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ABSTRACT: Three YTH-domain family proteins (YTHDF],
YTHDF2, and YTHDF3) recognize the N°-methyladenosine
(m®A) modification of mRNA in cells. However, the redundancy
of their cellular functions has been disputed. We investigate their
interactions with méA—containing RNA using X-ray crystallography
and molecular dynamics (MD). The new X-ray structures and MD
simulations show that the three proteins share identical
interactions with the m°A-containing RNA and have similar
intrinsic plasticity, thus evidencing the redundant roles of the three
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proteins in cellular functions.

he finely organized network of gene expression

comprising RNA transcription, splicing, transport, trans-
lation, and degradation is often perturbed in cancer and other
diseases.”” In addition to previously known regulators of gene
expression, the recently discovered layer of regulation based on
cotranscriptional RNA modifications gave rise to a new field
named epitranscriptomics.”* While there are over 160 different
RNA modifications discovered to date, one of the most
abundant modifications, Né—methyladenosine or mfA, is
involved in most of the aspects of messenger RNA (mRNA)
regulation, i.e., alternative polyadenylation, splicing, nuclear
export, degradation, and translation initiation.”

Most of these diverse functions are realized via the m°A
binding proteins containing the YT521-B homology (YTH)
domain, so-called m°A “readers”.*””’ Among those, YTHDC1
is found in the nucleus, while YTHDC2, YTHDF1, YTHDF2,
and YTHDEF3 are primarily cytoplasmic in mammalian cells
(abbreviated hereafter as DC1, DC2, DF1, DF2, and DF3,
respectively).' DC1 is involved in mRNA export from nucleus
to cytoplasm, as well as in regulation of mRNA splicing and
alternative polyadenylation.”® DC2 plays an essential role in
spermatogenesis through regulating the transition from mitosis
to meiosis.

The three human DF proteins consist of a YTH domain of
14S residues located in the sequence between unstructured N-
terminal and C-terminal segments of about 400 and 35
residues, respectively.” The sequence identity of the YTH
domain is 86%. Microscale thermophoresis'’ and a time-
resolved Forster resonance energy transfer assay' ' show that all
three YTHDF proteins have similar binding affinities toward
the preferred RNA motif. Nevertheless, their functions have
been largely disputed.” Some studies claim distinct functions of
the DF proteins where DF1 enhances translation by interacting
with ribosomes and translation initiating factors, DF2
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promotes targeted m°A-marked mRNA degradation through
recruitment of RNA decay machinery, and DF3 assists with
regulation of mRNA fate via interaction with both DF1 and
DF2.""*"* In contrast, recent papers point out the redundancy
of the DF proteins.'”'*"> High-throughput in vitro selection
methodology provided evidence that DF1 and DF2 have
similar sequence binding preferences for m®A-containing
RNA.'° All three DF readers are thought to mediate mRNA
degradation either by direct recruitment of the CCR4-NOT
deadenylase complex'”'* or by transporting its m®A-modified
cargo to P-bodies due to the presence of a disordered proline-
glutamine-rich region capable of liquid—liquid phase separa-
tion."”"”~"" On one hand, the sequence and structure
similarity of the YT'H domains of DF1 and DF2 point toward
redundancy or cumulative action; on the other hand, the small
variability in sequence, difference in the expression levels in
different tissues, and possibility of post-translational mod-
ifications could provide the basis for the distinct functions of
DF readers (Figure S1). In particular, the overall sequence
identity of only 57% does not allow one to draw conclusions
on the functional redundancy.

Here, we focus on the YTH domain of the three human DF
readers. The protein dynamics and motions are compared
between three proteins to check if minor variability in amino
acid sequence causes significant difference on them. In
addition, the crystal structure of the YI'H domain of the

https://dx.doi.org/10.1021/acs.jcim.0c01029
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yaozong+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rajiv+K.+Bedi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elena+V.+Moroz-Omori"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amedeo+Caflisch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.0c01029&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01029?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01029?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01029?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01029?goto=supporting-info&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01029/suppl_file/ci0c01029_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01029?fig=tgr1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01029?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Figure 1. YTH domains of the human DF proteins show similar electrostatic potential at the RNA recognition surface (top), overall fold (middle),
and interactions with m°A (bottom). (Left) DF1, PDB code 4RC]J; (middle) DF2, PDB code 4RDN; (right) DF3, PDB code 6ZOT (this work).
Electrostatic surface potentials were calculated using the APBS 2.1 PyMOL plugin.*’ The potentials are on a red—white—blue [ + 5 kJ/mol/e]
color map. Parameters used are 0.15 M ionic strength in monovalent salt, 310 K, protein dielectric 2, and solvent dielectric 78.

DF3 reader has not been reported so far, which should provide
additional mechanistic insight into m®A recognition at the
atomic level of detail and whether it is similar or different from
the YTH domains of DF1 and DF2.

