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Computational Ligand Design

J. Apostolakist and A. Caflisch*

University of Zilrich, Winterthurerstrasse 190, CH-8057 Zlirich, Switzerland

Abstract: A variety of computational tools that are used to assist-drug design are reviewed.
Particular emphasis is given to the limitations and merits of different methodologies. Recently, a
number of general methods have been proposed for clustering compounds in classes of drug-
like and non-drug-like molecules. The usefulness of this classification for drug design is
discussed. The estimation of {relative) binding affinities is from a thecretical point of view the
most challenging part of ligand design. We review three methods for the estimation of binding
energies. Firstly, quantitative structure-activity relationships (QSAR) are presented. These have
gained significantly from recent developments of experimental technigues for combinatorial
synthesis and high-throughput screening as well as the use of powerful computational
procedures like genetic algorithms and neural networks for the derivation of models. Secondly,
empirical energy functions are shown to lead to more general models than standard QSAR,
since they are fitted to a varisty of complexes. They have been used recently with considerable
success. Thirdly, we briefly outline free energy calculations based on molecular dynamics
simulations, the method with the most sound theoretical foundation. Recent developments are
reestablishing the interest in this approach. In the last part of this review structure-based ligand
design programs are described. These are closely related to docking, with the difference that in
design, unlike in most docking procedures, ligands are built on a fragment-by-fragment basis.
Finally, a short description of our approach to computational combinatorial figand design is given.

Introduction

The object of drug design is to suggest easily
synthesizable molecules that act against the cause or
merely the symptoms of a particular disease or disorder.
Drug molecules usually bind at a target macromolecule
of the host or the disease-causing agent and alter the
macromolecules’ function. Simple as this principle may
sound it is complicated by the fact that molecular
recognition and binding are not yet understood in
terms of simple models that could lead the search for
new drugs in an unerring way. Furthermore, there are a
number of other issues that have to be addressed in
the design of therapeutic compounds. The activity of a
drug is seldomily absolutely specific. More often than
not undesired side effects on the host are observed.
The seriousness of these side effects reflects the
toxicity of the corresponding compound. The
determination of toxicity is a lengthy and costly
process. It is therefore desirable to filter out problematic
substances early on. Furthermcre, as molecuies
foreign to the host, drugs are often degraded or simply
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washed out before they have a chance to bind to their
target. Often the targets are even protected by physical
barriers, e.g. the cell membrane. The pharmacckinetic
properties together with the bioavailability of the drug
determine to which extent drug-target interaction will
take place. Finally, an ever increasing congern is the.
development of drug resistance through mutation of
the target molecules. It is therefore of particular interest
to find drugs that bind to evolutionary. stable binding
sites. The quality of a particular drug depends on the
mentioned of properties in' addition to its direct
effectiveness. This very short description of the aim of
drug design barely does justice to the work involved.
Starting from the identification of a suitable molecular
target and its structural characterization, it is not
unusual for drug development to take a decade or
more until a compound reaches the market. The
problems that have to be addressed during
development make the field extremely interdisciplinary
and although it is natural for every specific branch to
consider its own contributions of utmost importance it
becomes ever clearer that drug design cannot be
tackled within'a single research fieid.

It is the object of computer aided drug design
(CADD) to assist chemists and pharmacologists with
this daunting task, making use of the immense
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computational and data handiing power available
through modern computers. The algorithms used are
based on statistical or physical models. With statistical
methods it is possible to study the correlations
between different quantities, while physicai models are
useful for the understanding of the principles behind
‘these correlations. This is important for predictions,
since they usually correspond to some kind of
interpolation or extrapolation. The quality of the
physical model determines the reliability of the
predictions. CADD has been a promising method for a
long time. Recently, however, this promise has finally
started to be fulfiled with the extensive use and
successful application of computational methods in
many pharmaceutical and biotechnology companies

(1.

In this review we outline the methods most
commonly used by molecular modelers and medicinal
chemists in non-profit institutions and pharmaceutical
companies. We first present the computationatl tools for
predicting ligands for macromolecular targets whose
three-dimensional structure is not known. A distinction
is made between methods relying on the alignment of
the molecules in the data set and approaches which
overcome the alignment problem. Particular emphasis
is given to the relations between the different
approaches and methods to evaluate (relative) binding
energies. The recently published struciure-based
methods are then reviewed.

General Properties of Known Drugs

~As mentioned above, the biochemical function with
respect to a specific target is only one of the necessary
qualities of drugs. Properties like synthetic
accessibility, stability, oral availability, good
pharmacokinetic behavior, lack of toxicity and minor
addictive potential are of supreme importance. Many of
these depend on complex biochemical and physical
phenomena that are not well, if at all, understcod. For
the determination of toxic side effects in humans,
clinical trials are necessary and sometimes even not
sufficient. Cumulative side effects may take years to
make themselves noticed. One interesting approach 1o
address all of these issues at once in the drug
discovery process is to study the general features of
known drugs. After all, drug databases contain
substances that have been tested for exactly these
properties. Therefore, the working hypothesis is that it
_is possible to derive relevant information by abstraction.
Bemis and Murcko have performed a general analysis
of the shapes of molecules found in a commercially
available database of known drugs [2]. With the heip of
a simple graph theoretical approach that takes into
account only the two-dimensional structure it is
possible to decompose molecules into rings, side
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chains and linkers. The last two structural entities
correspond to non-cyclical chains. Linkers join rings,
while side chains end at atoms with only one neighbor.
Linkers and rings together form the framework of the
molecule, These definitions, which do not take into
account the chemical nature of atoms and bonds show
that the number of distinct frameworks {1179) in the
database is roughly one fourth the number of
compounds (5120). 783 frameworks are unique, i.e.
they are found in only one compound. More
interestingly, the shapes of half of the compounds in
the database are described by only 32 frameworks. The
most common ring structure is the six-membered ring.
306 acyclic compounds exist. Performing the analysis
with criteria that include more information on the
chemical structure {atom type, hybridization and bond
order) naturally leads to higher diversity in the results.
2506 frameworks, 1908 unique and 41 common
frameworks that account for roughly one fourth of the
total were found. The identification of structural
characteristics of known drugs is interesting for de
novo drug design. Common structures could be used
as initial fragments in drug design programs or
combinatorial chemistry libraries.

