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ABSTRACT: A new analysis of the 20 ps equilibrium folding/unfolding molecular dynamics 8 9
simulations of the three-stranded antiparallel -sheet miniprotein (beta3s) in implicit solvent is

presented. The conformation space is reduced in dimensionality by introduction of linear 0 ‘\ 6
combinations of hydrogen bond distances as the collective variables making use of a specially 3 ~
adapted principal component analysis (PCA); ie., to make structured conformations more o

1 X

pronounced, only the formed bonds are included in determining the principal components. Itis 1

shown that a three-dimensional (3D) subspace gives a meaningful representation of the folding
behavior. The first component, to which eight native hydrogen bonds make the major ¢
contribution (four in each beta hairpin), is found to play the role of the reaction coordinate for -5
the overall folding process, while the second and third components distinguish the structured
conformations. The representative points of the trajectory in the 3D space are grouped into
conformational clusters that correspond to locally stable conformations of beta3s identified in -3 0 5
earlier work. A simplified kinetic network based on the three components is constructed, and it
is complemented by a hydrodynamic analysis. The latter, making use of “passive tracers” in 3D space, indicates that the folding
flow is much more complex than suggested by the kinetic network. A 2D representation of streamlines shows there are vortices
which correspond to repeated local rearrangement, not only around minima of the free energy surface but also in flat regions
between minima. The vortices revealed by the hydrodynamic analysis are apparently not evident in folding pathways generated
by transition-path sampling. Making use of the fact that the values of the collective hydrogen bond variables are linearly related to
the Cartesian coordinate space, the RMSD between clusters is determined. Interestingly, the transition rates show an
approximate exponential correlation with distance in the hydrogen bond subspace. Comparison with the many published studies
shows good agreement with the present analysis for the parts that can be compared, supporting the robust character of our
understanding of this “hydrogen atom” of protein folding.

A
\

1. INTRODUCTION determine the free energy surface (FES) of the folding reaction
as a function of a small number (often two) of collective

A complete description of how proteins fold into their native | : _
variables that include the essential features; examples of

state is one of the primary objectives of structural biology. In

principle, computer programs for molecular dynamics (MD) coordinates that have been used are the radius of gyration,

simulations, such as CHARMM,' AMBER,> and Desmond,’ the fraction of native contacts, and a set of hydrogen bonds.>™®
can provide details about the folding process in the form of Another approacllloislto calculate the free energy disconnectivity
time-dependent positions and velocities of the atoms graphs (FEDG),'"™"* which show the populations of various
constituting the protein chain as the protein progresses from free energy basins at equilibrium and the barriers by which
the unfolded to the native state. Because of the time scale of these basins are connected. A related approach constructs
folding for even small fast folding proteins (us to ms), such equilibrium kinetic networks (EKNs), in which the protein
folding simulations have only recently become possible using conformations along a long MD trajectory with many folding/
special computer hardware.* However, even when statistically unfolding events are divided into clusters on the basis of kinetic
significant numbers of such trajectories become more widely

available, as they will, their utilization for understanding the Received: February 19, 2013

essential features of the folding process requires special Revised:  April 23, 2013

techniques for their interpretation. One approach is to Published: April 28, 2013
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connectivity and/or root-mean-square deviation (RMSD) of
the conformations.'>'® The FEDG and EKN can be projected
on a one-dimensional reaction coordinate to give a one-
dimensional free energy profile (FEP) for the folding process.'”
Also, the conformation space can be reduced to a space of a few
collective variables using principal component analysis'® and
various nonlinear reduction methods,'”™>® as in the previous
studied of protein folding.***”**

The antiparallel S-sheet miniprotein (beta3s, Figure 1) is one
of the few systems for which the protein folding reaction has

19. 18 917 16
v{r }
10 11 12 13 ¢
W““"\ by 60
v C 14

Figure 1. Native structure of beta3s. The lower part of the protein
corresponds to the N-terminal hairpin, and the upper part, to the C-
terminal hairpin. The dashed lines indicate hydrogen bonds.

been simulated in sufficient detail, albeit with an implicit
solvent model, to make possible meamngful applications of the
analysis methods mentioned above.”® An all- atom representa-
tion was employed, and the CHARMM program' was used to
calculate “equilibrium” folding and unfolding trajectories; the
temperature for the simulations (330 K) was chosen so that the
denatured and native state were 51gn1ﬁcant1y populated at
equilibrium. Ferrara and Caflisch,” and later Marai et al,’

have used the fractions of native contacts formed in the N-
terminal (residues 1—13) and C-terminal (residues 7—20) f-
hairpins as the essential coordinates. Qi et al.>' performed an
extensive analysis based on the genetic neural network (GNN)
method of So and Karplus®®* to find optimum collective
variables to describe the folding reaction. They found that the
hydrogen bond distances between residues 3 and 10 and 5 and
8 in the N-terminal hairpin and those between residues 11 and
18 and 13 and 16 in the C-terminal hairpin are most important;
in fact, the sum of these distances is a good simple reaction
coordinate for the overall description of the folding process.
Carr and Wales have built an FEDG and examined specific
pathways of folding,>® while Rao and Caflisch®* have
constructed the EKN for the folding process. Most folding
events followed two pathways: in one of them (most frequent),
the C-terminal f-hairpin is formed first followed by the N-
terminal f-hairpin, and in the other (less frequent), these
hairpins are formed in reverse order. A more detailed kinetic
analysis® showed that the conformations that have the N-
terminal hairpin formed and the C-terminal unstructured and
those with the C-terminal hairpin formed and the N-terminal
unstructured correspond to free energy basins which are
separated from the native state basin by the transition state
ensembles. Further studies of beta3s folding have mainly
focused on the consideration of one-dimensional FEPs by the
projection of the EKN on a single progress coordinate” >,
This coordinate was determlned in various ways, using the
direct pg,q method of Du et al.*” and its modifications, such as
the node- pfold (Rao et al.*®) and Prold(Teommie) (Snow et al. *!and
Rao et al.*"), Piowr (Krivov and Karplus 7), and the mean first
passage time (MFPT) (Park et al.**). All of these methods lead
to similar results for beta3s folding.>”*® Also, recently Zheng et
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al.* used the LSDMap method?® to reduce the conformation
space of beta3s to a few collective variables that describe the
protein behavior on different time scales. Comparisons with a
number of these studies are made in this manuscript.

All of the analyses of beta3s mentioned above have been
based on a set of equilibrium folding/unfolding trajectories of
up to 20 s in length reported previously.’> We use the same
(20 ps) trajectory data in the present study. The conformation
space is characterized with the hydrogen bond distances and
reduced to a three-dimensional (3D) space of collective
variables with the PCA method. To make structured
conformations more pronounced, only the formed bonds are
taken into consideration. The representative points are grouped
into clusters of conformations, and a spatial (3D) kinetic
network is constructed, which shows not only how the clusters
are connected but also how they are disposed in the 3D
conformation space. The collective variables corresponding to
the first three PCA components are projected onto the
hydrogen bond space to determine the most representative
bonds.

