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Supporting Methods 

 

S.1. Automatic ligand parameters 

As mentioned in the main text (see 2.2.3), we used CGenFF1 to determine the partial charges for 

ligands. Together with the assignment of solvation groups for ABSINTH,2 which are described in detail 

in the main text (2.2.2), this leaves Lennard-Jones parameters as well as bonded parameters to be 

determined. For the Lennard-Jones parameters, we use a fixed map of Tripos atom types to 

CAMPARI/ABSINTH atom types. Revisions to the Lennard-Jones parameters of ABSINTH atom types 

are listed in S6, Tables S4–S7. The map and all other required parameters are either determined by 

CAMPARI automatically or available from the authors upon request. 

Bonded parameters are particular in our approach because the ABSINTH philosophy features two 

paradigmatic deviations from other force fields. First, sampling is generally assumed to be in an 

internal rigid-body/torsional space, thus obviating the need for parameters for the constrained bond 

lengths and angles. The (fixed) values are instead taken directly from crystal structures3 or from 

chemical rules represented in public databases such as ZINC.4 Second, short-range electrostatic 

interactions are pruned (see S.6 for details), and rotational barriers arising from steric considerations 

are assumed to be sufficient for the majority of dihedral angles. 

However, in organic molecules, there are multifarious bonds with rotational barriers arising from 

electronic effects, e.g., alkenes, esters, anilines, sulfonamides, etc., which are not found in 

polypeptides. To prevent arbitrary rotations around these bonds, we use a fourfold heuristic: 1) all ring 

bonds are constrained and require no parameters; 2) for bonds not expected to isomerize 

spontaneously, such as double bonds in unconjugated alkenes, a harmonic potential is assigned to limit 

the rotation around that bond; 3) for relatively clear-cut cases (like aliphatic linear amides), we assign 

a bimodal potential, which might or might not favor either Z- or E-isomer based on chemical 

knowledge; 4) in unclear cases, no potential is assigned. The last rule implies that such cases should be 

inspected in post-processing, but we did not deem this necessary for the results in this manuscript. 

Note that the input conformer is assumed to be representative, which is primarily relevant for 

detecting local planarity according to thresholds (15° and 30° for atoms in or not in rings, respectively) 

The heuristic just described is meaningful primarily for ligand conformers derived directly or indirectly 

from experiments or higher-level (quantum) calculations. The major weakness is the inability to sample 

flexible rings. To overcome this caveat, knowledge-based strategies5 might be adopted in the future. 

The strength parameters of the potentials are inferred from values used within CGenFF and CHARMM 

for similar chemotypes. The code implementing our approach will be included in the upcoming version 

4 of CAMPARI6 (to be released to the public in 2020) and is presently available from the authors upon 

request. 

S.2. General sampling protocol 

In this study, our primary data set is a set of structures of complexes of hugely diverse ligands on a 

number of proteins with known experimental binding affinities. While some proteins, such as HIV 

protease, are strongly represented in the source data (see 2.3.1 in the main text), our working 

assumption was that every protein and every ligand is unique. Given that the aim is to predict binding 

affinities computationally, we need a way to refine the experimental complex structure according to 

our energy function of choice. Despite the high quality of the original structures, we encountered 

clashes, missing parts, and geometric inconsistencies. Given that the ABSINTH model is an all-atom, 

physically motivated force field, we required all atoms, including hydrogens, to be present. In general, 
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the entire proteins were kept whenever possible. In some cases, such as PDB 2f2h, this implied large 

structures with higher-order symmetry where only one of several analogous binding sites was 

considered (the other ones being left empty).   

Here, we chose to energetically minimize the binding sites of the completed and relaxed structures 

(see 2.3.2 and 2.3.3 in the main text) predominantly by molecular dynamics in mixed rigid-

body/torsional space7 at a formal temperature of 250 K. This method has several advantages, which 

make it well-suited to the task: i) individual, internal coordinate space degrees of freedom can be 

constrained at will; ii) there are no mass-metric tensor artifacts,8 i.e., the method is thermodynamically 

accurate; iii) operating in a pure internal coordinate space allows us to omit most of the parameters 

for bonded interactions in the ligand; iv) the main drawback of the method, viz., the somewhat artificial 

dynamics, are not relevant for a thermodynamic prediction. Readers are referred to the original 

publication7 for more details. The setup work for the ligands is described briefly in S.1 and in 2.2 in the 

main text. 