One possible weakness of the described method is
that to some extent chemical intuition was the guide for
the definition of the frameworks. The search for
common patterns is therefore limited by some more or
less arbitrary a priori decisions. Assuming the chemical
space of the database is not as intuitive, it is possible
that some features are not recognized. Neural
networks have often been used successfully for
pattern recognition. Ajay et al. [3] and Sadowski and
Kubinyi [4] have recently and independently from each
other proposed the use of neural networks to
distinguish between drugs and non-drugs. Ajay et al,
[3] have used a Bayesian network for this purpose. Ina
first attempt the descriptor set contained .one-
dimensional descriptors that described the global
properties of the molecules {molecular weight, number
of hydrogen bond donors, number of hydrogen bond
acceptors, log P, number of rotatable bonds, aromatic
density and the parameter « that specifies the degree
of branching of the bonding pattern). With this set
reasonable accuracy was obtained for the classification
of the molecules into drug-like and non-drug-like. The
second descriptor set they studied consisted of the
ISIS fingerprint of the compounds. The ISIS fingerprint
is a string of 166 bits, each of which indicates the
presence or absence of a particular moiety. Also with
this second set satisfactory results were obtained but it
was shown that the combination of the two sels
significantly reduces the error in classification (to
approximately 10%), even with a reduced version of
the 131IS fingerprint string with only 71 bits. Sadowski
and Kubinyi [4] used descriptors based on the atom
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types of Ghose and Crippen [5]. For every compound,
the input consisted of the count of the atom types. A
subset of 92 of the atom types which were populated at
least 20 times in the training set of 10,000 molecules
was used. In some ways this descripter is similar to the
ISIS fingerprint, since the atom types are correlated to
the moieties described by the ISIS keys. Feed forward
networks were used with 5 hidden neurons. The
results seem comparable fo those of Alay et al. [3].
There is one particularly interesting experiment in this
‘study, however. Whole sets of drugs with a particular
indication area (hormones and antagonists, drugs
acting on the nervous system, blood and
cardiovascular system and drugs acting on the
respiratory system) were successively removed from
the training set. It was shown that neural networks
trained without these sets were only slightly worse in
predicting these compounds as drug-like. This
indicates the existence of some very general rules or
constraints that drugs satisfy.

The derivation of general rules for the classification
of compounds as drug-fike or not is a very ambitious
project. Not only because such rules are expected o
be complicated, but mainly because the question that
is being addressed is not very well defined in the first
place. In the best case a number of features are
obtained that define the chemical space of a particular
database. There are, however, many reasons why a
compound is used as a drug and in extension why the
composition of the database is such as it is. Assuming
one does obtain an algorithm that can distinguish with
great accuracy hetween molecules similar to the cnes
found in a drug database and those that are not, the
guestion stilf remains as to what this information actually
tells us. In fact it is conceivable that molecules that
according to the derived rules are drug-like may even
be poor candidates as drugs for a new target, since
they may show higher cross-reactivity with the targets
of the drugs in the database.

Ajay et al. [3] discuss the possibility that the
application of such methods may be detrimental to the
exploration of new structures. They argue against this
on the bhasis of results according to which they could
extrapolate with good accuracy o a database that was
not used in training. Nevertheless, they indicate that
other techniques should also be used for the choice of
new compounds. In evaluating the results of the
described methods one sheould bear in mind a number
of historical facis that have formed the current drug
repertoire and that may possibly be responsible for
some of its characteristics. .

a) Many currenily used drugs are natural products
or their derivatives. Information obtained from
databases of drugs may to a large extent
correspond to rules of what is synthesizable in
nature.
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b) A number of related drugs exist due either to
patent reasons or simply because of the iterative
process of drug finding and optimization. A
neural network with 300 or more free parameters
(the weights} might easily describe reliably a
database of 5000 compounds if these are well
clustered. This indicates a danger of ovetfitting in
the sense that the classification in drugs and
non-drugs is not based on general properties
but on a relatively detailed description of the
individual clusters.

c) Most drugs currently used target active sites of
proteins with deep clefts. Surface binding is still
very hard to achieve. It is however also very
important for regulation cascades and signaling.
It is quite probable that the qualities of drugs
binding on relatively flat proiein surfaces will
differ from the qualities derived from current
databases. Larger compounds might be
necessary to prevent protein-protein
association. The structural characteristics of such
complexes are currently being analyzed {6].

The resuits obtained from neural network
simulations are notoriously difficult to interpret. Since it
has been shown that classification is possible it would
be interesting to proceed also with more
straightforward statisticai methods. Once the principle
of the classification is understood it will be more easy fo
determine to which extent it is useful to look for drug-
like compounds. None of these points is considered a
rigorous objection to the methods described in this
section. These methods are very promising and
address a very important and up to now widely
neglected aspect of the drug finding process. Exactly
because of the promise that these methods hold it is
important to take them to their limits, but not further.

Prediction of Binding Affinities

The prediction of biological propetties, especially of
binding affinities, from structure is a particularly active
and large field of research. The prediction of binding
affinities in the form of a scoring function is an important
part of any ligand design program and will be discussed
here seperately. The methods used to predict binding
affinities in combination with ligand design should
ideally be fast and accurate. An accurate energy
function should fulfill two requirements: For known
figands it should have its giobal minimum reasonably
close to the experimentally obtained conformation of
the complex, and it should rank different ligands
according to their binding affinity. These two
regquirements can be described as correct ranking in
conformational and chemical space, respectively. The
former is easier to achieve, because the free energy of
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" the tigand in solution identically cancels. The
approaches used can be subdivided in quantitative
structure activity relationship (QSAR) methods, empiri-
cal energy functions, and knowledge-based potentials
and free energy calculations based on maore general
physical methods such as molecular dynamics (7],