The analysis of folding kinetics is complemented by a
“hydrodynamic” description of the folding process (Chekmarev
et al.*). It is based on a reduced space determined with the
modified PCA method. In the hydrodynamic approach, the
calculated folding trajectories are used to determine the fluxes
of the representative points of the system in the reduced space
from which the vector fields of folding flows and the
“streamlines” of the flows are constructed. In contrast to the
FESs, which determine the probability for the system to be
found in a certain conformation state, such flows show the
direction in which the system proceeds in local regions of the
conformation space. This leads to more insight into the actual
folding dynamics and provides an efficient separation of
different folding pathways, which makes it ideally suited for
studying beta3s. The tracer paths representing the “streamlines”
of folding flows are calculated to examine the dynamics of
beta3s folding. For an earlier application of the hydrodynamic
approach to an SH3 domain, see Kalgin et al.*** Beta3s is of
interest for applying the hydrodynamic analysis not only
because it has been extensively studied with different
approaches as mentioned above. Also, the earlier studies have
indicated that the beta3s folding dynamics is complex, in part
due to the fact that the denatured state consists of a large
“entropic” region, but also has a helical basin and several
misfolded traps.

The paper is organized as follows. Section 2 describes the
methods we used to perform molecular dynamics simulations
(2.1), to characterize the conformation space and collective
variables (2.2), to construct one-dimensional FEP (2.3), to
cluster conformations (2.4), to analyze secondary structures
(2.5), and to present the folding behavior in the form of
“hydrodynamic” flows and the paths of passive tracers (2.6 and
2.7, respectively). Section 3 presents the results of the study
and their discussion, including the clustering of the
representative points (3.1), the spatial kinetic network (3.2),
the hydrodynamic picture of the folding dynamics and its
comparison with the FES (3.3), and the dependence of the
rates of transitions between the clusters upon the distances
between the clusters (3.4). Section 4 contains a concluding
discussion.
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2. METHODS

2.1. Simulation System and Molecular Dynamics
Simulations. The designed three-stranded antiparallel 20-
residue peptide (called beta3s) (Thrl-Trp2-lle3-Gln4-AsnS-
Gly6-Ser7-Thr8-Lys9-Trp10-Tyr11-Gln12-Asn13-Gly14-SerlS-
Thr16-Lys17-1le18-Tyr19-Thr20 with charged termini*’) was
modeled with the CHARMM program." All heavy atoms and
the hydrogen atoms bound to nitrogen or oxygen atoms were
considered explicitly; the PARAM19 force field* and a default
cutoff of 7.5 A for the nonbonding interactions were used. A
mean-field approximation based on the solvent-accessible
surface (SAS) was employed to describe the main effects of
the aqueous solvent.* It has been shown® that, at T = 330 K,
irrespective of the initial conformation, this model yields
reversible folding of the solvated beta3s to the conformation
determined by NMR* (23 of the 26 nuclear Overhauser effect
constraints are satisfied). The neglect of collisions with water
molecules (frictional effects) in the simulations with the
implicit solvent model leads to rates that are about 100 times
faster than the experimental values. However, importantly, the
relative rates of folding for different secondary structural
elements are comparable to the values observed experimentally;
i.e., helices fold in about 1 ns,™ P-hairpins in about 10 ns,> and
triple-stranded f-sheets in about 100 ns’' compared to
experimental values of ~0.1,°* ~1,°% and ~10 us,*” respectively.

The simulations were performed with a time step of 2 fs
using the Berendsen thermostat (coupling constant of S ps) at
T = 330 K. The number of folded and unfolded conformations
at this temperature has shown that for the present protein
model it is slightly above the melting temperature.> Ten MD
trajectories with different initial distributions of atomic
velocities generated in a previous study of the Caflisch
group,® each of 2 us length, were grouped into a single
“equilibrium” trajectory. During the total time of 20 us, the
protein experiences about 100 folding/unfolding events.>* The
atomic coordinates (“frames”) were saved every 20 ps, which
resulted in 10° snapshots.

2.2. Conformation Space and Collective Variables. As
mentioned in the Introduction, various variables can be used to
characterize the configuration of a protein. On the basis of the
results of the analysis of possible variables by Qi et al.,*" we
employed the hydrogen bond distances. For comparison, the
interatomic distances were tried but they were found to be less
efficient in separating representative points of the protein into
clusters (see the Supporting Information). Using hydrogen
bond distances, the configuration is determined by the
distances between the oxygen atom in the (CO); group and
the nitrogen atom in the (NH)]- group for lj — il > 2, where i
and j are the numbers of the residues (see Figure 1).

To simplify the description for further analysis, it is useful to
introduce a small number of collective variables. The reduced
variable space should be sufficient to represent the full
configuration space, while being orthogonal. Although, in
some cases, such variables can be selected on physical grounds,
as, for example, groups of native contacts for the final stage of
folding of the SH3 domain,*® an unbiased choice is preferable.
Many methods are available for this purpose. They include the
early quasiharmonic analysis,>* the PCA'® (in application to
protein folding, e.g., refs 27 and 28), as well as a variety of
methods in which the projection of a nonlinear manifold onto a
space of lower dimension is more or less effective in limiting
the overlap of the variables. Examples include the isomap
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(IM)," landmark isomap (LIM),*® local linear embedding
(LLE),”" Hessian locally linear embedding (HLLE),** full
correlation analysis (FCA),”> manifold sculpting (MS),**
diffusion map (DF),” and locally scaled diffusion map
(LSDMap)*® methods. In the present study, we tried a number
of these methods (PCA, LLE, FCA, and MS) but found that
each of them had certain failings (Supporting Information).
Consequently, we use a modification of the standard PCA
method, as described below, that was satisfactory for the beta3s
peptide.

One disadvantage of the standard PCA method in its

application to the present problem is that it poorly resolves
well-organized conformations among a large number of
unstructured conformations (Supporting Information, Figures
S1 and S2). This problem arises in beta3s at temperatures close
to and higher than the melting temperature, particularly in the
case of equilibrium folding when the protein spends a
comparably long time in the denatured state. One way to
solve this problem is to consider for the state vector a residue
contact vector, whose component for each pair of residues is
augmented if, and only if, the bond between these residues is
formed. With this restriction, the relative weight of the
unformed bonds, and thus the unstructured conformations,
decreases. This approach has been successfully used to study
folding of an amyloidogenic lattice protein (Palyanov et al.*”)
and off-lattice models of protein G and src SH3 domain (Hori
et al*®). The algorithm used in the present paper is described
in the Supporting Information. Briefly, for each current vector
of the hydrogen bond distances h = (hy, hy, .., hp), where D is
the number of possible hydrogen bonds (dimension of
conformation space), a conjugate vector of states p = (pl, )23
.., pp) is introduced, in which component p; is equal to 1 if the
corresponding hydrogen bond is formed and O otherwise.
Then, applying the standard PCA algorithm,"® the conforma-
tion space h is reduced to a K-space of collective variables g, g,,
..y & which are directed along the eigenvectors corresponding
to the largest eigenvalues. As a result, the protein conformation
with hydrogen bond distances ky, h,, .., hp is determined by the
values of the collective variables g; P, wyh, where w;
indicates the contribution of bond i into variable j; ie., the
original h = (h,, h,, ..., hp) space is mapped onto the reduced g
= (g1, g2 - gx) space of collective variables. Since the collective
variables are linear combinations of the original variables, they
are measured in the same units as the latter, i.e,, in angstroms.
In what follows, we refer to this algorithm as the hydrogen
bond PCA (HB PCA) method.
The coeflicients wy, determining the contributions of the
hydrogen bonds to the collective variables, are essential for the
interpretation of the present analysis. If w;; is small, it indicates
that the j collective variable does not capture the dynamics of
formation of the i bond, which must appear in another
collective variable. If w; is large, not only the value of w; but
also its sign is significant; it indicates whether bond i is forming
or breaking as g varies, i.e, whether the length of the bond
decreases or increases. It should be noted, however, that it is
not known a priori which sign of w; corresponds to the
formation (or the breaking) of the bond, because the PCA
algorithm does not distinguish between the positive and
negative directions of an eigenvector (they both are equally
acceptable). Consequently, this choice has to be based on the
general picture of the folding process.

