., 2018).
The reconstruction of the manifold and the related com-

putation of TC values presented below were performed
within non-overlapping windows of 2-min length. The
amount of independent data points depends on the rate
of memory decay of the signals, and in our case the cho-
sen interval of two minutes offered ;100 observations
(see below). The details of the localization are also rele-
vant for controlling the impact of non-stationarity issues
along the trajectory, which can arise because of transient
events, such as extraneous stimuli or experimenter inter-
vention (Pesaran et al., 2018). This is particularly relevant
in the run epoch where heterogeneous behaviors are
present, but we refrained from attempting to investigate
this quantitatively.

Alignment settings
Calculating the TCs and examining their values within

specific time periods necessitated, to some degree, arbi-
trary choices regarding the temporal alignment between
the different time series, namely, the band powers, TCs,
and labels, e.g., NREM or SWRs. If we take the labels as
reference for absolute time, this leaves two alignment
choices to be made. Band powers were computed as
multitaper spectrograms with windows of 2-s length,
which were always center-aligned to the labels. The TC
values, on their own, were computed in a lagged coor-
dinate space, which corresponds to choosing a predic-
tive embedding, i.e., for a given time point, the lagged
data were taken exclusively from earlier times (for a pic-
torial description, see Extended Data Fig. 1-1). Clearly,
the construction of spectrograms performs an averag-
ing operation that will lead to some blurring in the local-
ization of interactions. This effect should be kept in
mind throughout. To investigate whether the analysis is
robust with respect to the choice of alignment for these
computed TC values, different alignments were ana-
lyzed systematically. TC embeddings were shifted, for-
ward or backward, with respect to the time bins, and,

thus, to the labels and power band windows. For each
time bin, the 75% quantile over the 36 TCs was com-
puted and, eventually, these values were averaged
over the single sessions. As a global measure, the av-
erage of the unsigned differences between different
time periods was computed (Extended Data Figs. 3-3,
3-4). Chance level distributions for each session were
obtained by 1000 random block permutations of the
TC values along the time axis (see below, Granger cau-
sality and cross-correlation functions), and the mean
of the 95% quantiles across sessions was calculated.

Granger causality (GC) and cross-correlation
functions (CCFs)
GC values were evaluated for the same set of time se-

ries used for the TCs by means of the MATLAB toolbox
MVGC (Barnett and Seth, 2014). A variable x is called
“Granger cause” for y if the predictability of a (chosen)
model of y(t) is improved by the inclusion of the history
of x with respect to the knowledge of the history of y
alone. GC values are computed from the ratio of the
prediction error of the full (history of x and y) and re-
stricted (history of y alone) models, respectively. The
original and most common formulation adopts an autor-
egressive model; this is followed here as well (but see
Discussion, Methodological and theoretical insights). In
order to deal with non-stationarities and to allow a com-
parison with TCs, whose embedding length typically
was in the range of a few seconds, GCs were calculated
in sliding windows of 10-s length and with a step size of
1 s. A specific sleep phase, NREM or REM, was as-
signed to each value if its relative number of time
frames in the integration window was larger than 50%
of the window size. The Bayesian information criterion
was chosen to set the model order. Following regres-
sion and the calculation of the GC values, p values were
obtained from the theoretical asymptotic F distribution
(Barnett and Seth, 2014).
Pearson CCFs were computed in sliding windows of

2.5-s width and a minimum step size (50ms). In order to
test significance, for each BLA band power the related
time series was divided into blocks of a size equal to its
autocorrelation length. This was defined as the lag
time needed to dip below an autocorrelation value of
1/e. The blocks were permuted, the CCFs were recal-
culated, and the whole procedure was repeated 200
times; p values were extracted by comparing the null
distributions thus obtained with the true values. Block
permutation was applied to preserve the autocorrela-
tion structure of the signal while disrupting the coordi-
nation with the other signals involved (Efron and
Tibshirani, 1994; Chernick and LaBudde, 2014). The
same technique was used in the analysis for other
statistical tests involving time series, see above,
Alignment settings and Extended Data Figures 6-1, 6-2.
As for TCs, for both GC and CCF values, the signifi-

cance threshold was set to 0.05. The Benjamini–Yekutieli
correction was applied, and values that were not statisti-
cally significant were zeroed explicitly.
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Combined dataset of LFPs and TCs
To combine the data, we convoluted the 72 TCs (36 in

each direction) with an Epanechnikov kernel with 100-ms
bandwidth. The 12 band powers from hippocampus and
BLA were z-scored within each session. This allowed us
to meaningfully bind the TCs and LFP band powers to-
gether in an N� 84 matrix where N is the number of time
frames in all of the five behavioral epochs (pre-run, pre-
sleep, run, post-sleep, and post-run) of the available ses-
sions (see above, Experimental design and behavior).
Eventually, to eliminate redundancies across bands and
across TC values, we performed a PCA. We selected a
number of principal components (18) in proximity to the
elbow point of the explained variance (Extended Data Fig.
4-8). When comparing to a dataset without the TCs, we
used only the 12 band powers and no dimensionality
reduction.
An alternative to the preprocessing of the combined da-

taset of TCs and band powers is offered by the adoption
of locally adaptive weights (LAWs; Blöchliger et al., 2015).
These weights are meant to correct for the fact that differ-
ent time series may be of heterogeneous importance
when the system is in different states. Briefly, at each time
step we count the number of transitions across the global
mean (per series) in a 5-s window centered at that point.
The local value is then scaled by a quantity inversely pro-
portional to this count such that time series that are
mostly noisy get lower weights and are outweighed by
those showing an effective metastable dynamics. It is im-
portant to note that the weights only modulate the impor-
tance of differences in time series. Thus, if there are no
differences, the weights are irrelevant as, for example, for
comparisons of different points where the TCs were are
all zeroed explicitly. We then performed a PCA on the
data matrix after scaling it by the LAWs and kept the first
five components with the largest variances. When using
the dataset without TCs, we applied the same procedure
but only on the 12 band powers. This included PCA.
To test how much information the TCs provide relative

to band powers, we performed two types of TC permuta-
tion tests. These permutations were applied within each
session, i.e., before concatenation of all the sessions. In
the first test, we shuffled only the time blocks containing
TCs. This preserves the relative values of TCs for different
band combinations but reassigns time in a blockwise
manner. In the second, the TCs were permuted between
each other within the same time frame. This preserves
time but redistributes the 72 values to random power
band combinations.

Progress index (PI) and SAPPHIRE plot
The PI analysis was applied to the dataset obtained

from the preprocessing procedure described above (see
Combined datasets of LFPs and TCs). For a full descrip-
tion of the method, we refer the reader to the literature
(Blöchliger et al., 2013, 2014) and for a schematic illustra-
tion to Extended Data Figure 4-1A. Briefly, the method re-
arranges the time frames (snapshots) into a new order,
called PI. In the PI, neighboring points are structurally sim-
ilar in the feature space. To accomplish this, an initial

snapshot is chosen a priori (PI = 1). The snapshot to as-
sign as PI = n (for n . 1) is the closest to any member of
the set of the already indexed n – 1 snapshots. The algo-
rithm continues progressively until all snapshots have
been indexed. The addition rule corresponds to a single-
linkage criterion, and the (dis)similarity we employ is the
Euclidean distance in the chosen feature space. In prac-
tice, the algorithm can be cast as the task of constructing
the minimum spanning tree (MST), and the PI can be
viewed as a particular order of the edges of the MST.
Given the size of the datasets under investigation (;3 �
106 snapshots), we here resort to the approximate ver-
sion of the MST, called short spanning tree (SST), as
introduced in Blöchliger et al. (2013), which offers near-
linear scalability for the construction of the PI with
respect to dataset size. Its construction relies on a hier-
archical clustering technique (Vitalis and Caflisch,
2012), architecturally similar to the Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) al-
gorithm (Zhang et al., 1996), whose parameters were
tuned automatically according to ad hoc criteria. The
initial PI snapshot (PI = 1) is chosen as the center point
of the largest cluster found by this preparatory partition-
ing. The PI sequence is then plotted against different la-
bels and annotations in the so-called States And
Pathways Projected with HIgh REsolution (SAPPHIRE)
plot. A simple and helpful feature that can be plotted is
the original time index (the little dots in the “Time” anno-
tation). The second annotation to be derived purely
from the time series is the “Kinetic” annotation, which
measures the kinetic separation between regions to the
left and to the right. In practice, given a snapshot with
PI = n, we call A the set of points that lies, along the PI,
within a window of length L centered on n. We then
count how many transitions along the time sequence
happen between the left and right halves of A. In other
words, focusing only on the snapshots within the inter-
val A, we count how many times the time sequence
jumps from the set of snapshots in the right half of A to
that in the left half and vice versa. The kinetic annotation
(panel in the bottom) is proportional to the logarithm of
the inverse of this count, also called cut function, and,
thus, it assumes lower values when the snapshot n lies
close to the center of a cluster, and, conversely, higher
ones when n is located in a boundary region between
different states. The window length L was set to 10% of
dataset size throughout the analysis. Only for visualiza-
tion purposes, the kinetic annotation in the SAPPHIRE

plots has been processed with a monotonic function to
stress lower values and re-scaled between 0 and 1.
The PI algorithm is implemented in the software CAMPARI

(http://campari.sourceforge.net/). A wrapper of the original
Fortran code has been used in the analysis (R package
CampaRi). This is available from a public GitLab repository
(https://gitlab.com/CaflischLab/CampaRi).