QSAR

The aim of a QSAR is to create models correlating
physicochemical properties to some biologically
relevant quantity [8]. In this secticn the discussion will
be limited to binding affinities, while it is understood
that the method can easily be applied to other
properiies, such as toxicity or reactivity. QSAR has
been defined as the relationships derived primarily by
empirical analysis of a data table whose columns are
numerical properties and whose rows are compounds.
The technique has evolved over the last thirty years to
a large and important field with" applications in many
biochemical and pharmacological problems. in the field
of drug design QSARs have been particularly important
in situations where a number of known effective
substances exist but little is known about the (structure
of the) target. The simplest QSAR models are based on
linear regression with a few variables. Nowadays neural
networks, genetic algorithms, and powerful statistical
methods like principal component analysis and partial
least squares regression are routinely employed for the
derivation of QSARs. The components necessary are a
training set of molecules with measured biological
activity, a set of physicochemical descriptors for these
molecules and the mathematical framework for the
model. The training set is typically relatively small, due
to experimental constraints. On the other hahd the
‘number of descriptors is very large. In general,
therefore, one has to deal with an underdetermined
system. This leads to the particular probiem of
overfitting. Qverfitting means that a goed fit for the
training set is obtained, although the actual predictive
value of the model is very poor. The predictive value
has to be assessed, for example, through the use of
cross-validation procedures. The leave one out
method is based on building the medel on only a part of
the training set (systematically leaving one data point
out). The value that is not used in the training is then
predicted. This is repeated for every data point leading
to an average error of prediction. The measure most
often used for the predictive guality of a model is the
crass-validated r,,2:

s} 1
oo
r&=1- Z(,Vf,exp‘ Vi,precﬁz/Z(}/i,exp ~ Vexp) (1)
=1 i=1 '
where nis the number of compounds. The values of
e tange between 1 and -w, Values above 0.5 indicate
reasonable predictivity for the model, while a value
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around zero indicates that the predictions are no better
than random. However, the leave-one-out method is
more a test of internal consistency than of real
predictive quality. For problems with enough data
points it is more rigorous to divide the data set in two or
more smaller sets that are used as training or test sefs.
The predictive quality is then assessed over the
average error for the test set.

The task of building a QSAR model can be
decomposed into two parts. First, the descriptors that
contain the information necessary for the prediction
have to be identified. It shouid be noted that the
descriptors do not have to be and indeed rarely are
independent. Second, the information contained in
these descriptors has to be extracted in an optimat way.
The second part is performed by one of the
mathematical models already mentioned. To avoid
overfitting both the number of descriptors and the
number of adjustable parameters (e.g. the weights in a
neural network) should be kept as low as possible,
while still obtaining a good fit for the training set. In a
sense the choice of the descriptors seems even more
important than the mathematical model used. The
prerequisite for solving any probiem is to find the
variables that describe the problem, to understand it in
a mathematical sense. This corresponds to the first
procedura, the choice of the best suited descriptors.
This part of the work can also be understood as the
interface between chemical intuition and the usually
complex QSAR models. One can use chemical intuition
to choose the descriptors and inversely when using an
automatic procedure to find the best descriptors one
can hope to understand something about the nature of
the problem and even the quality of the solution by
analyzing the set of (automatically) selected descriptors
{if possible in combination with the weights they obtain
in the mathematical model). This type of analysis can be
very useful as is shown in some of the work described
below.

Descriptors can be subdivided into iwo classes:
Two-dimensicnal (2D) and three-dimensional (3D)
descriptors. In the first group one finds features mainly
dependent on the functional groups and the atomic
properties of the compounds (octanol/water partition
coefficient (logP), polarizability, van der Waals volume,
surface area, molecular weight). Descriptors in the
second group depend on the structure and the
particuiar confermation of the molecules. A number of
very interesting and powerful methods have been
suggested recently for the determination of the best
suited descriptors. The genetic function approximation
(GFA) developed by Rogers is an elegant approach
that can be used to determine the best descriptors and
the functional form of the mode! at the same time [9].
The functional space of the models can be described
as the set of all possible linear combinations F (X} of M
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basis set functions ¢ (X) of the variables (descriptors)
X = {xq1, Xo...., Xm}:

M
FX) = ap+ ) ag(X) @)
k=1

The principle of the GFA is that a genetic algorithm is
used to search the space of basis set functions.
Genetic algorithms solve problems in an evolutionary
way [10,11]. Possible solutions (individuals} are coded
In bit-strings called chromosomes. An initial population
of individuals is created usually by randomization of the
strings. A fitness function is used to assess the quality
of the solutions. Individuals with the highest fitness
(best solutions) are more likely to be chosen as parents
for offspring and thus propagate their genetic material,
i.e. the information coded in the string, into the next
generation. Offspring is created by random mutation of
the parents string and/or crosscver (combination of the
information contained in two parent chromosomes). In
the genetic function approximation the chromoscmes
code for different basis set functions of different
features. For every chromosome the optimal weights
for the different basis set functions are determined by
least-squares regression. FFor the scoring function the
inverse of the lack of fit (LOF) measure is used:

LSE

LOF = s
(-22) .