In the present paper, we use a 3D space of collective
variables, g = (g,, g, --» &3), for the analysis, although this space
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could easily be extended to higher dimension. The spectrum of
the largest 25 eigenvalues is shown in Figure 2 (the eigenvalues

A

0.15

0.10

Eigenvalue

0.05

Mode number

Figure 2. Spectrum of the largest eigenvalues.

are normalized so that their sum is equal to 1). The first three
modes account for 30% of the data variation (calculated as a
sum of the corresponding eigenvalues'®). Although larger
percentages might be desirable, the fact that a large number of
small contributions are required to obtain significantly higher
percentages (e.g., 25 modes yield ~70%) suggests that their
inclusion would not change the analysis significantly. Also, we
have done some analysis with only the first two components
because of their simpler graphical representation; they account
for ~25% of the data.

2.3. One-Dimensional Free Energy Profile. To calculate
the one-dimensional free energy profile (FEP), we followed the
pfoldf method of Krivov and Karplus.'” The calculation is
started by constructing the equilibrium kinetic network (EKN).
For this, the chosen reaction coordinate in the g space was
divided into bins, and the protein conformations occurring
along the simulated folding trajectory were distributed among
these bins. These bins were considered to be the nodes of the
EKN. Having the EKN, the pgy4 value of node i (p;) was
calculated as the solution of the equation p; = Y, p;p; with the
boundary conditions py, = 1 and pgy = 0, where p; is the
probability for the system to be in node i, p;; is the probability
of transition from node j to i, A is the node corresponding to
the native state, and B to a “denatured” state. To determine the
FEP, node B was considered to represent every node not
belonging to the native basin. Each value p_ between 0 and 1
can then be used to cut the network into set A containing all
nodes with pgq > p. and set B containing the nodes with pg 4 <
pe For each cut, a point with the abscissa Z,/Z and the
ordinate AG = —kgT'In Z,/Z is obtained, where G is the free
energy, ky the Boltzmann constant, Z, the partition functions
of node A, Z the total partition function, and Z,5 the number of
EKN transitions between the two sets. To obtain the FEP along
the original reaction coordinate, the progress variable Z,/Z is
then transformed to this coordinate.

2.4. Clustering the Conformations. As a result of the
reduction of the conformation space, the representative points
are distributed in a 3D space of the collective variables, g = (g;,
& &) To divide these points into clusters, we used the
MCLUST method by Fraley and Raftery.>® In this method, the
collection of points is approximated by a set of multidimen-
sional (in our case 3D) Gaussian functions with generally
different covariance matrices and different weights. Each
function represents a cluster of the points. To determine the
optimal number of clusters and distribute the points among
them, a maximum-likelihood estimation is employed. To
perform the calculations, we used the MCLUST codes available
at the Web site shown in ref S6.
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2.5. Secondary Structure Analysis. As in the previous
studies,**>>*® protein conformations were discriminated
according to the secondary structure strings (SSSs) encoded
with the DSSP alphabet;57 i.e., the letters H, G, L E, B, T, S, and
“” stand for a-helix, 3;y-helix, 7-helix, extended, isolated f-
bridge, hydrogen bonded turn, bend, and unstructured
segments, respectively. With this coding, the native state
(Figure 1) is represented by the strinS% “-EEEETTEEEEEE-
TTEEEE-">* The program WORDOM">® was used to perform
the analysis.

2.6. “Hydrodynamic” Description of the Folding
Process. The hydrodynamic description of protein folding**
is based on the calculation of the transitions in the space of the
collective variables g. These transitions are organized into the
local transition probability fluxes j(g). In the case of three
variables, g = (g, g g3), the gi-component of the flow at a
point g is determined as

gl”—gl'>0 gl”—gl’<0
o (8 =1 > on(g,g)- D ng, g/t
88" (gCg*) 88" (gCg*)
(1)

where f is the total time length of the simulated events, n(g”,
g') is the total number of transitions from state g’ to g”, and g
C g* is a symbolic designation of the condition that the
transitions included in the sum have the straight line
connecting points g’ to g”, which crosses the plane g =
const within the square of unit length (typically of 1 A)
centered at point g. The first term on the right-hand side of the
equation corresponds to the transitions in the positive direction
of g;, and the second term, to those in the negative direction
(Figure 3). The g,- and g;-components of j(g) are determined

9s
” v\/ o
R v g
g'. /
/| .

Figure 3. Scheme illustrating eq 1. The red and blue arrows are for the
transitions in the positive and negative directions of g;. The light blue
square is the unit square.

in a similar way, except that one selects the transitions crossing
the planes g, = const and g; = const, respectively. With these
fluxes, the flow is divergence free; i.e., for every cell in the 3D
space, the incoming flow is equal to the outgoing flow. We note
that small values of the fluxes can be the result of a small
number of transitions between two states or a larger number of
transitions in one direction that are compensated by the
transitions in the opposite direction. This occurs when detailed
balance holds approximately as is expected in equilibrium
folding trajectories.

2.7. Visualization of the Streamlines. Once the fluxes
j(g) have been determined from the trajectories, it is possible to
construct the “streamlines” of the folding flows, ie., the lines
which are tangent to the local directions of the j(g) vectors. In
the case of two dimensions, they are easily obtained by
calculation of so-called stream function.” Due to the continuity
equation dj, /dg; + 0j,,/dg, = 0, the fluxes can be determined as
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Figure 4. Stereo view of the distribution of the representative points of beta3s in the 3D space of collective variables g = (g;, g5, g3)- Clusters are
numbered according to Table 1. The units of the g, g, and g; variables are in angstroms.