The time step was 5 fs, and simulations were run in the NVT ensemble for 10 ps in a droplet boundary 

condition of virtually infinite size. The Andersen thermostat9 as adapted for the simple integrator 

introduced in the original paper7 was used to maintain constant temperature with a relaxation time of 

0.1 ps. The degrees of freedom were specific to each complex. They always included the ligand’s rigid-

body and torsional coordinates. In addition, certain protein degrees of freedom were allowed to move. 

These were restricted to those -angles, which move atoms that are within a threshold of 6 Å of all 

ligand atoms in the relaxed starting structure. The constraints left between 30 and 132 protein degrees 

of freedom (quartiles at 80, 88, and 100). All of the sampled dihedral angles were side chain dihedral 

angles with the backbone serving as the immovable base of motion. It was therefore impossible for 

loops to relax, for polypeptide chains to move relative to each other, and, in many cases, for the ligand 

to dissociate even when there were clashes resulting from a poor input structure or a sterically 

unfavorable protein H-mer. 

S.3. Estimation of ligand binding free energies 

We estimate binding free energies by directly considering the terms due to complex, protein, and 

ligand. The most basic version would be as follows: 

     

Protein Ligand  Complex

Complex Protein Ligand
b
G U U U



   


      (S1) 

In eq. (S1), the angular brackets denote ensemble averages taken across the latter half of the 10-ps 

simulations described in S.2. Eq. (S1) represents an approximation: the internal energies are those of 

the ABSINTH model, which means that they are effective energies. These energies contain solvent 

entropy terms through the experimental reference free energies of solvation, which are used as 

parameters of the ABSINTH model (eq. (1) in the main text). In this formalism, conformational entropy 

terms10 are neglected. This is expected to give a systematic error that scales with the size of the binding 

interface and the ligands’ intrinsic flexibility. 

For a net-neutral ligand, the simple binding reaction described by eq. (S1) is a common approximation: 

no change to net charge occurs upon binding, and the charge imbalance error in the protein and 

complex terms are expected to largely cancel. This is true despite the fact that we did not neutralize 

the various systems, which would theoretically have been possible through changing the protein H-

mer in distal parts and/or by adding fixed counterions. The situation is more complicated if both ligand 

and protein carry net charge groups. In this scenario, we propose here that it is more appropriate to 

consider charged buffer components explicitly as part of the binding process. The simplest 
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representation are inorganic ions like K+ and Cl-. Let us assume that P denotes a specific protein H-mer, 

L the ligand, and PL the complex, and that the net charge values of these specific protein and ligand H-

mers are z and x, respectively. Then: 

     P K Cl L PL K Cl
z xz xn z x n n z x n
                (S2) 

Eq. (S2) is the same reaction as that in (S1) except that we add a non-interacting ionic atmosphere 

(n > |z|+|x|). However, writing it in this way highlights that the simple reaction implied by eq. (S1) may 

correspond to a single microscopic parameter in a more complex thermodynamic network and not to 

an observable binding affinity. This will be the case if protein species other than Pz are responsible for 

binding, e.g.: 

     

       

1

1

P K Cl L PK 1 K Cl L

PK 1 K Cl L PL K Cl

zz x x

z z xx

n z x n n z x n

n z x n n z x n

   

    

          

         




   (S3) 

In the second line of eq. (S3), ligand binding displaces a single potassium ion and releases it into the 

bulk. This will certainly be relevant if (PK)z+1 is more populated in solution than Pz, which is a feasible 

scenario. We emphasize that the formalism in eq. (S3) can be interpreted as representing all types of 

ion binding (from specific sites to ionic atmospheres)11-13 and all types of ions (from single atoms to 

macromolecules). This poses a complexity that cannot be handled in molecular simulations, let alone 

in high-throughput applications. In molecular simulations, the typical approach is to neutralize a finite 

system with simple, monovalent ions, and to add a certain amount of background electrolyte solution, 

which is the “n” in eqs. (S2) and (S3). All species are allowed to move according to their mutual 

interactions, which means that ions can diffuse to create ionic atmospheres or occupy specific binding 

sites in competition with the ligand. This eliminates many of the errors incurred by eq. (S1) by 

performing a Boltzmann integral over the thermodynamically most relevant binding equilibria. 