Here LSE is the least squares error, ¢ is the number of
basis functions used {other than the constant), p is the
total number of features contained in all basis functions
and d is a-user-defined smoothing parameter. The
advantage of the LOF is that it contains a bias against
the inclusion of too many features in the model, and
thus protects against overfitting. The strength of this
bias is dependent on d. The GFA iesads to a set of
different highly predictive QSAR models for a number
of ligand sets (e.g. r;2=0.84 for the Selwood data set
[12], which contains 31 compounds described by 56
features). The authors correctly point out the efficiency
of genetic algorithms for sampiing in large spaces,
mainly comparing with incremental methods that
negtect cooperative effects of the descriptors. The fact
that for a single set different models (based on different
descriptors}y are very good indicates the possibility of
using mulliple QSARs to obtain averaged results and
possibly also an estimation of the validity of predictions.
Luke has used evolutionary programming {o obtain a
few additional solutions that were missed by GFA for
the same systems [13]. Independently, Kubinyi has
used ancther evolutionary algorithm to obtain similar
results for the Sebwocd data set [14].
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_ Evolutionary algorithms seem to be particularly
interesting for the choice of features. For the choice of
the actual functionat form neural networks offer an
extremely flexible possibikity in particutar for modeling
nonlinear relationships and they have often been used
for QSAR [15,16]. Wagener et al. have used Kohonen
networks with spatial autocorrelation vectors as input
[17]. A spatial autocorrelation vector has components
corresponding to the value of the autocorrelation of
some property at different distances. The property is
sampled over the surface of the ligands. The
autocorrelation values are therefore independent of
the relative alignment of the compounds. 1t was shown
that with this approach clustering of the compounds
according to activity is obtained. This is particularly
interesting, since Kohonen networks are self
organizing, i.e. the activity data are not used during
training of the network. The authors further showed
that by using the same input with a feed-forward neural
network trained by a back-propagation with momentum
procedure they obtain a model that predicts all except
one of the 31 corticosteroid binding globulin ligands
very well r,,2=0.63 and r.,2=0.84 with all ligands and
excluding the outlier, respectively). The outlier is the
only molecule of the set with a substituent at position 9.
This compound has been found o be problematic also
in other studies [18,19].

So and Karplus have combined genetic algorithms
for feature selection with neural networks for the
regression {20]. The main idea is to use the GA to find
features that optimize the predictive value of the
model. This was achieved by using the ry2 in the
scoring function. Thus features that lead to a high
predictivity are chosen. Application of this principle on
the Selwood data set leads to highly predictive models
with a r.,2=0.86. The authors suggest that with this
method close to optimal QSARs are obtained. In
agreement with previous studies [8,14] they find that
logP is a very important feature for this data set. it is
included in all their best models. Hydrophobicity is
expected to play a role in many QSAR studies since in
general it is considered to be the driving force of
binding. The analysis of the other descriptors used in
the best models shows that they alse make sense
chemically. Later the same authors combined their work
with the molecular simitarity matrices approach [19} to
extend their method to 3D QSAR [21]. A molecular
similarity matrix contains at every element aj the field
simiiarity of compounds jand j. One can use steric or
electrostatic fields. The GA was applied to find the
columns of the similarity matrices that can be used as
input to yield the highest predictivity. Neural networks
with 1 to N/& input neurons were used for the
regression, where N is the number of data points. On
the basis of the r.? they find that, depending on the
data set, 3-9 features are optimal, yielding r,,*-values
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between 0.73 and 0.84 for ning different data sets
[22].

3D descriptors depend cn the molecular fields of
the compounds and the overlap betwean them. One
particularly interesting method based on molecular
fields is the comparative molecular field analysis
(CoMFA) [18]. In CoMFA the molecules are
represented by their electrostatic and steric fields
sampled over a grid that surrounds the molecule. The
calculated fields at every point for every compound
enter as a row in a matrix that is the basis of the model.
This matrix has significantly less rows {compounds)
than columns (grid points), thus describing an
underdetermined system. However, because the field
values are strongly correlated between negighboring
points and similar compounds, it is possible to use
partial least squares (PLS) analysis [23] to obtain
models with few components and high predictivity.
Initially a solution of low dimension is found and then
the dimensionality is progressively increased, until the
o/ stops increasing. In the origina! application of
CoMFA to 21 ligands binding to two different steroid
binding globulins satisfactory results were obtained
{rey? was equal to 0.55 and 0.66 for the two proteins).
The most important free parameter of the method (and
of 3D methods in general) is the alignment of the
molecules with respect to each other and the grid. The
authors suggest a field fit procedure that maximizes the
overlap of the fields, however as will be discussed
shortly other possibilities are available. CoMFA has
become a standard technigue in QSAR, even though
there are a number of potential difficutties with its use.
Since it is a linear mapping technique and is based on
the similarity of the compounds evaluated, it may fai
when some of the compounds in the set are dissimilar
to all the others. Furthermore, in spite of the use of
PLS the system is still underdetermined and it is clear
that a number of different solutions of approximately
similar quality within the training set may exist [18].
These will in general differ in their predictions for the
biological activity of designed drugs. As has already
been mentioned this effect may be put to good use by
estimating the quality of predicticn over the standard
deviation of the output of different models. Finally, the
-CoMFA predictions correspond to enthalpies rather
than free energies, since the entropic contributions of
the solute and solvation effects are generally
neglected [24].

Alignment

30 QSAR methods are dependent on the relative
alignment of the different molecules. Gne possibility for
automatic alignment has already been mentioned with
the field fit performed in CoMFA. Alignment methods
are also important because they allow the identification
of pharmacophores and the screening of comnaound
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databases for molecules similar to a known inhibitor or
even the substrate. The application of alignment
algerithms is based on two main assumptions which are
not always given. The compounds should interact with
the same groups in the active site and the binding of
different molecules should not distort in different ways
the binding site. Kearsley [25] has suggested the steric
and electrostatic alignment method (SEAL), which
optimizes overlap functions of the type:

m

[
Ap== 2, D wexp (‘“”f‘f? ) )

E1 =1

where the subscript i and frun over the m atoms in the
first molecule and the n atoms in the second molecule,
respectively. The factor o determines the width of the
Gaussians describing the overlap between two atoms.
r; 15 the distance between the two atoms and the pre-
exponential factors wy are functions of the partial
charges g;and g;and the van der Waals radii A; and A;
of the atoms:

Wj = Weqgj + WsRi; (5)

The weight factors wg and wg set the relative
significance of the electrostatic and steric fit,
respectively. The relative position of the molecules is
described by the translation vector and four quaternion
variables for rotation. Quaternions have the advantage
that they do not show the singularities found for Euter
angles. They also permit faster manipulations on the
computer. The alignment is performed with a rational
function optimization aigorithm which expresses the
function to be optimized as a Padé approximant and
not as a Taylor series expansicn as is usual for
minimizers. Unlike the Taylor series the Padé
approximation does not diverge for large distances
from the point of expansion. The SEAL algorithm
allows the exhaustive search of possible alignments of
different molecules and has become a standard tool in
drug design. Klebe ef al. [26] have extended the SEAL
approach to include conformational optimization in
forsion space during the alignment. Singe this
optimization is local the method is combined with
conformational search performed by the program
MIMUMBA [27]. The approach is shown to lead to
highsr similarities than standard SEAL and to
reproduce experimental binding conformations.