Table 1. Clusters of Protein Conformations

cluster”

1

10

11

12

13

14

15

16

17

W,

clst

21.5

3.9

2.6

3.1

3.0

2.5

5.0

7.6

S.1

3.3

44

4.6

3.2

8.4

8.7

3.4

9.7

b

N..°

str

523

939

2337

1173

773

631

1005

48567

33302

2347

5758

13206

3799

15590

47727

17009

63733

most populated structure? Wi cluster typef
-EEEETTEEEEEETTEEEE- 38.6 native
-EEEETTEEEEEETTEEE-- 37.0
-EEEETTEEEEEETTEEEE- 16.2
-EEEETTEEEEEETTEE--- 14.1
-EEEETTEEEEEEEEEEE-- 12.3 Cs-or
-EEEETTEEEEEEEEEEEE- 9.8
-EEEETTEEEEE-SS-EEE- 7.2 Cs-or+native
-EEEETTEEEEE-SS-EE-- S.6
-EEE-SSS-EEEETTEEEE- 46.1 Ns-or
-EEEESSSEEEEETTEEEE- S.5
-EEE-SSS-EEEETTEEEE- 22.3
-EEEESSSEEEEETTEEEE- 19.8
-EEEETTEEEEEETTEEE-- 8.4 Ns-or+native
-EE--SSS-EEEETTEEEE- 6.6
-HHHHHHHHHHHT------ 0.4 helical 1
--HHHHHHHHHHT------ 0.2
--SS-HHHHTTT------- 03 helical 2
--S§-HHHHHHHSS----- 0.3
-B-SSSSS--EEETTEE-B- 5.6 Ch-curl 1
-B--SSS---EEETTEE-B- 4.5
-B-SSSSS-EEEETTTEEE- 33 Ch-curl 2
-B-SSSS--EEEETTTEEE- 32
-EEEETTEEEE--SS----- LS others
-EEEETTEEEE-SSS----- 13
-EEEETTEEEEEETTEEEE- 7.1
----BTTEEEEEETTEEEE- 3.0
----- SS--EEEETTEEEE- 1.5
----SSS--EEEETTEEEE- 13
-EE-SSS-EE---SS---B- 0.7
-EEE-SSS-EEEEEEEEE-- 0.4
-EEEETTEEE---SS----- 0.6
-B---S§§-----SSS--B- 0.5
-EEETTTEEEETTTEEEE-- 0.3
----58§-----§§8§----- 02

“Cluster number. “Cluster weight equal to the number of representative points in the cluster relative to the total number of the points (in %). “The
number of conformations that have different secondary structure strings. “The secondary structure strings of the most populated conformations.
“Weight of the given conformation in the cluster (in %). T Corresponds to Figure 4.

jo = 0¥/dg, and j,, = —0¥/dg,, where W(gy, g) is the stream The stream function is constant at each streamline and changes

function. Then, ¥(g,, g,) can be calculated as

8=,
Y(g,g,) = f j, (8, 8) dg
g=0 =

from one streamline to another, so that the difference between
the stream functions for two streamlines determines the
fraction of the total flow in the “stream tube” between the
streamlines. We have used this approach to study folding of two
) model proteins, a lattice a-helical hairpin** and an off-lattice fyn
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SH3 domain,™ and found that the folding flows do not follow
the FES landscape.

Determining the stream function in a 3D space is not so
simple. In this case, the continuity equation leads to a 3D
vector potential,®® which does not offer a suitable means for
flow visualization (when the 3D flow is reduced to a 2D flow,
only a single component of the vector potential remains
nonzero, which is perpendicular to the 2D plane and represents
the stream function). Therefore, the streamlines of a 3D flow
are usually visualized by seeding the flow with weightless point
particles (“passive tracers”), which follow the streamlines of the
flow due to the absence of any inertia.® To calculate the paths
of the passive tracers, the equation

dg

dr (3)

is numerically integrated starting from various points of the g
space, where j(g) is the flux vector determined by eq 1, and 7 is
a parameter (“time”). Since j(g) are known only at the discrete
points of the g space, corresponding to the snapshots, their
values at intermediate points were calculated by a (linear)
interpolation between the neighborinﬁ points according to the
algorithm by Darmofal and Haimes.®" To initiate tracer paths,
we typically chose the points at which the flux vectors had the
largest values (see below).

=j(g)

3. RESULTS AND DISCUSSION

3.1. Three-Dimensional Distribution and Clustering of
the Representative Points. Figure 4 presents the distribu-
tion of the representative points in the 3D space of the
collective variables g = (g;, g, g;) obtained with the HB PCA
method (section 2.2). Clusters associated with different protein
conformations are colored in Figure 4 in accord with the color
palette. Table 1 shows the clustering of the points with the
MCLUST program;55’56 see section 2.4. The points are taken
from the 20 us equilibrium trajectory at T = 330 K at 20 ps
interval; thus, the total number of points is 10°. In Table 1, the
first column is the cluster number, and the second column
shows the relative number of points in the cluster (in
percentage of the total number of 10° points). Also, Table 1
contains information about the protein secondary structures
characteristic of each cluster. The third column presents the
number of conformations that have different SSSs, the fourth
column shows the SSSs of the two most populated secondary
structures, and the fifth column the weight of these structures in
the cluster. Finally, the last column indicates the type of the
representative protein conformation with which the cluster is
associated according to the SSSs. The representative con-
formations are labeled as in the previous studies of folding of
beta3s miniprotein;** >%3® je. “native” stands for native-like
structures, “Ns-or” for conformations in which the C-terminal
hairpin is formed and the N-terminal hairpin is unstructured
(“out of register”), “Cs-or” for conformations with the N-
terminal hairpin formed and the C-terminal unstructured, “Ch-
curl” for curl-like structures in which the C-terminal hairpin is
formed and the N-terminal is arranged antiparallel to the C-
terminal hairpin, and “helical” for conformations which contain
a helical region. To associate a cluster with a certain protein
conformation (the last column of Table 1), we took into
account not only the SSSs for the most populated secondary
structures but also the relative weights of these structures, W,
= Wy /Ny, where W, is the weight of the given structure in
the cluster (in percentage) and Ny, is the number of unique
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SSSs in the cluster (Table 1). Specifically, it was assumed that
the given cluster represents a certain protein conformation if
W,q 2 0.01 for this conformation. For example, cluster 13 has
as its most populated SSSs one that is very similar to those in
clusters 1 and 2, which were associated with the native state.
However, its relative weight is 1 order of magnitude less than
the weight in cluster 2 (~2 X 107> versus ~2 X 1072), so it is
considered separately.

We note that the variables g, g,, and g; in Figure 4, as well as
in similar figures below, are measured in angstrom units. The
distance between two points in the g space is found to be
approximately linearly proportional to the all-atom RMSD
between the protein conformations corresponding to these
points, and the coefficient of the proportionality is approx-
imately the same for all directions in the g space (Supporting
Information, Figure S7). Figure S presents the average RMSD
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Figure S. The all-atom RMSD as a function of the distance in the g
space. The solid line shows the best fit to the data with a slope of
~0.14.

30 35

as a function of g = [(gf — g1)? + (& — &)* + (& — &)1
where the upper indices 1 and 2 denote two different points in
g space. To calculate this dependence, 10° conformations were
chosen at random. It is seen that at the distances larger than the
hydrogen bond distances (g > 3.6 A), beyond which the protein
conformations do not overlap in the h space, the linear
proportionality holds well. According to the slope of the best fit
line, one unit in the g space corresponds to approximately 0.14
A in the RMSD space. It follows that the spatial distribution of
the points in the g = (g, g, g3) space that represent essentially
different conformations, in particular, the distribution of the
clusters, can also be viewed as a distribution in the all-atom
RMSD space, which complements the usual schematic
networks used in the past (see below).