Clustering from the SAPPHIRE plot
We implemented a processing pipeline to transform the

SAPPHIRE plot into a time-based clustering algorithm,
called SAPPHIRE-based clustering (SbC), which is designed
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to extract clusters by partitioning the PI sequence into
consecutive chunks. A detailed description, along with
applications, is provided in Cocina et al. (2020) (but see
Extended Data Fig. 4-1 for a schematic). A conceptually
similar approach has been used in Garolini et al. (2019) for
an identification of network states.
In essence, the SbC algorithm relies on both the kinetic

and temporal annotations (the two panels in the bottom of
the SAPPHIRE plot), which are first analyzed independently.
For the kinetic annotation, we apply a simple peak identifi-
cation algorithm to place candidate partitions along the
PI. For the temporal annotation, we construct a 2D histo-
gram (time vs PI) and parse it to identify horizontal
stretches of consecutive bins with significant occupan-
cies. Each of these represents an individual visit of a puta-
tive state in the original time series. Next, we extract a
second set of putative partitions into clusters from the dis-
tribution of the boundaries of these stretches along the PI.
This second set is pruned by a statistical test, which em-
ploys the Hellinger distance between the temporal distri-
butions of adjacent stretches. The two sets of partitions,
i.e., those derived from the kinetic and temporal annota-
tions, respectively, are then merged (to eliminate redun-
dancies), and the final trajectory clustering is delivered
from this combined set.
The bin sizes in the 2D histograms on the PI axis, wPI,

and on the time axis, wt, are the relevant parameters of
the algorithm presented above (Extended Data Fig. 4-1B,
panel 2). wPI sets the minimum size, and the resolution, of
the clusters that we want to identify. On the other hand,
wt should be of the order of the average residence time in the
putative set of states. Overall, it must be recalled that the
number of points in the temporal annotation is simply equal
to the number of snapshots (time frames). Therefore, any
combination ofwPI andwt should be chosen such that the av-
erage density per bin is not too low where the threshold is set
to be proportional towPIwt. During the analysis, as a compro-
mise between the above criteria and the final number of clus-
ters, we chosewPI = 300 s andwt = 150 s.
The SbC result is also used, in turn, for improving the

SAPPHIRE plot itself. This is an extension to the original
method as presented in Blöchliger et al. (2013, 2014). We
compute a distance matrix between the clusters by taking
the Hellinger distance mentioned before as a (pseudo)
metric. This matrix is processed by a seriation algorithm
to obtain a reordering of the clusters according to their
reciprocal similarities (seriate in R package seriation;
Hahsler et al., 2008; Behrisch et al., 2016). Finally, the PI
chunks, i.e., the PI-continuous sets of snapshots repre-
senting the clusters, are reordered according to this new
sequence by maintaining their internal arrangements, and
the kinetic annotation is recomputed. All the SAPPHIRE

plots shown in this work were postprocessed in this way.

Other clustering methods
Other clustering methods, which are commonly used

for large datasets, were applied here for comparison.
Specifically, we chose k-means clustering with mini
batches (MiniBatchKmeans in the R package ClusterR)
and k-medoids with either Euclidean or Manhattan

distances (Aggarwal et al., 2001; clara in R package clus-
ter). The number of clusters was always set equal to the
one found by SbC for the dataset under investigation.

Affinity scores
Each cluster is given a set of affinity scores related to labels

that describe the animal’s state or behavior. For discrete vari-
ables, such as behavioral epochs (e.g., pre-sleep or run),
sleep phases (i.e., NREM, REM, or wake), and the presence
of SWRs, the number of occurrences of the label divided by
the cluster size yielded the affinity score. For speed and firing
rates, we made use of the average value within the cluster
(ignoring anymissing values).
The PreSleep and PostSleep labels generally refer to

the periods where the rat is not located on the track and
thus include awake phases. The Sleep label refers to both
pre-sleep and post-sleep epochs but is restricted to time
points annotated explicitly as either REM or NREM sleep
phases; the remaining labels are equivalent to those
shown in the SAPPHIRE plot.

Matching of states across rats
The clusters identified by SbC and the affinity scores

related to these form the basis of a procedure that
helps comparing SAPPHIRE plots across animals. In par-
ticular, we seek the clusters of Rat1 and Rat2 that are
likely equivalent to the four recognizable basins (or
coarse states) of Rat3. The similarity criterion adopted
takes advantage of the affinity scores. The actual com-
position of the four basins in terms of SbC clusters
(Extended Data Fig. 4-4, 93 clusters) was determined
manually but straightforwardly by using the peaks of
the kinetic annotation as guidance.
The affinity scores are contained in a matrix where the

rows represent the clusters and the columns the different
external labels. To account for differences in scale be-
tween the different labels but also across rats, we initially
rank-transform the affinity scores across the clusters (i.e.,
along the rows) for each rat. For simplicity, we describe
the procedure using Rat1 as the example (and the four
basins of Rat3 as reference). We use the affinity scores
to calculate the Pearson cross-correlation matrices
between the clusters of Rat1 and those of Rat3. Next,
each Rat1 cluster is associated to one of the four ba-
sins of Rat3, while trying to preserve the relative size of
the four coarse states. Specifically, the cross-correla-
tion matrix is collapsed into a list of triplets composed
of cross-correlation values, the corresponding Rat1
cluster, and the implied Rat3 basin, which is the one
containing that particular cluster of Rat3. This list is
then sorted in descending order of correlation values
and, progressively, each Rat1 cluster is assigned to
the corresponding basin. If the relative size of the
growing basin exceeds that size as seen for Rat3, or if
the given cluster for Rat1 has already been assigned,
the triplet is ignored, and no association is done. By
performing this procedure for the entire list, all clusters
of Rat1 are eventually assigned to one of the four
basins.
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Unfolding projection
To visualize the results contained in the affinity scores in

two dimensions, we resort to a multidimensional scaling
(MDS) technique applicable to a generic rectangular matrix d ij

with dimension n�m (Cox and Cox, 2000; Borg et al., 2018).
The entries of the matrix are interpreted as the ranks that n
judges give tom objects. The lower the rank the closer an ob-
ject is to that judge’s taste. The unfolding method consists in
projecting both the judges and the objects onto a low-dimen-
sional space. The projection tries to ensure that objects will
be found closer to those judges who have rewarded them
with an optimal rank. The low-dimensional configuration is
found byminimizing Kruskal’s stress function

s ¼
Xn

i¼1

Xm
j¼1

ðfðd ijÞ � dijÞ2; (2)

where dij indicates the new set of distances in the pro-
jected space, and f(x) is a monotonic function. In order to
remove dependencies on the size of the distance matrix
and on the absolute magnitudes of its elements, the ac-
tual stress values shown in the analysis are normalized as
follows:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xm
j¼1

ðfðd ijÞ � dijÞ2

Xn

i¼1

Xm
j¼1

fðd ijÞ2

vuuuuuuut : (3)

We used the R package smacof for the analysis (de
Leeuw and Mair, 2009; Borg et al., 2018). This type of un-
folding was applied to the rectangular matrices of affinity
scores (see above, Affinity scores, and Fig. 5A, panel 3).
The judges are the labels, representing, e.g., NREM,
REM, PostSleep, PreSleep, SWRs, and the objects are
the clusters. For this, all affinity scores were converted
into row(judge)-wise ranks and, then, projected onto a 2D
space (MDS coordinates). We used a ratio transformation
of distances (f(x) = ax) and minimized the stress function
(eq. 2) along with a penalty term. In order to check the ro-
bustness of the stress values, jackknife testing was per-
formed by removing, in turn, a label (row) or a cluster
(column) from the matrix of affinity scores.
The collective projection of all three rats is obtained by

concatenating the rank-transformed affinity matrices of all
the animals and performing the unfolding with the same set-
tings presented before. Mean TCs were computed per clus-
ter. Subsequently, we grouped TCs according to the leading
band and averaged them within each group. For instance,
we selected all the TCs driven by the BLA u band, i.e., six
values, and averaged them. Each of the obtained values
constitutes a third dimension (TC) along with the two unfold-
ing dimensions (MDS-1, MDS-2). In order to check whether
the TC values are systematically distributed along the clus-
ters, a plane was fitted in the [MDS-1, MDS-2, TC] space.
The magnitude of the slope with respect to the [MDS-1,
MDS-2] plane was extracted along with the orientation of
the plane. These values can be represented by an arrow in
the [MDS-1, MDS-2] space obtaining the so-called biplot.

The angles indicate the directions toward which the various
TCs increase the most. The lengths of the arrows are pro-
portional to the slope and quantify how well the TC values
are mapped along the indicated direction. We used a per-
mutation test to assess the significance of the value of the
slope (same as in Kyriazi et al., 2018): TC values across clus-
ters were permuted 1000 times, and a null distribution of ab-
solute slope values was calculated. Only TCs for which the
slope exceeded the 95% quantile of the null distribution
were retained for the biplot.

Statistical analysis
All statistical tests were two-tailed tests unless stated oth-

erwise. All tests comparing two sets of data were paired and
non-parametric (Wilcoxon signed-rank test). Group data are
reported with mean 6 SEM, unless stated otherwise. In
cases of multiple hypothesis testing, we applied the false
discovery rate correction according to Benjamini–Yekutieli
to the individual tests’ significance thresholds.

Code and software accessibility
Software used to carry out the analyses is mentioned

throughout the text and is available online. Customized code
and scripts supporting the current study are available at
https://gitlab.com/CaflischLab/unsupervised_hpc-bla.