Alignment and docking are related problems.
Therefore, it is not surprising that a number of
algorithms coriginally developed for docking have been
used also for alignment. Jones et a/. have adapted their
genetic algorithm [28] obtaining a procedure for the
automatic and simuitaneous alignment of a number of
molecules with a template molecule [29]. The
chromosome codes for the flexible torsion angles of
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the molecules and an additional integer which maps
features of the molecules with features of the template.
A least squares procedure is used to obtain an optimal
overlay corresponding to the coded mapping. The
scoring function is a weighted average of the internal
van der Waals energy of the molecules (to avoid non-
physical structures), a volume integrai for the common
volume between~each molecule and the-template
molecule, and a similarity score based on the feaiures
common to all molecules in the current overlay. In a
similar spirit, Lemmen et al. have based their alignment
procedure FLEXS [30,31] on the docking program
FLEXX [32]. Starting from an initial base fragment the
algorithm aligns the molecules adding one fragment
after another. The method is very fast and shows good
accuracy. On a test set of 284 experimentally given
alignments 60% of the examples can be reproduced
with an RMSD below 1.5A . This compares well with the
corresponding reproduction rate of 70% obtained with
docking [33].

Empirical
Potentials

Functions and Knowledge-based

The main problem of QSAR modeis is their limited
reliability and the fact that it is difficult to assess t¢ which

extent the model derived from a particular test set will

be applicable for new compounds. It is therefore of
interest to work with more general functions, sacrificing
accuracy for the specific case, but gaining in
robustness of predictions. Empiricat functions and
knowledge-based potentials can be understood as
very general 3D-QSARs. They differ from the usual
QSAR in two points: First, the training set contains
many different ligand types that bind at different
receptors. Second, the structure of the receptor itself
is also used in the derivation of the modeif. First
attempts to fit binding affinities of many different
complexes to a single equaticn showed aiready
promising resulis [34]. An equation of the fcliowing
form was used:

AGpinding= AGo + AGrp 2 F(AR, Ad) +
h-bonds

AGignic Z fIAR, Aa) + AGiipg Afipe + 4 GroiNrot - (6)
fonic

AGy is a constant that car be interpreted as the loss of
rotational and translational entropy, AGpp corresponds
to the contribution of an ideal hydrogen bond, AGsnic
corresponds to the contribution from an unperturbed
ionic interaction, AGy;p, gives the contribution from
lipophilic interactions and AG,; is the entropy loss
associated with the freezing of internal degrees of
freedom in the ligand. Agpe is the surface buried upen
binding and N, the number of fiexible torsion angles
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of the ligand that become frozen upon compléx
formation. The function f (AR, Ac) takes into account
the geometry of polar interaction in a very approximate
way. The fitting of AGpinding With this equation leads to a
root mean square error of approximately 1.9 keal/mol for
the training set of 45 protein ligand complexes. It has
also been used very effectively in drug design [35] and

_docking programs [32]. On the other hand a number of

problems are already evident from the functional form.
For example polar interactions are dependent not only
on the local geometry but also to a large extent on the
screening by the solvent. An approximate screening
has been included in later development of this energy

-function [36]. An even more general disadvantage of

this approach is the fact that this equation does not
contain any penalty terms for possible interactions that
do not take place. For example the burial of a surface
charge of a protein is connected with a significant loss
of solvation energy. The complexes in the training set
do not contain such situations, since they are
extremely unfavorable and would destroy binding. A
similar {but smaller) penaity is probably necessary for
uncharged hydrogen acceptors or donors that are
desolvated without satisfying their hydrogen bonding
potential. The statistics on bad interactions is poor

_simply because when there are too many of them

binding is destroyed and the structure of the complex
cannot be determined experimentally. In docking or

' design, conformations are created that show

unfavorable features that are not penalized, because
their presence was never expected from the training
data set (the complexes). Furthermore, the fact that the
regression is performed on different complexes lends
generality to this equation on the one hand but on the
other it leads to lower precision for the specific case.
Murray ef al. have shown how to address this problem
by using Bayesian regression [37]. They fit an
equation, which is similar in spitit to that of Béhm, o 82
crystallographically determined protein-ligand
complexes for which the binding affinity is known. This
data set is treated as the prior information while the
additional data consists of the affinities between a
number of ligands and thrombin. The equation is
optimized for the second data set, while still yielding
reasonable results for the larger and more general data
set. The obtained parameters for the equation lead to
higher predictivity (more general models).

An interesting coarse grained knowledge-based
poiential has been derived by DeWitte and
Shakhnovich [38]. In their approach very little physical
intuition enters in the model, in contrast to the
previcusly mentioned energy functions. In the
previous modeis it was assumed that hydrogen bonds
will be important, the training simply yields the weight
for the corresponding term. In the model of DeWitte
and Shakhnovich, the potential depends only on the
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formation of atomic contacts (if two atoms lie within 54
of each other) and was derived from a database of 106
complexes of ligands binding to proteins in pockets. A
different potential was derived for surface binding from
17 complexes of non-peptidic ligands binding on the
surface of proteins. As thé authors point out, this
distinction, although somewhat arbitrary, is necessary
to account for the influence of sclvation within the
simple potential used. The derived potentiais are
interesting because they yield very low energies for the
original complexes in comparison with designed
ligands. This fact can also be interpreted as a weakness
of the design algorithm, however, it is expected that
known ligands should score weli with the energy
function. '

- COMBINE is an interesting approach which is
formally similar to CoMFA [39]. The interaction energy
between the ligand and the protein is decomposed in a
residue-by-residue basis. With the help of partiai least
squaras regression, a set of weights that represent the
relative impartance of each residus-ligand interaction is
obtained. The method has been expanded to the use
of screened interactions in solution and was shown to
predict well ligands not included in the training set [40].
The advantage of the method is that it is based on
molecular mechanics potentials and a fitting which can
be understood to account for solvation or simply the
difference to the unbound state. COMBINE is a smart
combination of QSAR technigues with interaction
energies calculated with the AMBER force field
[41,42]. 1t is therefore expected and indeed shown to
lead to highly pradictive modeis.