According to Table 1, the first 11 clusters represent the
native, Cs-or, Ns-or, Ch-curl, and helical conformations and the
other 6 less structured conformations. The list of the structured
conformations is the same as in the previous stud-
es, 30347363843 Lyt the clustering results are somewhat
different; e.g,, instead of single clusters for the native-like and
Ns-or conformations,*>*® two clusters for each of these
conformations are observed. The present clustering is generally
consistent with the results of Zheng et al,**> where the FESs
were constructed as functions of two collective variables (for
details, see the Supporting Information). One variable
represented the first eigenfunction (the slowest collective
motion) and the other the second to fourth eigenfunctions for
different FESs (faster motions). Similar to this work, we
observe two clusters for the native-like conformations (clusters
1 and 2), a single cluster for the Cs-or conformations (cluster
3), two clusters for the Ns-or conformations (S and 6), and two
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clusters for the Ch-curl conformations (10 and 11). A
difference is that, instead of a single cluster for helical
conformations,*® two clusters (8 and 9) are observed, which
is in agreement with Krivov et al.*® In addition to these clusters,
two other clusters are observed. They are positioned between
the native cluster and the Cs-or and Ns-or clusters (clusters 4
and 7, respectively, in Figure 4) and contain mixtures of the
native-like and the corresponding Cs-or and Ns-or conforma-
tions (Table 1).

Table 2 compares the weights of the clusters for different
conformations with those previously calculated.***%*® For this

Table 2. Weights of Clusters (in %) from Previous and
Present Works

cluster type ~ KGA® pfoldfb REMD® CTMD? present work®
native 36.4 35.0 37.8 37.1 33.5
Cs-or 3.6 2.6 53 5.3 2.6
Ns-or 74 6.2 7.3 6.3 54
helical 11.6 11.2 12.8
Ch-curl 6.0 4.9 3.9 1.8 7.8

“Kinetic grouping analysis (KGA).>>% bpfold analysis based on an
equilibrium kinetic network (pfoldf).>® “Replica exchange molecular
dynamics (REMD).* 4Constant temperature molecular dynamics
(CTMD).* “Cs-or+native and Ns-or+native clusters are added to the
native cluster.

comparison, the intermediate Cs-or+native and Ns-or+native
state clusters were associated with the native state; ie., the
weight of the native cluster was calculated as a sum of the
weights of clusters 1, 2, 4, and 7. It is seen that the results are in
good agreement. Concerning the weight of the native state, it
has to be noted that secondary structure grouping resulted
previously in a native basin®® with about 35% of the snapshots
(the first basin on the cFEP in Figure 2), while clustering
according to all-atom RMSD with a 2.5 A threshold in that
work yielded a native basin with about 28% of the snapshots
(cFEP in Figure S4, Supporting Information of ref 38).

We recall that the clusters listed in Table 1, and also in Table
2, are associated with the protein conformations that have the
largest weights according to their SSSs, similar to what was
done previously.*>*%** Since these weights are not dominant
(Table 1), it cannot be ruled out that the clusters contain
considerable portions of less structured conformations or
conformations of different types. Some examples of unstruc-
tured conformations are shown in Supporting Information.

It is of interest to determine which hydrogen bonds make the
major contributions to the collective variables g, g, and g;.
Figure 6 shows the first eight bonds that have the largest
projections of the variable onto the hydrogen bond distance
space; in each case, the total contribution is about 50% (for the
contribution of the other bonds, see the Supporting
Information, Figures S8 and S9). The bonds involved in g
(the upper panel) are exactly the bonds Qi et al. have found
most appropriate to describe folding of beta3s,>" and Zheng et
al. have indicated as the bonds that make the major
contribution to the first “diffusion” coordinate.*® Moreover,
the contributions of different bonds are approximately equal, as
was assumed®' and confirmed® previously. A nonzero
projection of g, onto a bond indicates that g, changes as the
length of the bond changes. Since these eight bonds are
characteristic of the native state (Figure 1) and they contribute
in the same direction of g;, the coordinate g, determines the
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Figure 6. Fractions of the hydrogen bonds which make a major
contribution to the collective variables gj, g,, and g;. The figures at the
top of each bar denote the bond; the first figure is the number of the
residue with the oxygen atom, and the second figure is that with the
nitrogen atom. The empty and solid bars are for the bond
contributions to the negative and positive directions of the collective
variable, respectively. The numbers in percentage at the top of each
panel are the total contribution of the given bonds to the collective
variable.

deviation from the native state and can serve as a reaction
coordinate for an overall description of the folding process.
Moreover, the sum of the distances can also serve as a reaction
coordinate, as has been previously indicated by Qi et al.*'
The same above-mentioned eight bonds are observed for the
second variable g, (the middle panel of Figure 6), except that
bond 4—6 appears instead of bond 18—11. The former,
however, has a weight just 0.2% larger than that of the latter, so
that the 18—11 bond can be included equally well. The
principal difference between g; and g, is that the bonds all
contribute in the same direction in the former, while the bonds
contribute in different directions in the latter. Specifically, the
pairs of bonds 11—18 and 18—11 (which replaces the 4—6
bond) and 13—16 and 16—13 contribute in the negative
direction, and the pairs of bonds 3—10 and 10—3 and 5—8 and
8-S, in the positive direction. According to Figure 4, the
negative direction of g, corresponds to conformations in which
the C-terminal hairpin is unstructured (Cs-or), which is
consistent with the negative contribution of bonds 11-18,
18—11, 13—16, and 16—13 (Figure 1). A similar consistency is
observed for the positive direction of g, in which the N-
terminal hairpin unstructured conformations (Ns-or) reside
(Figure 4); here bonds 3—10, 10—3, 5—8, and 8—5 make the
corresponding positive contribution. Hence, the second
collective variable g, discriminates between the conformations
in which one hairpin is formed and the other is unstructured.
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The third variable g; (the bottom panel) has several bonds
characteristic of the deviation from the native state (8—5, 11—
18, 18—11, and 13—16), the bonds that appear when one
strand shifts with respect to the other (10—4, 11—19, and 19—
10), and one bond characteristic of the Ch-curl conformations
(18—2). In contrast to the other two variables, g; does not have
clear fingerprints of the Ch-curl and helical conformations. This
variable accumulates information about other conformations
(structured and unstructured) that is not captured by the
variables g; and g, The characteristic (occurring with a
pronounced probability) bonds in the Ch-curl and helical
structures are as follows: In the Ch-curl 1 cluster (see Table 1),
the bonds with probabilities not less than 0.5 (the numbers in
parentheses) are 13—16 (0.79), 2—18 (0.78), 20—2 (0.73), 19—
11 (0.68), 18—11 (0.64), 16—13 (0.62), 10—19 (0.55), and
11-19 (0.52), and in the Ch-curl 2 cluster, they are 10—19
(0.77), 2—18 (0.72), 19—10 (0.70), and 20—2 (0.62). The
number of different structures in the helical clusters is larger
than that in the Ch-curl clusters; therefore, the probability of
the most frequently occurring bonds is smaller than that in the
latter: in the helical 1 cluster, the bonds with the probabilities
not less than 0.2 are 10—6 (0.31), 11-7 (0.28), 13—9 (0.28),
12—8 (0.25), and 14—10 (0.22), and in the helical 2 cluster,
they are 11—7 (0.37), 12—8 (0.32), 13—9 (0.30), 10—6 (0.29),
14—10 (0.22), and 10—7 (0.20). These sets of the bonds are in
very good agreement with those previously found by Zheng et
al.” for the Ch-curl and helical structures.