Results
To describe the LFP activity in the hippocampus and in

the BLA (and subsequently to infer their reciprocal inter-
actions), we used as time series the band powers com-
puted with spectrograms on 2-s sliding windows with a
50-ms time step. We distinguish six different bands of
physiological relevance: d (0.5–4Hz), u (7–14Hz in hippo-
campus, 4–12Hz in BLA), b (15–30Hz in hippocampus,
12–30Hz in BLA), low-g (30–70Hz), high-g (70–120Hz),
and, eventually, ripples and fast, respectively, for hippo-
campus and BLA (both 120–250 Hz; see Fig. 1D; Buzsáki
and Draguhn, 2004; Girardeau and Zugaro, 2011; Colgin,
2016; Bocchio et al., 2017).
We have chosen the band powers to bridge distant fre-

quency bands since they average the fluctuations in the
signal across a shared time window. In this way, we ho-
mogenize the intrinsically heterogeneous timescales of
variations in the LFPs across the different bands. Possible
drawbacks of our approach are addressed in the
Discussion section.

Interaction analysis between behavioral epochs and
sleep phases
We use TC as a measure of directed interactions be-

tween the hippocampus and the BLA (Harnack et al.,
2017). The method is based on a time-lagged embedding
procedure derived from an underlying theory in the field of
dynamical systems and nonlinear time series analysis
(Kantz and Schreiber, 2004). Note that the term “causal-
ity” has a different notion in that field, and it is not directly
related to the causality assessment exerting neural ma-
nipulations (more in Discussion). We provide here a con-
ceptual explanation of the methods, and we refer the
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reader to the Materials and Methods section and to the
original article for more details (Harnack et al., 2017). The
time-lagged embedding consists in generating from a
time series x(t) a space of higher dimensionality m, called
X, where the additional dimension corresponds simply to
values of x delayed by multiples of a time lag t ; in explicit
terms, XðtÞ ¼ fxðtÞ; xðt� tÞ; :::; xðt� ðm� 1ÞtÞg. Takens’
theorem (Takens, 1981) stipulates that a lagged embed-
ding of sufficient dimensionality is able to reconstruct the
manifold generated by the underlying dynamical system
(Kantz and Schreiber, 2004; Bradley and Kantz, 2015). In
TC and our application of it, this implies that from the em-
bedding of the hippocampal and BLA time series we
should be able to extract relevant information regarding
the reciprocal coupling of the two quantities. In particular,
it should be possible to quantify to which degree the infor-
mation of a time series is determined by the history of the
other. A practical explanation is illustrated in Figure 1C. In
the first example (upper panels) a case of unidirectional
coupling is shown: x influences y, that is, the time evolu-
tion of y depends on x but not vice versa. In the embed-
ded space X, neighboring points of X(t) are identified (blue
circle) and the counterparts in Y, i.e., those with the same
time indexes, are mapped graphically (straight lines from
left to right). Since x is fed no information from y in this ex-
ample, the points projected in Y will be poorly “clustered”
(i.e., the projected neighborhood diverges). When consid-
ering the other direction and, thus, mapping the neighbor-
hood of Y(t) (red circle) onto X, the projected points in X
will lie closer to each other since the evolution of y(t) de-
pended on x. In the second case (lower panel), x and y are
reciprocally coupled, and both projected neighborhoods
span compact areas. Generally speaking, the effective
sizes of these neighborhoods will depend on the effective
degree of influence of one time series onto the other. TC
quantifies these as expansions, making it possible to de-
rive a measure for the asymmetries in reciprocal influence
between the two time series.
To be able to isolate significant directed interactions,

the TC value at each time step is compared with the
chance level distribution, which is obtained by mapping
the variable’s neighborhood randomly. TC values that do
not pass this significance threshold are zeroed explicitly
(p . 0.05, Benjamini–Yekutieli corrected; see Materials
and Methods, Topological causality). Values of TC are
computed between the band powers in the hippocampus
and BLA (36 pairs, two directions). Importantly, despite
the reliance on time windows for both spectrograms and
manifold reconstruction (2 s and 2min, respectively), the
resultant signals are able to resolve fast processes on the
subsecond time scale, see Figure 1E. In the following, when
discussing TC results, we will mostly use the terms “influ-
ence” or, more generically, “interactions” without referencing
causality. We confront this terminological issue in detail in the
Discussion section.

Pronounced interactions between hippocampus and
amygdala occur with characteristic patterns during both
NREM and REM sleep yet differ less between post-sleep
and pre-sleep than between post-run and pre-run phases.
The mean values of TC during the sleep epochs are

shown in Figure 2A. The distinction between NREM and

REM periods has been derived from the ratio between
hippocampal d and u band powers (see Materials and
Methods, Experimental design and behavior). During
NREM, reciprocal influences between the low-fre-
quency bands are prominent, in particular for the hip-
pocampal d , u , and b bands, as well as for the d and u
bands in the BLA. To a lesser degree, d and u bands in
the BLA appear to be driven by the hippocampal rip-
ples band more than by the g bands. In addition, we
observe that the BLA fast band is driven by hippocam-
pal activity across the entire frequency range. During
REM, some of the aforementioned interaction patterns
decrease considerably, in particular those concerning
the hippocampal b band and those involving the low
frequencies of the two regions (d and u ). A notable ex-
ception to this latter statement concerns the hippo-
campal, u -driven TCs, which are prominent and match
the expected characteristics of REM sleep. These TCs
are strong relative to most of the BLA frequencies and
are complemented by BLA-driven TCs on the two high-
est frequency bands. The TCs found for the hippocam-
pal u band are mirrored partially in the high-g band.
Based on the BLA-driven TCs in the high-frequency
bands, there does appear to be some reciprocal com-
munication during REM. The differences between
post-sleep and pre-sleep epochs (Fig. 2A, right panel)
are generally much lower than those between sleep
phases (Fig. 2A, bottom panel; Wilcoxon signed-rank
tests, n = 16). One exception to this regards the b
band of the BLA where two TC differences are signifi-
cant. This contrasts sharply with the analysis per-
formed on pre-run and post-run epochs. Here, a
marked enhancement of TC values is visible during the
post-run epoch (Extended Data Fig. 2-1; Wilcoxon
signed-rank tests, n = 17). This difference is prominent
for most frequency bands and in both directions.
Changes in the influence exerted by the hippocampal
u , b , high-g , and ripples bands are pronounced in the
safe running direction but somewhat weakened,
for the u and ripples bands, in the aversive direction.
Conversely, interactions exerted by the BLA on the
hippocampus are strengthened in post-run epochs in
the aversive direction: d -driven and, especially,
u -driven interactions are particularly enhanced. We
stress that the aversive stimulus is absent in the post-
run epoch, so the differences in Extended Data Figure
2-1 are likely related to the memory retrieval of the pre-
vious conditioning experience.
Apparent interactions between brain regions can also

result from volume conduction, both incoming from exter-
nal regions or, specifically, from hippocampus to BLA.
This mechanism might contribute to any signals suggest-
ing interactions involving low-frequency bands like d and
u (Łȩski et al., 2013; Bertone-Cueto et al., 2020).
Regarding the u band, however, several pieces of evi-
dence of both behavioral and biological nature suggest
that volume conduction is unlikely to be a major factor;
these are summarized in Pape and Pare (2010) and
Bocchio et al. (2017). For example, it has been observed
that activities in the u band of the lateral amygdalar and
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CA1 hippocampal regions are synchronized during fear
memory retrieval but not during exploratory behavior
(Narayanan et al., 2007; Seidenbecher et al., 2003). To es-
timate the potential influence of volume conduction on
our analysis, Extended Data Figure 2-2 shows computed
phase differences for LFPs filtered to the d and u bands be-
tween the two anatomical areas in different time epochs.
While phase differences close to zero would correspond to
expectation for volume-conducted oscillations (Nolte et al.,
2004), the histograms are generally broad and not consis-
tently peaked at zero phase difference for the u band. This
corroborates the aforementioned hypothesis that volume
conduction plays a negligible role in this band. For the d
band, phase differences do consistently show the highest
values in the proximity of zero in Extended Data Figure 2-2.
While this does not need to result from volume conduction,

the data in conjunction with literature observations of vol-
ume conduction in this frequency band in nearby re-
gions (Bertone-Cueto et al., 2020) suggest a more
cautious interpretation for d -d interactions.

Two independent measures correlate with TC if the mem-
ory lengths are matched.
To assess the robustness of our analysis, we next com-

pared TC with two common linear techniques used to
investigate directed interactions between oscillatory ac-
tivities and connectivity between distant brain regions.
Specifically, we chose GC and CCFs with varying time
lag. We restricted ourselves to the same four data subsets
shown in Figure 2A. GC and CCF values were computed
for all the 36 frequency band combinations. This was
done separately for both directions of influence. For each