Free Energy Calculations

Free energy calculations based on molecular
dynamics can be used to calculate binding affinities
between a ligand and the corresponding receptor. A
number of excellent reviews on the subject exist [43-
45]. Here we will briefly discuss approximate methods
based on the statistical thermodynamics of binding. A
short introduction te the formal appreach for the
calculation of free energies is given first. The
dissociation constant (Kp) depends cn the free energy
of binding (AG) which is the free energy difference
between the complex state and the state in which the
receptor and ligand are free in solution.

AG= RTih Kp (7)

where T is the femperature and R the gas censtant. To
calculaie AG che would have to simulate the process of
association or dissociation. Since the free energy is a
state function it depends only on the end states. In the
case of dissociation, it is only imporiant that in the
simulation the initial state corresponds to the complex
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and the final state fo the compounds fully solvated. It is
possible to take any path that connects these two
states, even an unphysical path. For example the
ligand can be gradually faded out from the binding site
and - in a separate simulation - grown into the solvent.
Although this is in general more efficient than the
physical simulation of the dissociation it is stilt very time-
consuming, due to the large size of the relevant
conformational space. However, one can circumvent
this problem by calculating AAG, the difference in
binding free energy between two different compounds
A and B. The free energy change along any closed
path is zero. Therefore, in the thermodynamic cycle
shown in Fig. 1 under consideratior of the direction of
the arrows one obtains:

AG12 + AGog —AG3a —AG13 =0,
ar
AAG = AGio — AGas = AG1g—~ AGo4 (8)

The simulation necessary to perform the calculation of
AG g starts with the complex between the receptor and
compound A. During the simuiation compound A is
gradually {usually discontinuously) mutated into
compound B. The mutation is controlied over the
coupling parameter A, which reflects the chemical
identity of the system, e.g. for the simulation from state
1 to state 3 in our cycle the system corresponds to the
receptor complexed with compound A (A=0) and
compound B (A=1)}. For intermediate values of A the
system corrasponds to a chimera between states 1 and
3. If the difference between A and B is smali enough
the muiation can be performed in one step. The
calculation of AGy proceeds in the same way in the
agueous environment.

The free energy difference can be calculated from
the simulation either by evaluating the derivative of the
free energy over the coupling parameter A and

~ performing a numerical integration, according to the

thermodynamic integration method [46]:

1 XN
so- [ Ba- [0 @

or with the help of the perturbation formula which

evaluates the ratio of the partition sums a! different
values of A [47]:

RN

AG = ~kgTin{e™ “kT o (10)

AH is the difference Hamiltonian of the systems A and
B, kgis the Bolizmann factor, T the temperature and (o,
is the ensemble average at \. It has oiten been
mentioned in the tliterature that both methods are
formally exact and equivalent [43]. This is of course
correct, however, there is a significant difference when
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Fig. (1). Thermodynamic cycle for the mutation between different ligands binding to the same receptor.

it comes to practical applications, The perturbation
methed is also formally exact when performed in a
single step, from a single ensemble, whereas in
thermodynamic integration it is essential that one
performs a number of simulations at different values of
A. This is important especially in the field of drug design
since there is a clear trend towards fast and simple
methods that need preferably only one simulation per
compound. Gerber et af. have performed estimations of
free energy changes in a single step with
thermodynamic integration, but as expected this lead
to poor results {48]. Liu ef al. have argued that in order
to perform a free energy calculation in one slep it is
necessary to include higher terms of the Taylor
expansion of the free energy [49]. These, however,
show increasingly worse convergence propetties.
Including the infinite number of terms of the complete
Taylor series is equivalent to the perturbation method.
Based on these observations the authors formulated a
scheme with which the free energy of a number of
ditfferent compounds could be estimated from a
simuiation of a single reference state. The scheme is

based on standard perturbation, and the main
contribution of the work lies in the definition of suitable
*non-physical” reference states which use soft core
potentials that allow better sampling with respect to the
final states [50]. It is shown that acceptable estimations .
of the relative free energy of different substituted
phenols in water can be obtained from a single
reference state simulation.

Relative free energies of conformations of the same
molecule can be calculated by simply sampling the
probability of the conformationat states of the molecule.
However, conformational transitions are often
hampered by energy barriers. In this case the statistics
are poor and convergence is very slow. This problem is
usually solved with the help of an umbrella potential
which is applied to keep the system at a certain position
atong the reaction coordinate, which describes the
conformational change. This umbrelia potential is often
& harmonic function of the reaction coordinate [43]. In
the adaptive umbrella sampling it is the negative of the
free energy caiculated up to that point and is thus very
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efficient at removing barriers {51]. These calculations
then lead to the potential of mean force of the system
with respect 1o the reaction coordinate. Kong and
Brooks have developed a method for the caloulation of
free energy differences between different systems
[52]. They treat the coupling parameter A as a variable
during dynamics. A fictittous mass for the A degree of
freedom is introduced, and A is allowed to evolve
according to Newtons taw. Along with A the chemjcal

identity of the system changes. This sc-called A- .

dynamics allows the use of potential of mean force
methods for the calculation of free energy differences
between different molecules. The use of more than
one coupling censtant to describe the single terms of
the changing Hamiltonian allows more efficient search
for optimal pathways for the transition. What is much
more interesting from the drug design point of view are
the virtual competition experiments. The use of a
number of coupling constants allows the system to
choose among an equal number of molecular states.
With this method the correct order of hydration {ree
energies for CoHg, CH30H, CH3SH, CH3CN is obtained
from a single simulation. Guo and Brooks have refined
the method and applied it to trypsin inhibitors and
obtained good qualitative agreement with more exact
calculations. [53,54].