3.2. Free Energy Profiles and Spatial Kinetic Network.
To obtain further insight into the significance of the reduced
coordinate space, Figure 7 compares three free energy profile
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Figure 7. One-dimensional free energy profile. Blue and red curves
show the profiles calculated with the pfold method by Krivov and
Karplus:'” the blue curve is for the reaction coordinate calculated as
the sum of distances for eight hydrogen bonds of the upper panel of
Figure 6 (similar to Qi et al*'), and the red curve is for g as the
reaction coordinate. The green curve is the profile obtained by the
summation of the representative points over g, and g; collective
variables.

(FEPs), based on the equilibrium simulation. To calculate two
of them, the pfoldf method suggested by Krivov and Karplus'’
was used. One profile (the blue curve) uses the sum of
distances for the above eight bonds as the reaction coordinate
(i.e., that used by Qi et al.>"), and the other (the red curve) the
collective variable g;; the reaction coordinate was divided into
bins of width 0.01 and 0.00S A, respectively. Since the reaction
coordinates are not identical, we matched their left and right
boundaries to compare the FEPs. It is seen that the profiles are
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in good agreement, confirming that the sum of the bond
distances' and the first principal coordinate determined with
the HB PCA method (section 2.2) can both serve as reaction
coordinates for the overall description of the folding process. It
should be noted that in both cases the helical conformations do
not form a basin on the FEP (Figure 7), similar to what Qi et
al3' observed, while the RMSD clustering reveals such a
basin.>® However, if the clustering is performed in the whole g
= (g g» &) space, ie, taking the elementary cubes in the g
space as the nodes to construct the EKN, the basin for helical
conformations appears (Supporting Information, Figure S10).
It was also interesting to calculate the FEP by direct summation
of the representative points of Figure 4 over the variables g, and
g3 for the current value of g; (the green curve), ie., not using
the EKN. It is seen that even in this case the basins for the
characteristic conformations are placed correctly, although the
overall profile is biased toward the native state; i.e., the free
energy difference between the native state and the other
structures is larger than that shown by the blue and red curves.

As has been shown in the previous works,*?%373%% the
native, Cs-or, Ns-or, Ch-curl, and helical clusters correspond to
the enthalpically stabilized basins on the FES, and all other, i.e,,
the unstructured conformations (see Table 1), form an
“entropic” basin through which the former basins are kinetically
connected. The distribution of clusters inside the entropic basin
in Figure 4 generally agrees with this picture of the kinetics.
More detailed information is obtained by calculating the
number of transitions between the clusters. For this, at each
subsequent 20 ps step, we determined the cluster in which the
representative point had the maximum probability of being
according to their Gaussian distributions (section 2.4). If the
system was found in a cluster which was different from the
cluster it had resided in, this event was counted as the
transition, and if in the same cluster, it increased the residence
time in the cluster. Figure 8 presents a spatial kinetic network,
which is based on the distribution of the representative points
in the 3D space of collective variables of Figure 4, the clustering
of the conformations of Table 1, and the calculated transitions
between the clusters. Balls and tubes represent, respectively, the
clusters and the transitions between them. Ball volumes are
proportional to the numbers of intracluster transitions (i.e., the
residence times in the clusters), and the tube cross sections to
the numbers of intercluster transitions. The latter are calculated
as one-half of the total number of the forward and backward
transitions between the two clusters; they were found to be
very similar, indicating that detailed balance is essentially
fulfilled (see Table S7 in the Supporting Information).

Figure 8 shows that the clusters that have similar
conformations (similar SSSs) are well connected, i.e., clusters
1 and 2 for the native conformations, clusters 5 and 6 for the
Ns-or conformations, clusters 8 and 9 for the helical
conformations, and clusters 10 and 11 for the Ch-curl
conformations. Also, it is seen that the “intermediate” clusters
(4 and 7) are much better connected to the native cluster than
to the corresponding Cs-or and Ns-or clusters, which supports
the association of these clusters with the native conformations.
Another feature of Figure 8 is that the native and intermediate
clusters are considerably better connected to the clusters
corresponding to unstructured conformations than to the
nearest Cs-or and Ns-or clusters. This indicates that the folding
pathways connect the native state with the entropic basin
mostly directly rather than through the Cs-or and Ns-or states,
in agreement with Krivov et al.3® We note that, in contrast to
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Figure 8. Stereo view of the spatial kinetic network. Clusters are numbered as in Table 1 and colored according to the palette of Figure 4. The units

of the g), g, and g; variables are in angstroms.
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Figure 9. Stereo view of passive tracer paths. The balls represent the native, Cs-or, Ns-or, Ch-curl, and helical clusters shown in Figure 8. The radii of

the balls are increased for illustrative purposes.

commonly constructed 2D kinetics networks, e.g., to Figure 7
in the work of Krivov et al.,*® the clusters of conformations are
not arbitrarily arranged in space, but they are positioned
according to their coordinates in the g space. Moreover,
because of the approximate proportionality between the
distances in the g and all-atom RMSD spaces (Figure S), the
relative distribution of the clusters in Figure 8 can be viewed
approximately as the corresponding distribution in the RMSD
space.

The results obtained here are consistent with those of Zheng
et al,** who employed the LSDMap technique by Rohrdanz et
al.*® and found that the first principal coordinate plays the role
of the reaction coordinate for the folding process and the
others, which correspond to smaller eigenvalues, discriminate
between the clusters of representative conformations of the
protein (basins on the FES). The difference is that, in contrast
to the variables we use, the variables used by Zheng et al.*®
correspond to different time scales, so that the spatial
distributions are “time biased” (see the Supporting Informa-
tion).

3.3. Hydrodynamic Analysis. Figure 9 presents 3D
passive tracers calculated with eq 3 in section 2.7. They were
initiated at 900 representative points of Figure 4 with the
largest fluxes j(g) and continued for some finite “time” 7.
According to eq 3, the lengths of the tracer paths are
proportional to the values of j(g). Therefore, the tracer paths
have different lengths; some of them, which were initiated at
the points with relatively small values of j(g) and/or cross the
regions with small values of j(g), are short, and the others,
corresponding to large values of j(g), are long. As can be seen
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from the definition of j(g) (section 2.6), they present the
average fluxes of transitions, so that a small value of the flux can
be due either to a small number of transitions or to good
detailed balance between neighboring states. Figure 9 makes
evident the fact that the dynamics of the folding process is
more complex than the kinetic network (Figure 8) seems to
imply; i.e., the streamlines of folding flow are not organized into
bundles connecting the clusters of characteristic conformations,
as is suggested by the simple kinetic network, but they span all
intermediate regions between the clusters.