Figure 2. Reciprocal influence of hippocampus and BLA during sleep. A, TC results in interaction tables. Central panels, Mean val-
ues across all the sessions (n=16, 3 rats) of the average TC values per sleep epoch and the two annotated sleep phases (NREM
and REM). All sessions included in the calculation feature at least 1min of total REM sleep in both pre-sleep and post-sleep phases.
Every square shows two values for a given combination of frequency bands: the directions of influence are indicated by both color
and placement of the two triangles (blue and lower-left for hippocampus ! BLA, red and upper-right for the reverse). To aid visibil-
ity, the minimum value across the four panels and both directions was subtracted for plotting. Bottom and right panels, p values of
the two-tailed Wilcoxon signed-rank test on the differences of the mean values shown in the central panels. The right panels show
test results for differences between sleep epochs, and the bottom panels those for differences between sleep phases. Color hue is
given by the sign of the test statistic (value of zero under the null hypothesis). Given a comparison of the type A–B, green colors in-
dicate higher values in A relative to B. The triangle shapes are outlined when the corresponding p , 0.05. NREM was distinguished
from REM sleep by the hippocampal d /u ratio (see Materials and Methods, Experimental design and behavior). The same analysis
was performed for pre-run and post-run epochs when distinguishing between safe and aversive direction (Extended Data Fig. 2-1).
To examine a possible impact of volume conduction on TC values, phase differences between the LFPs of the two areas are shown
in Extended Data Figure 2-2. B, Comparison of TC with GC. For each combination of sleep phases, epochs, and direction of influ-
ence, mean values of GC were computed. For each of the n=16 sessions, in each direction, the largest k (out of 36) TC values were
retained and compared with the corresponding GC ones. Their similarity was quantified by computing Pearson correlation coeffi-
cients between the two k� n matrices. Asterisks indicate significant correlation values (Student’s t test, *p , 0.05, **p , 0.01,
***p , 0.001). C, Comparison of TC with CCFs. The same procedure described above for GC was performed for different values of
the CCF time lag. In CCF, the frequency band leading in time is considered as the driver of the interaction. Points on the upper part
of the plots denote significance of the respective correlation value (Student’s t test, p , 0.05).
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session and time period, we selected the largest 6, 18, or
36 (i.e., all) TC values and calculated their Pearson corre-
lation with the respective GC and CCF values. GC and TC
are compared in Figure 2B, which highlights that there are
significant levels of (linear) correlation for the data from
the NREM phase. These tend to be generally lower for
post-sleep with respect to pre-sleep, in particular when
selecting a lower number of frequency band combina-
tions. In REM, GC and TC values are generally uncorre-
lated for the BLA ! hippocampus direction, and, as for
NREM, pre-sleep patterns display higher correlations
than post-sleep ones. In Figure 2C, the comparison of TC
values with CCF values with time lags of up to;3 s is pre-
sented. The emerging picture is very similar to that seen
for the TC/GC comparison if short time lags of ,1 s are
considered. For data taken from REM sleep, correlations
of BLA-driven interactions are slightly more erratic as
seen from the dependence on the number of variable
pairs considered and the lower significance of the results
(circles on top). Moreover, TC and CCF values start to
anti-correlate almost everywhere when the time lag ex-
ceeds a threshold of ;1–1.5 s. This value is comparable
to the average embedding length determined for TCs,
which depends on both a base lag and a choice of dimen-
sionality (see Materials and Methods, Topological causal-
ity). Why do TC values correlate only weakly or erratically
with GC/CCF values if the source data are restricted to
the REM period? First, it is important to point out that
REM sleep is characterized by shorter episodes than
NREM. In this case, the assignment of the REM label to
the computed value, either TC, GC, or CCF, can be am-
biguous given that each technique has its own different
integration window that may extend across adjacent
NREM time frames. Second, the TCs in the BLA ! hippo-
campus direction during REM are confined to the fast fre-
quency bands, and the underlying activities might be too
short-lived to be picked up by a correlation measure.
Third, both classical GC (as used here) and CCF are
intrinsically linear techniques whose application to nonlinear
systems may lead to equivocal or misleading results
(Sugihara et al., 2012; Harnack et al., 2017; see
Discussion, Methodological and theoretical insights).

SWRs are associated with unidirectional communication
from the hippocampus to the amygdala during NREM
sleep and awake phases.
Because of the results shown in Figure 2B,C, we focus

for the following analysis only on NREM sleep and on the
potential role of SWRs for the modulation of interaction
patterns. To answer this question, we partitioned the
NREM data into subsets featuring SWRs and those
that do not (inter-SWRs; see Materials and Methods,
Experimental design and behavior for the procedure
used to detect SWRs). From Figure 3, we can glean
that there is a broad influence of the hippocampus on
the BLA driven by its ripples band and, to a lesser ex-
tent, by its low-frequency bands, including d , u , and
b . While these hippocampal drives are enhanced dur-
ing SWR phases, the reciprocal BLA-driven interac-
tions seem to not be affected strongly by the SWRs
(Wilcoxon signed-rank tests, n = 20). This suggests the

interpretation that SWRs either facilitate or are at least
a hallmark of communication going out from the hippo-
campus. Interestingly, although SWR phases show
higher TC values overall for hippocampus ! BLA, sig-
nificant differences between pre-sleep and post-sleep
phases are more commonly found for data from time
periods devoid of SWRs.
We also investigated the variation in TCs with respect

to the presence of SWRs both during the wake periods in
pre-sleep and post-sleep epochs (Extended Data Fig. 3-
1), and during the run epoch itself (Extended Data Fig. 3-
2). In the former, with respect to NREM, SWRs are associ-
ated with significantly increased interactions between
BLA d and u bands and most bands of the hippocampus
(Wilcoxon signed-rank tests, n=20). On the other hand,
signal inputs from the BLA to the high-frequency bands of
the hippocampus are weakened considerably. Instead,
during the actual run epoch (Extended Data Fig. 3-2), the
modulation by SWRs is much less pronounced overall: it
appears to be restricted primarily to hippocampus-driven
interactions in the ripples band (Wilcoxon signed-rank
tests, n=13). Furthermore, TC values during either SWR
intervals or in between do not seem to distinguish the run-
ning directions strongly. The clearest recognition appears
to come from BLA-driven processes, slightly more so in
the absence of SWRs. These enhancements found when
the rat encounters the aversive stimulus could be related
to the stimulus itself or to fear conditioning. We also in-
vestigated how the relative alignment between TC and
SWR labels can affect the analysis. Results shown in
Extended Data Figures 3-3, 3-4 support our adopted
settings (see also Materials and Methods, Alignment
settings).

Global interaction analysis of data-derived, neural
states
Similar patterns of directed influence, reciprocal or not,

appear across different epochs, different sleep phases, or
different behaviors. These patterns can reveal information
that goes beyond the annotations usually employed to
characterize the animal’s state, e.g., running speed or
neuronal firing rates. We provide a methodology to assess
whether TCs, along with band powers, can help to reveal
putative states related to activity in the hippocampus, the
BLA, and the coordination between them. For this pur-
pose, we use, for each session, the entire time series
without selecting any particular epoch of interest a priori,
i.e., without discarding periods that may be deemed irrel-
evant. In detail, we merged the time series of TCs and the
LFP band powers. The resulting joint dataset contains 84
time series: 6 power bands each for hippocampus and
BLA and 36 TC values in either direction of interaction.
These data had to be preprocessed to feasibly combine
the two different classes of time series. The projection of
the resulting dataset onto its first 18 principal components
was used for further analyses (see Materials and
Methods, Combined dataset of LFPs and TCs).
Our first goal is to highlight and annotate putative neural

states that are visited recurrently (in time) throughout the
experiment. To accomplish this, we use an unsupervised
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algorithm that reorders the time series as the so-called PI
(Blöchliger et al., 2013). From this reordering, we obtain
with the help of suitable annotations a SAPPHIRE plot
(Blöchliger et al., 2014). These scalable techniques were
originally developed for the analysis of molecular dynam-
ics simulations, but their applicability is general for time
series data (Blöchliger et al., 2013), as shown also in
(Klein et al., 2017). While the details can be found in the
Materials and Methods section, we provide a short ration-
ale next (see also Extended Data Fig. 4-1). A state is a col-
lection of time points that have similar properties. Unless
specified otherwise, these properties are the aforemen-
tioned 18 principal components (of the 12 band powers
and 72 TC values). With respect to our data, the terms
“clusters” and “states” are used interchangeably given
that the latter are identified by a clustering method. The

reordering into the PI attempts to group all instances of
mutually similar time points, which may occur at vastly dif-
ferent times, into the same neighborhood along the PI.
The peaks in the kinetic profile help to identify areas with
few transitions between adjacent PI segments, i.e., they
suggest the boundaries by which to delineate different
states (Fig. 4, bottom panel). The original temporal index,
along with time series and labels which may or may not
be part of the original dataset, are then reordered accord-
ing to the PI sequence and plotted on top of the kinetic
profile. In this way, they provide further recognition of
states and offer an initial characterization.

Neural states at coarse resolution isolate both sleep
phases and emotional stimuli.
Results for Rat3 are shown in Figure 4, while those for