Semi-empirical methods based on linear
approximations to the free energy have also been used
with significant success [55-57]. They approximate the
free energy of binding with an expression of the type
[55]:

8Gpina =12 K VEDpror (VERag) 0 (VI dpror— (VT Daad (14

where V& and v are the electrostatic and van der
Whaals interaction energies between the ligand and its
surroundings in protein (prot) or in agueous solution
(ag}. respectively. The ( denotes an ensemblie average
sampled over a molecular dynamics or Monte Carlo
trajectory [57]. The factor o is determined empirically.
The method does not seem to offer significant
advantages at first sight, however, it can be applied also
for ligands with significant differences in their two-
dimensicnai structure where standard free energy
calculations usually fail to converge. The mathod was
applied 1o five endothiapepsin inhibiters leading to an
a value of 0.181 and a maximurm error of 0.53 kcal/mol
for the absolute binding free energies of the training
set {55]. It has recently been used for siudying the
binding of 14 biotin analogues to avidin and yielded
resuits that correlate well with experimental data for 10
of the ligands [58]. For the cther four ligands the error
of more than 7 kcal/mol originates mainiy from
conformational changes in the protemn due to bulky
substituents.
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Structure-based

Ligand
Programs

Design

Ligand design programs have been reviewed
recently in great detail [59-62]. We wili therefore limit’
the discussion on a few approaches implemented in
the more widely distributed programs. Ligand design
programs build ligands under the influence of some
scoring function. The scoring function either
corresponds o the potential in the binding site of the
receptor or is a similarity function that biases the design
toward known.ligands. Ligands are built by connecting
smaller molecular fragmenis or even atoms. Alithough
atom-based approaches [63] have shown significant
flexibility with respect 1o the structures that can be
obtained, most methods build new compounds by
combining predefined fragments mainly for two
reasons: First, it is easier to control the synthesizability
and the chermical stability of the designed molecules
[64,65]. Second, fragments are more easily modeled,
since the model parameters, like partial charges and
force constants for the torsion angles, can often be
assumed to depend mainly on the fragment and only to
a lesser extent on the rest of the structure. With
fragment-based approaches the number of newly
created bonds is minimized.

The main ingredienis of design programs are the
docking procedure, the linking procedure and the
energy function for the evaluation of the docked
fragments and designed ligands. Since the problem of
design is so closely related to docking the two fields
have been developed in parallel. A short description of
the most widespread approaches to docking with
examples of corresponding programs will serve also as
a short introduction to the concepts used in molecular
design. DOCK, the eartiest docking program was based
on rigid docking and the use of geometrical criteria to
judge the complementarity between receptor and
ligand and was therefore fast enough to screen whole
databases for leads [68]. DOCK uses spheres
complementary to the receptor molecular surface to
create a space filling negative image of the receptor
site. Several atoms of the tigand are matched with
receptor spheres to define the orientation of the
ligand. Flexibility [67] and a more detailed force-field
type of energy function for scering [68] were included
in later development of the program. DOCK has been
able to find novel micromolar inhibitors of enzymes
[69,70]. Recently it has been further developed to
efficiently dock combinatorial libraries into a protein
binding site by using a combinaterial branch and bound
procedure [71].

FLEXX [32] is a very fast program for docking
medium sized flexible ligands. It makes use of a number
of methods that are typical of ligand design programs. It



Ligand Design

docks molecuies in a fragment-by-fragment basis and
uses Bohms empirical function for scoring [34]. It is fast
enough to allow screening of smail databases of
ligands and has been extended to predict water
molecules in the binding site [72].

A number of genetic algorithms have been
suggested for docking, lately [28,73,74]. They
combine speed with simplicity of concept. GOLD {28] is
based on a genetic algorithm that encodes the
approximate conformation of the ligands in the
chromosome and uses a simple least squares fitting
procadure to obtain the final conformation. [t also allows
flexibility around honds to hydrogen bond doners and
acceptors in the receptor. The method has been
validated on a large number of complexes leading to a
success rate (identification of the experimental binding
mode) of 70% [33]. Flexibility in the protein has been
taken into account in various degrees from using
approximate scoring functions [75] to allowing explicit
flexibility for side chains [78,77] to methods that at least
in principle allow arbitrary flexibility and are based on
molecular dynamics [78] or Monte Carlo simulations
[79]. However the inclusion of flexibility for the receptor
generally leads to a very significant loss in efficiency.

In general two main approaches to the design
probiem can be distinguished. One is the grow
approach as seen in programs such as GROW [80] and
GroupBuild [81], where starting from a manually docked
fragment the ligand is grown by adding fragment by
fragment in the binding site. This has the advantage
that chemical bonds are formed with correct geometry,
that the intraligand interactions can be taken into
account during the design, and that the number of
ligands to be generated can easily be controlled. On
the other hand, in the grow approach it is not
straightforward to use existing information on energy
minima and interesting binding pockets. For example
programs based on the growing approach often face
difficulties in creating ligands that bind tc a number of
independent pockets. Furthermore, the designed
maolecules depend crucially on the seed. That means
that a number of runs with different seeds have to be
performed. In these runs it is difficult to make use of
information obtained in previous runs except for the
trivial way of starting directly from a resuiting
conformation of a previcus simutation [64]. In SMoG
(8mall Molecule Growth) the growing is implemented
with a Monte Carlo type of approach [38,82]. A new
fragment is grown from the previous structure and if the
binding energy per atom decreases the new structure
Is accepted, while if it increases it is only accepted with
a probability proportional to exp(-Ag/T} where g=G/N
with G the free energy, N the number of atoms and T an
aigorithmic temperature [38,82).
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n the combinatorial approaches fragments or
probes are first docked in the binding site leading to
functionality maps [83-85]. In the case of MCSS [(85]
these maps contain the different low. energy
conformations for each fragment type. These are
clustered and the cluster representatives can
subsequently be linked together with smaller [86,87] or
larger (CAVEAT, [88] HOOK [89]) linkers. This
approach has the advantage that the individual
fragments are docked in optimal positions. On the
other hand the geometry of the new bonds is not
optimal and has to be accepted with a certain tolerance
initially. LUDI [35,90,91], probably the most widely
used de novo design program, makes extensive use of
empirical information derived from structural databases.
Interaction sites that indicate possible positions for
functionalities complementary to the receptor are
defined and used to dock fragments from a library.
Alternatively the output of GRID can be used for the
definition of interaction sites. The fragments are fitted
on the interaction sites with the algorithm published by
Kabsch [92] and are connectad with small linkers.
Interaction geometries were derived from structural
data on small organic molecules. The energy function
used is the empirical function by Bohm [34].