A clearer picture of the folding dynamics is obtained in the
2D representation, where the flow of the system from the
unfolded to folded state can be mapped directly on the FES
constructed from the simulation.**** The FES depends on the
two variables g, and g, and is given by F(g, g,) = —kzT In[P(g;,
)], where [P(g,, g,)] is the probability of the system to be at
the point (g;, g;). The latter was obtained by summing the
points of Figure 4 over the g; variable. To determine the
streamlines, we calculated the stream function using eq 2. The
2D folding fluxes j, (g1, &) and j,,(g1, §&») necessary for these

calculations were obtained by summing these components of
the 3D fluxes j(g) over g;, similar to the way P(g, g) was
calculated. Panel a of Figure 10 shows the results. The FES is
relatively flat, but it has several well pronounced local minima
(colored in blue-green), which correspond to the clusters of
conformations that are indicated in Table 1 and Figures 4, 8,
and 9. The folding flow field is quite complex. A number of
small regions restricted by closed streamlines are present. As
has been shown previously,***> such regions correspond to
vortices of folding flows, which arise from repeated local
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Figure 10. Two-dimensional (gl, gz) presentation: (a) Free energy
surface (in kcal/mol). The blue local minima on the surface
correspond to the clusters indicated in Table 1 and Figures 4, 8,
and 9. The white, gray, and black lines correspond to the stream
function values ¥ = —0.01, ¥ = 0, and ¥ = 0.01, respectively. Closed
white and black streamlines correspond to the vortex regions, in which
the rotation of folding flows is, respectively, clockwise and
anticlockwise. (b) The paths of passive tracers.

rearrangements of the protein, e.g., due to its partial folding and
unfolding. Some vortices are formed at the local minima, which
is consistent with the FES landscape and signals that the
protein spends some time in these minima. However, many of
them are formed in flat regions of the FES between the minima,
indicating that the folding flows do not generally follow the
FES landscape, in agreement with the previous results for an a-
helical hairpin** and the fyn SH3 domain.*

Panel b of Figure 10 also shows the 2D tracer paths initiated
at the same points as in Figure 9. They were calculated using eq
3 with the above-mentioned 2D fluxes j, (g1, £&,) and j,,(g1,8>)- A

comparison of the paths of the passive tracers in Figure 10b
with the streamlines (Figure 10a) shows that the vortex regions
restricted by closed streamlines represent basins of attraction of
tracer paths, in which the tracer paths follow scroll-like
trajectories to the end. However, as has previously been
shown for the fyn SH3 domain,*® the closed streamlines do not
mean that the system is completely trapped in such regions;
these regions are open in the direction that extends the 2D
space to a 3D space. The tracer paths initiated beside these
regions reveal 3D eddies that contain attractors at which the
tracer paths behave as saddle trajectories; i.e., they approach the
attractor, execute several cycles, and then leave it** One
example is shown in Figure 11, which presents 3D tracer paths
in a region spanning the Cs-or basin and its vicinity; in panels a
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Figure 11. The 3D tracer paths for a region at the Cs-or basin (see
text for details). The blue and red dots denote the initial and terminal
points of the tracers in this region.

and b of Figure 10, this region corresponds to the white closed
streamline at the Cs-or basin (labeled as 3) and the clockwise
scroll-like tracer path, respectively.

3.4. Relation of Transition Rates to Cluster Distances.
It is of interest to see if the rates of transitions between the
clusters of representative conformations indicated in Table 1
and Figures 4, 8, and 9 correlate with the distances between the
clusters. We use as the distance measure that in g space; i.e., the
distance between the clusters was determined as the distance
between their centers in the g space (dg). The rate of transitions
from cluster i to cluster j was calculated as r; = N;/t,/N,
where N, is the number of transitions from cluster i to j (which
was taken as one-half of the total number of the forward and
backward transitions between these clusters, since detailed
balance is satisfied), f,, is the total simulation time equal to 20
us, and N; is the number of conformations in cluster i among
the 10° conformations stored (see Table 1). Figure 12 shows
the results. We see that there is a clear distance dependence. It
is essentially exponential, although considerable scatter is
present. This dependence is in accord with the fact that the
distance in g space is correlated with the change in hydrogen
bonding required to go from one cluster to another (section

Figure 12. Rates of transitions between the clusters of conformations
vs the distances between the centers of the clusters in the g space.
Crosses and circles are for the transitions from smaller and larger
populated clusters, respectively. The dashed line corresponds to the
best fit for the crosses [r ~ exp(—0.55d,)], and the solid line, to that
for the circles [r ~ exp(—0.584,)].

dx.doi.org/10.1021/jp401742y | J. Phys. Chem. B 2013, 117, 6092—6105



The Journal of Physical Chemistry B

3.1). However, there is no direct correlation between the rate of
transitions from cluster i to j and the change of the number of
hydrogen bonds in cluster i with respect to cluster j (results not
shown). This is probably due to the fact that the collective
variables g}, g,, and g; obtained with the HB PCA algorithm
(section 3.1) involve hydrogen bonds which have different
importance to the folding process. In the Supporting
Information, we also show the corresponding results for the
atomic coordinate space, determined as the RMSD between the
atomic conformations which had the values of the collective
variables g, g,, and g; nearest to the centers of the clusters in g
space (Figure S11, Supporting Information). The correlation is
much poorer here, which is somewhat surprising in view of
Figure S, according to which the RMSD distance is
approximately linear proportional to the distance in the g
space. The correlation is, however, reestablished on a coarse-
grain scale, when the rates of transitions and the corresponding
RMSD distances are averaged over the bins in the g space (as
large as S A in size); see the Supporting Information (Figure
S12). These results suggest that the clustering of the
conformations on the basis of hydrogen bonds plays a key
role for the correlation between the rates of transitions and the
distances, and the distance in the g space is most appropriate to
represent this correlation.

4. CONCLUDING DISCUSSION

We have analyzed the kinetics and dynamics of folding of a
three-stranded antiparallel -sheet miniprotein (beta3s) at T =
330 K, which is slightly above the melting temperature.
Simulations were performed using the CHARMM program’
with the implicit solvent approach. Using the Berendsen
thermostat to simulate constant temperature conditions, a 20
us MD trajectory has been studied. To characterize protein
conformations, we employed the hydrogen bond distances
between (CO); and (NH)}- backbone groups, where i and j are
the numbers of the residues and |j — il > 2. The hydrogen
bonds involving the C- and N-terminal residues were discarded
to avoid noise due to fluctuations of the termini. To facilitate
the analysis, this multidimensional bond space was reduced to a
3D space of the most representative collective variables. The
standard PCA method and some recent nonlinear methods,
such as the local linear embedding (LLE),*" full correlation
analysis (FCA),” and the manifold sculpting (MS)** methods,
have been found not to be satisfactory for obtaining a manifold
of the representative points that could be successfully grouped
into clusters (see Supporting Information). Motivated by the
suggestion that this is due to the fact that the structured
conformations have too low a weight in comparison with the
unstructured ones (which is typical for the equilibrium folding
above the melting temperature), we used a bond PCA
method;*”?® i.e., only the formed hydrogen bonds were taken
to contribute to the state vector; we refer to this approach as
the hydrogen bond PCA (HB PCA) method. Three principal
components corresponding to the largest eigenvalues were used
as the collective variables to represent the conformation space
of the protein g = (g1, £ g3)-