To investigate the binding of m®A-containing RNA (more
specifically, the GG(m®A)CU) to the YTH domain of the DF3
protein, we solved the crystal structure of the complex at a 2.7
A resolution. The overall structure, electrostatic potential on
the RNA recognition surface, and binding motif of m®A are
essentially identical as in the previously disclosed holo
structures of DF1 and DF2 (Figure 1). In detail, the adenine
ring is nestled in an aromatic cage formed by the side chains of
Tyr424, Trp438, Trp492, and Trp497 (residue numbering of
DF3, Figure 1, bottom, and Figure S2). The methyl group of
mPA optimally fills the cavity lined by the three indole rings,
while the nitrogen in position 6 is involved as the donor in a
hydrogen bond with the carbonyl oxygen of Cys439.
Furthermore, a conserved water molecule mediates hydrogen
bonds between the adenine nitrogen in position 7 and the side

chains of Asp534 and Trp438. One minor difference is
observed for the orientation of the Tyr418 side chain in DF2
(Figure 1, bottom). This difference is probably due to the
smaller ligand as the only available holo structure of DF2 is a
complex with the mCA mononucleotide, while the structures of
DF1 and DF3 were solved in complex with pentanucleotide
GG(m®A)CU. Overall, the essentially identical interactions
observed in the crystal structures of the three YTH domains
are congruent with the similar affinity for m°A containing RNA
oligonucleotides.”

As the cellular phenotype might be related to protein
dynamics, we decided to study the unbound state of the YTH
domains of the DF proteins by atomistic simulations. To
interrogate the dynamics of the apo YTH domain of the three
DF proteins, we carried out explicit solvent MD simulations for
a total sampling of S us for each of the three domains (see
Materials and Methods in the Supporting Information). The
MD simulations show similar flexibility and correlated motion
for the three YTH domains (Figure 2 and Figures S3 and S4).
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Figure 2. YTH domains of the DF proteins show similar flexibility
and correlated motion. (Top) Structural mapping of root mean
square fluctuation (RMSF) profiles along the sequence. The RMSF
values were calculated for each residue by averaging over the
nonhydrogen atoms of the backbone. RMSF values are rendered from
low to high by tube thickness (small to large) and color (blue to red).
(Bottom) Structural mapping of positional covariance of backbone
atoms. The amount of motion correlation for each residue is rendered
from low to high by tube thickness (small to large) and color (blue to
red).

The recognition loop (residues 480—500 in DF3) shows
pronounced flexibility, which contributes two of the four
aromatic residues of the m°A binding site (Trp492 and Trp497
in DF3, Figure 2, top). The slightly larger fluctuations of the
recognition loop of DF1 (residues 453—473) most likely
originate from the intrinsic flexibility of Gly459 as DF2 and
DEF3 have an asparagine at the corresponding position. Other
loop segments that connect regular elements of the secondary
structure also show enhanced flexibility in the microsecond
time scale. The major differences in flexibility between the
three YTH domains are observed for the C-terminal loop and
a3 helix (residues S10—540 and $41—550, respectively, in
DF3), which are located far away from the m®A recognition
pocket.

The recognition of m®A-containing RNA by the YTH
domains is related to the protein motions, especially to the
recognition loop. We first wondered if the correlated motions
of individual segments of the fold are similar in the three YTH
domains in the unbound state. To this end, we carried out an
analysis of positional covariance (Figures S5 and S6). The
(anti)correlation values were mapped to the structures in a
residue-based manner.”> The @1 and @2 helices and most of
the f-sheet undergo correlated displacement (red structural
segments in Figure 2, bottom). These regular elements of
secondary structure form the central core of the YTH fold. In
contrast, the large fluctuations of the recognition loop and
most of the C-terminal loop are not significantly correlated
with other parts of the domain. As expected intuitively, the two
types of analyses show that the rigid structural components
(blue in Figure 2, top) tend to be more correlated in their
displacement (red in Figure 2, bottom). The principal
component analysis reveals the pronounced slow motions of
the recognition loop, thus further evidencing its dynamic
feature for the recognition of m®A-containing RNA (Figure
S7). These simulation results indicate that the core region
stabilizes the fold of the protein including part (but not all) of

the m°A binding pocket, while the recognition loop easily
adopts different conformations, which may facilitate the
binding of m®A-containing RNAs. The similar plasticity of
the three YTHDF proteins and comparable protein motions of
most of their regular elements of secondary structure provide
further support to their functional redundancy.

In conclusion, our crystal structure of the DF3/GG(m°A)-
CU complex and atomistic simulation studies have provided
support for the view of a common (and cumulative) function
of the three human DF proteins. It remains to be investigated if
post-translational modifications, differential binding to non-
mCA modifications of RNA, and/or sequence differences in the
disordered N- and C-terminal segments have a substantial
influence on the role of individual DF proteins. To answer
these questions, more biochemical, structural, and in silico
studies on the DF proteins are required. For example, the
binding mechanisms of modified RNAs to certain post-
translationally decorated DF proteins could be studied by
combing ITC and X-ray crystallography, and global conforma-
tional changes of the full-length proteins should be analyzed by

enhanced sampling MD simulations.
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