The computational combinatorial ligand design
(CCLD,) [86] approach was initially based on docking of
functional groups with MCSS [85]. The fragments were
ranked according to an approximated binding free
energy whose solvation component was assumed {o
be the sum of electrostatic and non-polar contributions.
The electrostatic term is obtained through the solution
of the linearized Poisson Boltzmann equation [93-95],
while the non-polar term is assumed to be proportional
to the solvent accessible surface. CCLD creates two
lists of fragment pairs, the first containing overlapping
{i.e. mutually excluding} fragments and the second
containing bonding fragments {i.e. fragments that can
be bound by-small linkers). Starting from every
fragment in turn CCLD creates ligands by linking the
docked fragments with the most favorable of small
linkers. To avoid combinatorial explosion growing is
discontinued when the average binding free energy of
the fragments in the new ligand exceeds a user
specified threshold. With the help of this approach
novel compounds have been suggested for thrombin
that show low micromelar binding affinity. [96]. A new
approach for docking fragments (SEED [97]) has been
implemented recently. As mentioned previously, the
main advantage of SEED over other docking programs
is the comprehensive treatment of electrostatics in an
efficient and accurate manner. Electrostatic solvation
energy is decomposed in three contributions. The
desolvation of the protein is calculated with the simple
field approximation and integration of the energy
density over the fragment volume. The interaction
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energy between the receptcr and the fragment and the
desolvation of the fragment are both calculated with the
help of the Generalized Born formula [98,99]. This
scheme has been validated by comparison to the
results obtained from finite difference solution of the
Poisson equation [93-95]. Apart from the more
accurate energy function, SEED has an additional
advantage over MCSS, namely, that not only minima of
the fragment positions are saved. Also other low
energy conformations are kept for the creation of new
ligands. This is based on the experience that in MCSS
particularly good binding pockets will attract the
fragments obscuring other low energy conformations.
CCLD was used to create larger ligands from the
fragments docked with SEED in the thrombin active
site. Several of the de nove designed ligands
resembled in structure and interactions a number of
well known thrombin inhibitors [97].

At this stage a final note on the energy functions
used seems necessary. Ligand design can be
understood as the extension of the docking problem
into chemical space. Tha degrees of freedom to be
optimized are not only the positional and
conformational variables of a particular compound, but,
additionally, its chemical identity. This point of view
makes one important problem in the field of ligand
design particularly clear: The guakty of the scoring or
energy function used to evaluate the different
solutions. When the search space is very limited as for
example in the first programs that performed rigid
docking [66] a very simple energy function based on
geometrical criteria was sufficient to recognize the
correctly docked structures. When flexibiiity in the
ligand (and the protein) is allowed the effect of
solvation has to be {aken into account to avoid
sampling irrelevant parts of the conformational space
[79]. A simple example shows the higher quality
requirements on the scoring function for design
purposes: Assuming the charge on an atom in a
designed ligand is a (continuous or discrete) variable of
the optimization, any simple force-field-based energy
function would tend to maximize its absolute value
[100]. This is however in disagreement with ampirical
data. Although sometimes high affinity may be due to
ionic interactions, more ofien than not the desolvation
of full charges on the ligand and the protein is stronger
than the direct interacticn. Desolvation is the change in
the solvation energy of the ligand and the receptor,
upon complex formation. This further indicates that the
scoring function should correspond to a difference
between the free and the compiexed states. The
calculation of such differences is not necessary in
docking because the term corresponding to the free
state identically cancels. Accurate and reliable
prediction of the absolute binding free energy for a
medium-sized flexible ligand is currently beyond the
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fimits of routine calculations, since it also includes
finding the most probable conformations in water and
averaging with the correct thermodynamic weights.
Furthermore, in ligand design free energies are
assumed to be additive, although of course it is clear
that this is only a crude approximation [101]. The main
task for a scoring function in a ligand design program is
to find the conformations with the lowest energies for
gvery chemical species {be that an atom, fragment or
camplete ligand) and in the case of different chemical
entities (for example a benzene and a guanidinium
docking in the same binding pocket) to decide which
yields the lowest binding free energy. Both tasks and
especially the latter are not straightforward and will most
probably have to be addressed at different levels of
accuracy during different stages of the design process.

Outiook

Drug design is a truly interdiéo%piinary subject. It is
not expected that in the next few vyears any single

~method or approach will monepolize the discovery of

new drugs. Different methods will support each other.
Cross-fertilization between the disciplines is already
evident when one compares computational and
experimental approaches, such as MCSS [85] and SAR
by NMR [102,103] and MSCS [104]. Also the
combinatorial approach to design is more than
reminiscent of the principle of combinatorial libraries
[71,86]. One particularly interesting paper by Weber &t
al. exemplifies the synergies that one would expect in
the future. A genetic algorithm was used in conjunction
with a combinatorial library to obtain compounds with
submicromolar affinity to thrombin [105]. The problem
of the prediction of binding affinity was solved a priori
by using experimentally determined binding constants
as scoring function in the genetic algorithm.
Computational methods will continue to play an
increasingly important role in the drug design process
since they are not only helpful for experimental
approaches (e.g. refinement in X-ray crystallography
{108]) but also contribute directly to the design and
discovery of new drugs [1,107]. A particularly
interesting new direction to follow is the development
of metheds to address toxicity and bicavailability from
the very beginning of the design process. Further, the
increasing amount of data on human gene sequances
and the developmenti of methods to reliably predict
protein structures from their sequence [108] is spurring
additional interest in new theoreticai and computational
approaches not only for drug design, but also for target
finding and characterization.
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