The resulting spatial distribution of the representative points
in the 3D space was then clustered using the MCLUST method
of Fraley and Raftery.>> With this method, the representative
points are divided into 17 clusters. Structural analysis of the
protein conformations in the clusters, based on the secondary-
structure strings (SSSs),%” similar to those used in previous
studies,***>*® showed that 11 clusters can be associated with
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well structured protein conformations and the other 6 clusters
with mostly unstructured conformations. On the basis of the
similarity of the SSSs, the clusters for the structured
conformations were grouped into five “consolidated” clusters,
which represent locally stable characteristic conformations that
were described previously,***>** and two intermediate clusters.
The former represent the native-like conformations, the Cs-or
conformations in which the N-terminal hairpin is formed and
the C-terminal unstructured, the Ns-or conformations with the
C-terminal hairpin formed and the N-terminal unstructured,
the Ch-curl conformations presenting curl-like structures with
the C-terminal hairpin formed, and the helical conformations
that contain a helical region. The latter two intermediate
clusters contain mixtures of the Ns-or or Cs-or conformations
with the native-like conformations and are positioned between
the native cluster and the Ns-or or Cs-or clusters, respectively.
With these intermediate clusters joined to the native cluster, the
residence probabilities of the system in the native, Ns-or and
Cs-or, Ch-curl and helical clusters are in good agreement with
the results of the previous studies.***® The clusters which
present unstructured conformations form a “pool” of
conformations (an “entropic” basin®®) that connects the
clusters for the structured conformations. We note that recent
beta3s simulations with a free-energy guided sampling protocol
indicate that the first basin on the cFEP of beta3s has a
statistical weight of only 20% using residues 3—18 for RMSD
clusteriné with 2.5 A threshold (Figure S of Zhou and
Caflisch™), which is congruent with the 21% weight of cluster 1
alone. The origin of these differences and their relation to
convergence of the simulations is under investigation.

By counting the numbers of transitions between the clusters,
the 3D distribution of the representative points can be
presented in the form of a spatial kinetic network. In contrast
to the previously constructed equilibrium kinetic net-
works,** 733 it shows not only how the clusters of
conformations are connected but also how they are disposed
in a 3D (g or RMSD) conformation space. Two interesting
observations emerge from the additional 3D-spatial informa-
tion. First, the helical and Ch-curl clusters are both kinetically
and geometrically the most distant from the native cluster.
Second, the spatial kinetic network reveals that the native and
intermediate clusters are considerably better connected to the
clusters of unstructured conformations than to the nearest Cs-
or and Ns-or clusters. This indicates that the folding pathways
tend to connect the native-like states directly with the entropic
basin rather than through the Cs-or and Ns-or states. A possible
explanation of the large kinetic distance of the Ns-or (Cs-or)
state from the native cluster is that the N-terminal strand (C-
terminal strand) is out of register by one residue in Ns-or (Cs-
or). Thus, all side chains of the out-of-register, misfolded strand
point in the wrong orientation with respect to the rest of the
three-stranded p-sheet which requires almost complete
unnfolding of the N-terminal (C-terminal) hairpin for reaching
the native cluster despite the relatively small backbone
deviation between Ns-or (Cs-or) and the native structure.

Projecting the collective variables g, g, and g; onto the
hydrogen bond space has allowed further insight into the
folding process. The largest eight projections of g, and g,, with
the total contribution to each variable of about 50%,
correspond to the bonds that Qi et al®! have found most
appropriate for describing the folding of beta3s and Zheng et
al.* have indicated to be the bonds that make the major
contribution to the reaction coordinate. Because these bonds
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determine the native contacts in the N- and C-terminal
hairpins, the larger the projections of g; and g, onto the bonds,
the more distant the conformation from the native state. For g,
which is the first principal component, the projections have the
same signs, so that it measures the distance from the native
state. Consequently, the first principal component can serve as
a good reaction coordinate for the overall description of the
folding process, similar to the sum of the distances of the
bonds.®> Constructing the free energy profiles'” along g; and
the sum of the bond distances has shown that these profiles are
very similar. In contrast to g;, the projections of the second
component, g, onto the bond space have different signs. This
variable discriminates between the Ns-or and Cs-or con-
formations, which are positioned along g, approximately
symmetrically with respect to the native state. The third
component, g; “accumulates” information about all other
conformations (structured and unstructured) that is not
captured by the variables g, and g,.

The analysis of the folding kinetics has been amplified by use
of the “hydrodynamic” description,**™* which demonstrates
that the folding dynamics are much more complex than the
kinetic network suggests. Most indicative is a comparison of the
folding streamlines with the FES in the g;, g, space. A number
of small regions restricted by closed streamlines occur. They
correspond to vortices of folding flows. As has been previously
shown, such vortices are the result of repeated partial folding
and unfolding of the protein.***> Some vortices are located at
the FES minima corresponding to clusters of conformations,
which indicates that the protein spends some time in these
minima, in accord with the conventional view of the FES
landscape. However, many vortices occur in relatively flat
regions of the FES outside the minima, which indicates that the
folding flows do not generally follow the FES landscape. This is
in agreement with what we previously observed for an a-helical
hairpin** and fyn SH3 domain.*®

An approach recently proposed by Zheng et al.%® in their
study of folding of a Trp-cage mini-protein is of interest to
compare with the “hydrodynamic” description of the folding
process.** On the basis of a set of protein conformations
obtained with replica exchange molecular dynamics and some
estimates for the reaction rates between the clusters of
conformations in a reduced configuration space, they generated
folding pathways using transition-path theory.***® Depending
on their distance in the configuration space, the folding
pathways were grouped into folding “tubes”, somewhat similar
to stream tubes (section 2.7). However, in contrast to the latter,
the folding tubes were found to follow the FES. The essential
difference between the hydrodynamic**** and Zheng et al.*®
approaches is that, in the former, the local fluxes of transitions
are not necessarily directed to the folded state of the protein,
while in the latter the pathways are based exclusively on the
folding fluxes that advance pg,q (the committor probability)
values (see also Noé et al.%®). Because of this, for example, the
pathways thus calculated ignore possible vortex regions on the
FES, in which the protein repeatedly partially folds and unfolds.

One essential feature of the collective variables g, g,, and g;
determined with the HB PCA algorithm is that the transition
rates approximately correlate with the distances between the
clusters of characteristic conformations: the larger the distance,
the smaller the rate. Moreover, the rates decrease with distances
exponentially, suggesting that it is the FES barriers that increase
with distance. This provides a new relation between the 3D
spatial distribution of the clusters and their folding kinetics.
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In summary, by introducing combinations of hydrogen
bonds to define a three-dimensional space, the “g” space, to
describe the folding kinetics and dynamics of miniprotein
beta3s, we have been able to characterize some previously
unknown aspects of the folding of this well-studied system.
Specifically, we have been able (i) to find an inverse correlation
between the rate of transitions between pairs of clusters and
their distance in the g space, (ii) to determine the cluster
distribution and kinetic network in the g space, and (iii) to
show an approximately linear relation between the RMSD and
the distance in the g space. Equally important, the hydro-
dynamic analysis has demonstrated that the folding is much
more complex than it appears in the usual kinetic network
description and that flow vortices occur outside the low free
energy regions.
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