the other two animals are displayed in Extended Data

Figure 3. TC analysis during NREM sleep. Following the same procedure as for Figure 2A, we display TC results for pre-NREM and
post-NREM sleep in the presence or absence of SWRs (n=20, 3 rats). All sessions included show at least 5 s of total time featuring
SWRs in both the pre-NREM and post-NREM epochs. The analogous figures for the wake phases and for the run epochs are
shown in Extended Data Figures 3-1, 3-2, respectively. TC differences are robust to the choice of alignment between TCs and
SWRs timestamps (Extended Data FIgures 3-3, 3-4). See details in Materials and Methods, Alignment settings.
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Figure 4. SAPPHIRE plot of the combined dataset of band powers and TCs. We show the results for Rat3 (6 sessions; all five behav-
ioral epochs included; ;40 h in total; 50-ms resolution). The time series was rearranged according to a similarity criterion in the so-
called PI (see Materials and Methods, Progress index (PI) and SAPPHIRE plot, and also Extended Data Fig. 4-1A for a schematic il-
lustration). The kinetic annotation (bottom, red curve) highlights transitions between putative states. Directly above, the original posi-
tion along the time sequence is plotted as a function of the PI. The color code is given by the sleep phase (small dots, see “Phase”
legend) and by the type of events encountered while awake (circles, see “Time” legend). Because of limits to plotting resolution, a
regular subsampling by a factor of ;10 was applied along the PI dimension. In the five panels above the Time annotation, we show,
respectively, the histogram of SWRs, the z-scored u powers of both regions (thresholded at 5), movement speed, firing rates of py-
ramidal neurons in hippocampus and BLA, and the average TCs in both directions. These six features were smoothed with a moving
average filter employing a window of 500 points along the PI before plotting. The scales on the y-axes of these six annotations are
homogenized across all SAPPHIRE plots. Finally, the two topmost panels indicate by color sleep phases and behavioral epochs, re-
spectively (legends on the right). To be able to spot the REM phase more easily, the top panel is augmented with a curve indicating
the fraction of REM-labeled points on a sliding window of 25 s. Note that the pre-run and post-run epochs form just ;2% of the
overall time series, thus making them difficult to distinguish in the plot. At the very bottom of the plot, colored bars indicate four
coarse states. Maintaining this color scheme, a matching procedure between these coarse states and putative ones in the remain-
ing two rats (Extended Data Figs. 4-2, 4-3) was applied (Materials and Methods, Matching of states across rats) to facilitate compar-
isons across animals. Extended Data Figure 4-4 shows the same SAPPHIRE plot highlighting the clusters derived from SbC (see text
and Extended Data Fig. 4-1B). We applied two different preprocessing pipelines to the combined dataset of TCs and band powers,
which differ most strongly in the number of principal components retained, specifically, 5 and 18 (see details in Materials and
Methods, Combined dataset of LFPs and TCs). The SAPPHIRE plots presented here and in Extended Data Figures 4-2, 4-3 for the re-
maining rats are for the dataset with 18 dimensions, see also Extended Data Figure 4-8; the results obtained with the alternative
preprocessing (5 components) are shown instead in Extended Data Figures 4-5, 4-6, 4-7.
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Figures 4-2, 4-3. Four coarse states (basins) can be rec-
ognized with ease from the combination of the different
annotations (Fig. 4, colored bars at the bottom). From
the kinetic annotation (bottom) and the sleep phase
annotation (top), we find that most of the NREM sleep
data points are found in the first large coarse state
(basin) on the left. The remainder of the NREM-labeled
time points appear in the transition area immediately
to the right of this basin as well as in the rightmost one.
Time frames from NREM sleep and awake periods are
interspersed in these two areas presumably because
they share bidirectional and unidirectional TC patterns
(“TC” annotation). On the other hand, REM-labeled
points appear in the second and, to a lesser extent, in
the last basin, along with time points when the animal
was awake. Consistent with Figure 2A, these two re-
gions show two different degrees of TC activity, that is,
lower in the second coarse basin from the left and
higher in the rightmost one. Air puff and reward times
(the circles in the Time annotation) are mostly scat-
tered throughout the two large basins that display no-
ticeable TC values. Interestingly, the SWRs (“SWRs”
annotation) mirror almost exactly the same pattern as
the TCs except in the leftmost NREM basin indicating
an apparent decoupling of the BLA from the hippo-
campus during NREM sleep. A similar observation can
be made for power in the u band (“Theta power” anno-
tation): high but differing band powers between hippo-
campus and BLA are associated with lower TC levels
(leftmost basin), whereas lower, but seemingly more
synchronous band powers are associated with higher
interaction values (rightmost basin). Stimuli encoun-
ters are noticeably absent from the third basin, which
is homogeneous in neuronal activities and movement
(“BLA rate,” “Hpc Rate,” and “Speed” annotations) but
shows no sign of significant SWRs and TCs.
To aid comparisons across animals, we devised a

matching procedure that pairs PI regions of Rat1 and
Rat2 (Extended Data Figs. 4-2, 4-3, bottom bars) to the
four basins of Rat3 (colors are matched). The procedure is
based on similarities between the external annotations,
e.g., “NREM” or “Hpc rate”, and relies on the clusters
identified from the SAPPHIRE plots (Materials and Methods,
Matching of states across rats). These elements will be
described in detail below. For Rat2 (Extended Data Fig. 4-
3), the association provides a landscape similar to Rat3
for the red and green basins, with a mixing between the
TC-active yellow and blue states in the intermediate PI re-
gions. Conversely, the data from Rat1 (Extended Data
Fig. 4-2) give rise to basins that correspond less to those
of Rat2 or Rat3. Instead, despite the emergence of similar
feature patterns visible in the TC and SWRs annotations,
the algorithm appears to identify many smaller substates
with sometimes very peculiar features (e.g., the tiny left-
most state). It is worth mentioning that Rat1 not only
showed a reduced rate of crossings in the run epochs
compared with Rat2/3 (;0.3, ;1.0, and ;2.0, respec-
tively) but also exhibited a ;30-fold difference in this rate
across sessions (;2- to 3-fold for Rat2/3). This can be
recognized clearly in the SAPPHIRE plot (Extended Data Fig.

4-2) from the lower density of air puffs and reward points
in the Time annotation. The SAPPHIRE plot for Rat1
(Extended Data Fig. 4-2) reflects this variability in behav-
ior. We stress that the matching algorithm is simplistic, in
particular because of imposing a size constraint derived
from Rat3 (see Materials and Methods, Matching of states
across rats). We also emphasize that the order of states
in a SAPPHIRE plot is arbitrary. The role of the four-color
highlighting is primarily to locate corresponding re-
gions across animals quickly. Generally speaking, and
this holds for all three animals, the time annotation
shows that the individual experimental sessions all
contribute roughly equally to a given coarse state
although the recordings are almost certainly non-sta-
tionary across days because of the progressive lower-
ing of the electrodes (see Materials and Methods,
Experimental design and behavior). Importantly, within
all of these aforementioned coarse states, the kinetic
annotation suggests potential substates, and this is
what we investigate next.

Clustering by the SAPPHIRE plot and characterization of the
identified states.
The SAPPHIRE plot provides a comprehensive visualiza-

tion of putative states along with the labels used to char-
acterize individual points in time. Nonetheless, given the
size of the dataset and the amount of labels to be consid-
ered at the same time, we deemed it desirable to com-
press the amount of information displayed. Toward this
goal, we take advantage of the kinetic and time annota-
tions to formally identify clusters consisting of time points
that are both kinetically and structurally close. The
method is called SbC given that clusters originate directly
from the partitioning of the PI sequence into chunks (see
Cocina et al., 2020; Materials and Methods, Clustering
from the SAPPHIRE plot, as well as Extended Data Figs. 4-1,
4-4). Specifically, we combine the PI ordering with the
temporal information as found in both the Kinetic and
Time annotations. In the former, the partitions are identi-
fied as peaks in the Kinetic curve, whereas in the latter
“blocks” of distinct temporal patterns are identified from
an underlying 2D histogram (Extended Data Fig. 4-1B,
panels 2, 3). Eventually, a consensus is reached across
the results from the two annotations. The number of clus-
ters cannot be set directly but is controllable monotoni-
cally through the size of the bin in the aforementioned
histogram, which sets an upper limit for the resolution of
small clusters (see Materials and Methods, Clustering
from the SAPPHIRE plot and Cocina et al. (2020) for more
details). It is important to note that we exclude external
annotations, e.g., the labels on the sleep phases, to arrive
at the partitioning. Given that the original dataset of TCs
and band powers is what defines the PI ordering, we can
characterize each extracted cluster by a particular combi-
nation of internal state values, i.e., the LFP power bands
and reciprocal interaction patterns between hippocampus
and BLA (Fig. 5A). Of course, the definition of a single fin-
gerprint per cluster masks the heterogeneity within it,
which means that a relatively fine partitioning is required
for these fingerprints to be informative.
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Once the clusters have been identified, we assign, to
each of them, an affinity score related to the labels that
annotate the SAPPHIRE plot (Fig. 4). These results are plot-
ted with the help of the unfolding method, a dimensional-
ity reduction technique that can project both clusters and
labels onto a 2D space (Cox and Cox, 2000; Borg et al.,
2018). This procedure, in good part inspired by previous
traditional MDS applications (Shinomoto et al., 2009;
Kyriazi et al., 2018), provides an effective visualization of
the distribution of the states across the different labels.
The unfolding method is an MDS technique in that it aims
to minimize a stress function that accounts for the differ-
ences between the distance matrix in the original space
and the one in the reduced space (see Materials and
Methods, Unfolding projection). It is worth clarifying how
the distance matrices differ between the unfolding tech-
nique and traditional MDS. In the latter, one would com-
pute, e.g., Euclidean, distances between n clusters using
affinity scores for individual labels as coordinates in anm-
dimensional space, thus projecting only the clusters onto
the reduced space. In the unfolding case, the n clusters
and m labels are both considered as points to be pro-
jected. A distance matrix is assembled that relies only on
affinity scores to control the placement of clusters relative
to labels but does not supply data to the stress function
that contains information about distances among clusters
or among labels.
Unfolding projections for the three rats are shown in

Figure 5B–D. Across all three animals, the first thing to
note is that there are two (nearly) consistent clusters of la-
bels: Speed, Run, and Wake versus NREM, Sleep, Post-
Sleep, and SWRs. The remaining four labels (Hpc Rate,
BLA rate, REM, and PreSleep) are more volatile. To under-
stand the placement of clusters relative to labels, it is
important to realize that the labels are not mutually exclu-
sive, e.g., NREM must coincide with Sleep and spans
both PreSleep and PostSleep labels. Thus, it is impossible
for a cluster to coincide exactly with a single label. This li-
mitation leads to the observed distribution, which is fairly
uniform across the plot. However, we can assert that for
at least two rats the placement does show an affinity with
specific labels, which is highlighted by the coloring ac-
cording to PI position as seen, in particular for Rat2 and
Rat3, by comparing the SAPPHIRE plots of Extended Data
Figure 4-3 and Figure 4 with the unfolding projections of
Figure 5C,D, respectively. For these two cases, the clus-
ters from the left of the SAPPHIRE plots (Fig. 5C,D, light col-
ors) are clearly associated with NREM phases as
expected from Extended Data Figure 4-3 and Figure 4. In
addition, for Rat2 there is an accumulation of clusters
shown in gray near the REM label (Fig. 5C), which is con-
sistent with the higher prevalence of REM time points in
the intermediate regions of the PI of Extended Data Figure
4-3. In all three panels, the layout suggests that the first
dimension (horizontal) resolves a transition between
awake/active and deep-sleep (NREM) phases. Since such
a distinction can be inferred by the power band values
alone, we conjectured that the second dimension might
be related to the overall level of TCs. In order to assess
this in a collective picture for all the rats, we performed

the unfolding on the dataset combining all three affinity
matrices. A so-called biplot is shown in Figure 5E where
the direction of enhancement of TC is indicated by arrows
(see Materials and Methods, Unfolding projection). Each
arrow indicates the average influence of individual bands,
pointing toward the direction of larger enhancement
across the low-dimensional space. The TCs that are sig-
nificantly mapped in reduced space point downwards
and overlap, especially for most of the hippocampus !
BLA interactions. This confirms that “MDS-2” (i.e., the
vertical dimension) is predominantly an overall interaction
axis (high at the bottom, low at the top). In conjunction
with the placement of labels, this is consistent with the re-
sults presented above (see Interaction analysis between
behavioral epochs and sleep phases).

When quantifying the ability to separate labels, the SbC
method shows the highest fidelity among four tested
methods and TCs effectively contribute to a better
classification.
It is useful to question whether the analysis in Figures 4, 5

yields putative clusters that do in fact describe the internal
state of the joint hippocampus-BLA system. Unfortunately, in
the absence of a ground truth, the only feasible way to gather
evidence for this is to quantify how well states tend to sepa-
rate labels, e.g., behavioral annotations. Here, our proxy for
performance are the stress values from the unfolding tech-
nique, which measure the degree of both the quality of the
projection and the ability of the state partitioning to sort out
the different labels (see Material and Methods, Affinity
scores). Extended Data Figure 6-1 shows that the volatility of
certain label positions in Figure 5B–D, in particular BLA rate
and PreSleep, is mirrored in their high relative stress contribu-
tions for Rat1 and Rat2. Generally speaking, most labels ap-
pear to make similar contributions to the stress, however.
Such a global measure of performance also allows us to

compare the clustering obtained by SbC to those ob-
tained with other methods. In Figure 6A, results from this
comparison are shown for three clustering techniques
commonly used for large datasets. In all cases, the num-
ber of clusters was set equal to that obtained with the
SbC method since stress values tend to depend on the
number of points to be projected. As an additional test,
we were also interested in the effective contribution of the
TCs in separating the labels. To do so, we performed the
SbC algorithm on a dataset not containing TCs. The data
show that the SbC achieves lower (i.e., better) stress val-
ues with respect to the other clustering methods. We also
note that neglecting TCs results in poorer performance in
two rats and in comparable values for the remaining ani-
mal, indicating that TCs are helpful in deciphering the
coding in these brain areas. It is a caveat that the number
of clusters differed slightly (it is not a direct parameter in
the SbC algorithm, see Materials and Methods, Clustering
from the SAPPHIRE plot). The relevance of TCs collected as
a function of time was examined in two random permuta-
tion tests (Fig. 6B). In the first, the time bins of TCs were
shuffled in blocks, which maintains their local patterns but
mismatches them with the band powers’ time points. In
the second, we permuted the TC identity at each time bin
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Figure 5. Unfolding projection of labels and clusters. A, Each cluster (1) visualized by the SAPPHIRE plot and extracted by SbC (2) rep-
resents a particular combination of band powers (higher magnitude from green to red) and TC values (same palette of Fig. 2A). The
11 labels (or judges, see Materials and Methods, Unfolding projection), characterizing each time frame and displayed in the SAPPHIRE

plot (2, orange box), are summarized in each cluster by their respective affinity scores (3). For each cluster, these values are com-
puted either as fractions of occurrences for discrete labels, e.g., “PreSleep”, “NREM”, or as average values for continuous ones,
e.g., “Hpc rate”, “Speed”. The affinity matrix is then used as a distance matrix to project both labels and clusters in a 2D space
(4; see text for details). B–D, Unfolding projections for Rat1, Rat2, and Rat3, respectively. Clusters identified by the SbC method
(gray-scale dots; brightness according to their mean PI values in the corresponding SAPPHIRE plots) and labels (red circles) are plot-
ted in the reduced MDS space. The size of the dots is proportional to their contribution to the total stress. There are 89, 89, and 93
clusters for Rat1, Rat2, and Rat3, respectively. E, Unfolding projection for all three rats and biplot of the relevant mean TC compo-
nents. Here, the color of the points is not related to any variable. The TCs were averaged over the leading bands but separately per
direction of influence. The arrows show the results from fitting a plane in the three-dimensional space of MDS-1, MDS-2 and a
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instead, which mismatches the various pairs of frequency
ranges with respect to the band powers. In two rats and
for both distributions, the true values indicate a significant
role of TC coordination in discriminating the labels. For
the remaining rat, coherently with Figure 6A, TC does
not seem to provide improved performance. However,
overall, we conjecture that the main contribution is pro-
vided by the LFP powers, which is reasonable given that
many labels are directly correlated to it, e.g., NREM or
REM phases or the presence of SWRs.

Robustness of the SAPPHIRE methodology against alterna-
tive preprocessing
We tested the proposed analysis, which combines the

SAPPHIRE plot with an unfolding method, also on an

additional featurization with fewer dimensions (5) and al-
ternative preprocessing (see Materials and Methods,
Combined dataset of LFPs and TCs). Extended Data
Figures 4-5, 4-6, 4-7 suggest that in this case the SAPPHIRE

plots for the three rats are dominated by the band powers,
which gives rise to a better separation of sleep phases
and the appearance of a more detailed kinetic annotation.
The strong clustering of “reward” labels in Extended Data
Figure 4-7, which is not based on simple features like net
BLA activity, is a striking example demonstrating that
changes to the pipeline will be able to uncover further in-
sights from these data in future work. There are two main
reasons why we prefer the pipeline used for Figure 4 here.
First, the original dimensionality (18) is such that TCs play
a significant role in identifying clusters. Conversely, in

Figure 6. Comparison and analysis of the unfolding stress values. Top, middle, and bottom, Results for Rat1, Rat2, and Rat3, re-
spectively. A, Stress values for SbC and clustering methods used commonly for large datasets. SbC results are included with and
without inclusion of TCs. Error bars represent the 95% confidence interval resulting from jackknife resampling. The numbers of clus-
ters are indicated on top. Note that a truly random embedding produces a distribution of much larger stress values, namely, ;0.38
for the 5th percentile (permutation of time bins after actual clustering). B, Distribution of stress values after application of the SbC
clustering to two different randomized datasets. In blue, the 72 TC values were jointly shuffled in blocks along time within each ses-
sion (randomizing only time while maintaining the coordination between TCs within each time block). The block size was equal to
the average autocorrelation length across the 72 TCs. In red, for every time point, the 72 TC values themselves were permuted (ran-
domizes only the pairs of power bands). For each type of shuffling, 100 permutations were performed. Vertical dashed lines indicate
the actual values, and p values are shown for each type of shuffling. The contribution of each unfolding label to the global stress
value is investigated in Extended Data Figure 6-1 (see Materials and Methods). The analogous results derived from the combined
dataset with alternative preprocessing are presented in Extended Data Figure 6-2.

continued
given mean TC. The direction gives the orientation of the plane, and the length is proportional to the slope. Blue arrows refer to hip-
pocampus ! BLA, red to the opposite. For the sake of visualization, Greek symbols and abbreviations of leading band names are
used. Only planes with significant slopes are depicted in this way (permutation test: n=271, p , 0.05). See details in Materials and
Methods, Unfolding projection.
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Extended Data Figures 4-5, 4-6, 4-7, TCs appear to not
be strongly represented in the retained five principal com-
ponents. Second, many of the smaller clusters suggested
by the kinetic annotation have no apparent interpretation
because of the coarseness of the available labels, which
makes their interpretation challenging. From Extended
Data Figure 6-2, it is clear that both preprocessing pipe-
lines give similar ranges of stress scores, thus offering no
reason to favor either. However, it is interesting to note
that the results for the contribution of TC to the stress val-
ues are inverted across rats. Whereas the data for Rat2
fail to establish TC as substantial for reducing stress in
Figure 6B, exactly the opposite is the case in Extended
Data Figure 6-2F, where only Rat2 establishes TC as sig-
nificant. Because we could not find hints in either behavior
or TC values that could explain this dissimilarity with the
other rats, we conjecture that the individuality of animals
might require preprocessing pipelines to be tailored to-
ward each animal, at least when the goal is to maximize
sensitivity. Overall, however, two rather different pipelines
(unweighted vs dynamically weighted features, dimen-
sionality of 18 vs 5), produce SAPPHIRE plots that preserve,
at a coarse level, both the mutual similarity of coarse
states (like NREM sleep) and, approximately, the stress
levels in the embedding. Thus, these data highlight the ro-
bustness of SbC, in particular relative to the three ap-
proaches used for comparison.

Discussion
We propose here a set of methods for an unsupervised

investigation of neural states and interaction patterns in
complex datasets featuring recordings from multiple brain
regions. We employed these methods to conduct a global
and exploratory analysis of directed interactions between
hippocampus and BLA, which relies on signal power
alone. From the recorded LFPs, we extracted band
powers in six different frequency bands and analyzed
them in a three-stage approach. The dataset allowed us
to conduct an extensive investigation of reciprocal influ-
ences between the two regions and to identify underlying
neural states characterized by different levels and pat-
terns of interactions across multiple epochs (Girardeau et
al., 2017b). The methodological pipeline we presented
above comprises unsupervised and scalable methods
that take advantage of the entire recorded time series
(see Materials and Methods, Progress index (PI) and
SAPPHIRE plot). As such, our methodology is well-suited to
a wide variety of complex neural data when the primary
goal is an exploratory analysis of recurrent neural pat-
terns. The three stages were: (1) a canonical comparison
of interactions between regions across different behav-
ioral and physiological time periods; (2) a high-resolution
visualization procedure adopted from methods for the
analysis of molecular dynamics simulations and (3) a
global inference of putative neural states from a dataset
combining time-resolved measures of reciprocal commu-
nication between the two brain regions with region-spe-
cific band powers. In the following discussion, we first
examine benefits and limitations of the tools and workflow

used during the analysis. We then focus on the biological
insights that our analysis offers by recapitulating its salient
aspects as well as discussing similarities and discrepan-
cies with previous literature results.

Methodological and theoretical insights
Directed interactions and the use of TC
We chose TC (Harnack et al., 2017; Fig. 1C,D; Materials

and Methods, Topological causality) to capture, at each
time frame, potential bidirectional interactions and to
quantify asymmetries in the strength of these reciprocal
influences. In the presence of cycles or clear nonlinearities
in the flow of information, it is probably more appropriate
to analyze the system as a whole, that is, to view the time
evolution of a variable Y not merely as the sum of its pres-
ent state and external inputs from X but rather as the re-
sult of the joint history of the values of both Y and X. This
is related to the concept of non-separability of the system,
which signifies that the history of Y contains redundant in-
formation about X that cannot be isolated and formally re-
moved from the equations of motions of Y (Sugihara et al.,
2012). Thus, it is better to adopt here the notion of inter-
dependence or “generalized synchrony/synchronization.”
This concept was established in multiple works in which
the authors developed approaches to robustly quantify in-
terdependence based on expansive mapping (Arnhold et
al., 1999; Quiroga et al., 2000; for a review, see Pereda et
al., 2005). These methods and TC have been applied to
EEG data (see also Stam, 2005; Tajima et al., 2015, 2017),
and their results encouraged the present application of
TC to LFP recordings in the hippocampus-BLA system.
Many sophisticated methods provide valuable alterna-

tives to evaluate nonlinear patterns of influence, such as
nonlinear GC, dynamic causal modeling, and transfer en-
tropy (Schreiber, 2000; Friston et al., 2003; Chen et al.,
2004; Ishiguro et al., 2008), which, importantly, rely on dif-
ferent paradigms of functional connectivity estimation
(Friston et al., 2013). However, we work with an actual
biological dataset, and the absence of a ground truth
makes it difficult to offer a sufficiently informative compar-
ison across methods. Some comparative evaluations per-
formed on test datasets can be found in the literature (see
Gourévitch et al., 2006; Harnack et al., 2017; Krakovská
et al., 2018).
The data-inferred interdependence and reciprocal influ-

ence between the two components of a nonlinear system dif-
fers from the event-driven cause and effect assessment
performed by neural intervention and manipulation (Harnack
et al., 2017; Jazayeri and Afraz, 2017). In the latter, a stimulus
defined by the experimenter serves a causative role for (tem-
porally) subsequent observations (the effect). This type of
causation is typically deemed unequivocal as long as proper
controls are in place. The main limitation is that most stimuli
or interventions will only relate indirectly to the function of the
brain. In contrast, a data-driven inference of directed interac-
tions can in principle address and study functional units of
the brain directly. In fact, these interactions could even be es-
timated accurately in a cause and effect sense if we were
confident that our time series contain all the information nec-
essary to fully describe the system’s dynamics (Granger,
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1980). However, this is an unrealistic scenario both in general
and for our analysis here given that we are able to observe
only two brain regions at a time. If our data are not complete
in the above sense, results have to be interpreted with cau-
tion. For example, some of the identified interactions may
simply be the result of an external signal “passing through” in
sequence. In other words, a driven interaction in the BLA-hip-
pocampus system need not indicate an important role for ei-
ther region in the process being observed. That said, TC
does go beyond linear models of connectivity like GC and
CCF, as, unlike those, it accounts for the non-separability of
the system and can help elucidate details of the information
exchange between hippocampus and amygdala (Sugihara et
al., 2012; Harnack et al., 2017). The fact that some but not all
of our results are congruent with prior results (Popa et al.,
2010; Stujenske et al., 2014; Girardeau et al., 2017a), as de-
tailed below, lends credibility to this mesoscopic, interaction-
centric paradigm of analysis.

On the use of spectrograms
The use of multitaper spectrograms, the extraction of

band powers from these, and the application of a quantile
(rank) transformation on the time-resolved power values
allowed us to compute TCs with globally consistent set-
tings (see Materials and Methods, Topological causality).
However, the adoption of this widespread filtering opera-
tion carries obvious downsides, in particular related to a
potential loss of information and the blurring of interac-
tions (de Cheveigné and Nelken, 2019). Specifically, as
spectrograms average across a time window, here 2 s, in-
formation on temporal details is lost, such as phases, or
can be smoothed out in time, such as variations in ampli-
tudes and details of SWRs. This blurring adds uncertainty
to the localization in time of the interaction, and, generally
speaking, can alter the apparent temporal precedence be-
tween two time series. However, as explained in Materials
and Methods, Alignment settings, we tried to minimize the
likelihood of such artifacts by deriving interactions from time
series that we obtained with the same time-frequency analy-
sis: the same spectrogram window was used for all the
bands, and we maintained a consistent alignment between
the resulting band powers throughout for deriving TCs (de
Cheveigné and Nelken, 2019).

On studying only power-power interactions
The study of cross-frequency and high-frequency interac-

tions largely involves phase-related measures, such as
phase-amplitude and phase-phase couplings, as well as co-
herence (Lisman and Jensen, 2013; Fries, 2015). Whereas
these analyses investigate fast timescales (;10ms), which
are commonly interpreted to report on genuine physiological
mechanisms, power-power or amplitude-amplitude interac-
tions, which we study here, have been examined less often
as their functional significance and mechanistic modalities
are less clear (Canolty and Knight, 2010; Siegel et al., 2012).
The higher timescales associated with these types of interac-
tions (;0.1–1 s) were observed in cross-frequency co-modu-
lations between u and g band powers in the hippocampus
in Shirvalkar et al. (2010) and Buzsáki et al. (2003) where the
authors employed similar spectrogram windows as those
used here. In addition, it has been reported that trains of

contiguous SWRs are detectable at these higher timescales
(Fernández-Ruiz et al., 2019). Thus, the construction of spec-
trograms with its accompanying change in information
content, helped by the nonlinear nature of TC, allows the in-
ference that the interactions reported in this work might differ
from and complement the ones found through a phase-
based analysis. Clearly, our analysis is best-suited to identify
mesoscopic interactions that are related to the generation of
sustained rhythms, of sequences of burst events and,
generally, of large irregular activity (Davidson et al.,
2009; Palmigiano et al., 2017; van Ede et al., 2018;
Fernández-Ruiz et al., 2019; Zich et al., 2020). This
does not allow the inverse conclusion that other phe-
nomena cannot be observed at all, however. As Figure
1E shows, the resultant TCs do in fact vary quickly in
time, which is further enhanced by the fact that we
zero non-significant values in the TC time series (see
Materials and Methods, Topological causality). In sum-
mary, our analysis goes beyond the (large) part of the
literature that deals with (filtered) signals at higher re-
solution and focuses on coherent oscillations.

Advantages of the proposed methodology for the identifi-
cation of neural states
We combined the information provided by the band

powers and TCs to search for a possible temporal recur-
rence of interaction patterns. To this end, we concate-
nated data from multiple recording sessions for each of
the rats, thus considering a large dataset (;106 time
frames). Importantly, we did not apply any pre-selection of
temporal windows to be analyzed by, e.g., restricting our-
selves to sleep phases, SWRs frames, or periods with high
firing rates. Moreover, the assessment of clustering perform-
ance employed a set of available labels commonly adopted
to characterize individual frames in these time series. The
SbCmethod performs better than three commonly employed
clustering tools for all the animals analyzed, and this remains
valid even if the data are preprocessed differently (Extended
Data Fig. 6-2). We hypothesize that the main advantage with
respect to other techniques consists in using explicitly the
temporal information. This is done by evaluating both the re-
currence of the states along the time series and the actual ki-
netic distance between them. Importantly, we showed that
TC provides in most of the cases a significant contribution in
discriminating the different behavioral and neural labels that
annotate the recordings. Generally, there are no particular
limitations in extending application of the SAPPHIRE plots and
subsequent analyses to other types of neural dataset with dif-
ferent experimental settings (see also Garolini et al., 2019).
For example, in a typical working memory experiment, the
animal repeatedly performs a task with fixed temporal struc-
ture under different contexts. The SAPPHIRE plot resolves this
single-trial structure and may thus be used to investigate
whether any of the trial epochs allow a better distinction of
one or more of the different contexts.

Biological insights
Physiological connection of hippocampus and BLA and
biological limitations of the analysis
The ventral part of the hippocampus projects directly to

the BLA, in contrast to the dorsal one, which is what is
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studied in the original dataset and analyzed here. However,
as remarked in Girardeau et al. (2017a), the interactions be-
tween the dorsal hippocampus and the BLA could be medi-
ated by indirect pathways, with particular attention given to
the entorhinal cortex (Bauer et al., 2007; Colgin, 2016). In this
regard, it is also important to note that our analysis relies only
on the LFP signals, across all bands, and does not use spike
information. Coordination between LFPs in the dorsal hippo-
campus and the BLA has in fact been observed in the u
(Seidenbecher et al., 2003; Bienvenu et al., 2012) and high-g
(Stujenske et al., 2014) bands, and the results of Girardeau
and colleagues highlight the importance of SWRs for such
coordinated activity. Importantly, the nature of the data and
the interactions we are able to analyze address purely the
issue of functional connectivity between the two regions
rather than the issue of direct projections.
There are further considerations that might limit the bio-

logical interpretation of the results obtained as follows. In
our analysis, band powers or other features of the LFP
signal have not been thresholded to single out selected
oscillatory events. Given this, the known 1/f trend in the
LFP spectrum in a broad and heterogenous state such as
NREM should be accounted for. Similarly, it has been ob-
served that b and part of the low-g oscillations in the hip-
pocampus arise from overlapping effects of SWRs during
NREM sleep (Oliva et al., 2018). Finally, volume conduc-
tion might interfere with signals in low-frequency bands
(Łȩski et al., 2013). Specifically for the d and u bands, we
tried to estimate its role in the Results section (see
Interaction analysis between behavioral epochs and sleep
phases) and in Extended Data Figure 2-2: while we can
reasonably deduce that the contribution is marginal for u ,
we did not arrive at the same conclusion for d . In particu-
lar, oscillations traveling from the hippocampus to the
BLA via volume conduction (Bertone-Cueto et al., 2020)
pose the scenario that BLA d -driven interactions detected
via TC are actually indicative of activity and interactions
within the hippocampus alone. All of these qualifying con-
siderations should be kept in mind when interpreting
some of the details of our results.

Interaction patterns in REM and NREM sleep
One of our main observations is that reciprocal influen-

ces between hippocampus and BLA are particularly sus-
tained during NREM sleep and that this mutual influence
is carried predominantly by the low-frequency bands,
namely d , u , and b . During REM sleep, a general reduc-
tion of interactions is observed in these bands and interar-
eal communication appears to be mediated by the
respective fast frequencies. The notable exception to this
are hippocampus-driven TCs in the u band, which are ac-
tually stronger than in NREM sleep. We conjecture that
the more complex interplay of different frequencies, along
with the shorter duration and lower regularity of activity in
REM sleep, is the likely culprit for the apparent lack of
correlation between the various interaction measures in
Figure 2B,C, bottom panels. While the slightly larger dif-
ferences between pre-sleep and post-sleep appearing in
NREM with respect to REM sleep (Figs. 2A, 3) appear to
corroborate the findings of the original analysis of the
same data (Girardeau et al., 2017b), our results for REM

sleep are at odds with the role REM sleep is commonly
assigned to play in consolidating emotional memories
(Genzel et al., 2015; Hutchison and Rathore, 2015; Boyce
et al., 2016). For example, the work of Popa et al. (2010)
demonstrated that an increase in the u coherence during
REM between hippocampus, BLA, and medial prefrontal
cortex (mPFC) correlated with the consolidation of condi-
tioned fear. In agreement with their Granger analysis, we
do observe an apparent, mostly one-sided influence of
the hippocampal u on the BLA u band (Fig. 2A). If we ex-
tend the view to other frequency bands, we find that the
BLA u influence on various hippocampal bands de-
creases significantly with respect to NREM sleep whereas
the hippocampal u band is significantly enhanced also in
its influence on higher BLA frequencies. However, and
this differs from expectation, we do not observe any sig-
nificant contribution of the u band, in either region, to
mark differences between pre-sleep and post-sleep REM
epochs (Fig. 2A). This is despite the fact that the BLA
u -driven TCs are one of the channels that appears to be
able to distinguish pre-run from post-run in the aversive
direction (Extended Data Fig. 2-1).
In another work (Stujenske et al., 2014), high-g BLA ac-

tivity during wakefulness was observed to drive ventral hip-
pocampal high frequencies during safety signals. In contrast,
we do not observe a specific pattern for the safe direction
(Extended Data Fig. 2-1), which is probably expected given
the established differences in the roles of the ventral and dor-
sal regions of the hippocampus (Fanselow and Dong, 2010).
During NREM sleep, reciprocal interactions between the two
lowest frequency ranges may originate instead from the se-
quential processing in hippocampus and BLA of slow oscilla-
tory signals originating from the cortex (Genzel et al., 2014,
2015). Interestingly, many of the significant differences be-
tween post-sleep and pre-sleep episodes or between aver-
sive and safe directions concern communication from the
BLA to the hippocampus with the b band of the amygdala
playing a prominent role (Fig. 3; Extended Data Fig. 3-2). To
our knowledge, b oscillation bursts in the amygdala have
been characterized in detail only in Stujenske et al. (2014)
where they were triggered by an auditory cue preceding an
aversive stimulus. Differently from that work, the data we ana-
lyzed are from experiments where rats perform a non-
Pavlovian spatial task. It is thus difficult to provide an exact
side-by-side comparison of our results for the b band to
those of Stujenske et al. (2014).

The role of SWRs
We provide additional evidence that SWRs are a hall-

mark of episodes in which the hippocampus exerts a di-
rected influence on the BLA whether during sleep or not
(Fig. 3; Extended Data Fig. 3-2). Interestingly, the TC anal-
ysis indicates that this influence is not confined to the rip-
ples band but also mediated through the d , u , and b
bands. SWRs play a prominent role in memory consolida-
tion and retrieval, since they seem to provide a mecha-
nism for facilitating the transfer of hippocampal memories
to connected brain regions (Girardeau and Zugaro, 2011;
Buzsáki, 2015; Joo and Frank, 2018; Laventure and
Benchenane, 2020). As shown in Girardeau and col-
leagues, hippocampal SWRs upmodulate precisely those
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BLA cells that contribute the most to the joint neural reac-
tivations in post-NREM sleep. In our analysis, while SWRs
are a significant indicator of directed interactions with the
BLA driven by the hippocampus (Fig. 3), there are barely
any significant differences in the interaction patterns, nei-
ther when considering the entire pre/post-sleep epochs
(Fig. 2A) nor when restricting the analysis to NREM sleep
(Fig. 3). To us, the most likely scenario explaining this lack
of contrast is threefold. First, the experiment employs
ubiquitous positive stimuli in the form of water rewards.
They are present whenever the rat is on the track (Fig. 1A)
and might provide a strong background signal of recipro-
cal communication. Second, the only clear evidence we
see of contrast between pre/post-epochs is for the pre/
post-run phases (Extended Data Fig. 2-1), which differ
only in that the negative stimuli were encountered more
recently (time scale of 2–3 h) in the post-run phase. This
suggests that the timing of memory retrieval/processing is
specific. Third, our power band-based analysis might lack
the necessary sensitivity, in particular in the ripples band.

A functional view of neural activity in the form of well-de-
fined states
The time series analyzed, i.e., LFP power band contri-

butions and the TCs derived from them, belong to a
mesoscopic level of observation. This representation of
the neuronal state of the joint BLA-hippocampus system
provided us with a coarse characterization of the system.
For example, in Figure 4 (Rat3), we identify, in an unsuper-
vised manner, four coarse states (from left to right): NREM
sleep with low interactions but high SWR activity; activity
involving emotional processing (both reward and fear)
with directed interactions but low SWRs; a waking but
seemingly inactive state with neither interactions nor
SWRs; finally, a mixed state of NREM sleep and activity
with emotional processing where both the reciprocal influ-
ence and SWRs are high. The (few) REM time points are
embedded in the first active state (second from the left),
and, to a lesser extent, also in the last mixed state, which
is consistent with the well-known similarities between
neural activities in REM and wake phases. The last (right-
most) state is the most interesting one given that it fea-
tures mostly SWRs, NREM sleep, and both aversive and
reward events while carrying a signature of strong interac-
tions. This latter state is a potential candidate for address-
ing the joint neuronal reactivations that capture the
emotional and contextual components of the run epoch
(Girardeau et al., 2017a). However, since we could not
find a clear distinction between pre-sleep and post-sleep
epochs in our unsupervised analysis, the data suggest ei-
ther that the discriminating patterns are too sporadic to
create well-defined states, or that information about spik-
ing activity is of critical importance and must be ac-
counted for in the dataset.
In the spirit of an exploratory analysis, we did not formu-

late a specific hypothesis in this work. We rather adopted
a set of computational tools, some of which were origi-
nally developed for completely different tasks, for an un-
biased, data-driven exploration of mutual interactions
between amygdala and hippocampus across different

types of neural activities. Because we use band powers
rather than raw LFPs to infer directed interactions be-
tween these two brain regions, our analysis is focused on
function at mesoscopic resolution rather than on anatom-
ic connections at the level of specific groups of neurons.
The ultimate scope of the results presented here is to
suggest new hypotheses to be tested by confirmatory re-
search (Schwab and Held, 2020). For example, we hy-
pothesize a role for the BLA b band in promoting memory
consolidation (Fig. 3), which is putatively associated with
the processing of negative stimuli (Extended Data Fig. 3-
2). Similarly, based on the third coarse state in Figure 4,
we conjectured that there is a neurologically homogene-
ous “resting” state in which amygdala and hippocampus
are, except for a striking absence of SWRs, active but de-
coupled. We hope that our work will help motivate future
analyses and experiments aimed at testing hypotheses
like the above.
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