However, this method requires a long enough simulation, which renders it infeasible for a screening 

workflow. 

Here, we pursue an even more simplified approach as follows. We first parsed the partial charges of 

the ligands into groups such that the net charges per group approximately sum up to an integer value 

(see 2.2.3 in the main text). The underlying procedure is hierarchical and considers successively larger 

entities of connected atoms. This is to avoid distant atoms being part of the same charge group. Only 

groups with net charges of -1, 0, or 1 are searched for. The algorithm yields a partitioning of the atoms 

of the ligand into sets. Here, the tolerance for matching the target was 0.05 for all molecules except 

-amino acids, for which we used 0.15 (for a value of 0.05, the amino and carboxy moieties were not 

detected separately). Next, given the partitioning, we isolated the positions of the atoms closest to the 

center of charge for all non-neutral charge groups in the ligand as found at the end of the simulation 

of the protein-ligand complex. For the computation of protein H-mer energies, a K+ or Cl- was 

introduced at exactly those positions at the beginning of the run. These ions were free to move within 

a cuboid volume of (3 nm)3 centered around the ligand and held back by half-harmonic position 

restraints beyond. Thus, for an example ligand with a single +1 charge group like an ammonium moiety, 

our approach considers the following reaction: 

   
1 1

( ) ( )PK L PL K
z z

bulk bulk

            (S4) 

The internal energy of the ion in the bulk in the ABSINTH model is simply given by its reference free 

energy of solvation: -86.0 kcal/mol for K+ and -74.5 kcal/mol for Cl- (compare Table S3) and thus readily 

included in the difference. Importantly, the ion is free to dissociate from the protein H-mer within that 

(3 nm)3 cube. It is, however, critical that ions do not occupy favorable binding sites where they would 
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not be actually displaced by the ligand. This constraint is difficult to automatize, and an improved 

heuristic will most likely be implemented in the future. The revised version of eq. (S1) is: 

     

Protein/Ions Ligand  Complex Ions

Complex Protein/Ions Ligand ( )
b
G U U U U Ions

 

    


   (S5) 

Eq. (S5) is also given as eq. (3) in 2.3.4 in the main text. “Proteins/Ions” signifies the (possible) presence 

of explicit counterions in the protein-only simulations. U(Ions) is not an ensemble average because we 

assume a bulk reference state for the unbound ions. The description so far applies to the validation set 

for ranking known binders (2.3 in the main text). For the enrichment validation (2.4 in the main text), 

two modifications were incorporated. First, the (only) protein H-mer was considered exactly once for 

every unique combination of required ions in the screened poses, and the resultant values were used 

for all matching ligands. To place the ions, the 10 ps of molecular dynamics were preceded by 25000 

Monte Carlo steps. The move set for the latter consisted of single ion displacements, either random 

placements in the entire box (30%) or local moves with a uniform and symmetric sampling interval of 

10 Å for every dimension. As described above, ions could move freely inside of a (3 nm)3 cube but were 

prevented from leaving it by half-harmonic restraints, which were centered heuristically at the binding 

site. Second, the tolerance for detecting charge groups was 0.05 without exceptions.  

S.4. Estimation of protonation free energies in the ABSINTH model 

To estimate the free energy change associated with a change in protonation state of a given protein 

residue, we use, just like for the ligand binding free energies in S.3, effective energy as a proxy. As 

explained before, the ABSINTH model expresses solvent entropy terms, which are contained in 

experimental reference free energies of solvation, as part of an effective, internal energy. Thus, the 

approximation of the free energy is justifiable only if contributions from conformational entropy are 

small, which should be the case here due to the very limited degrees of freedom we allow to move 

(the set is exactly the same as the one used during the corresponding ligand binding free energy 

calculation).  The raw energy differences are affected by differences in the reference state. We remove 

these by choosing the mean energies of dipeptides as reference state values. These terms form the 

excess contributions to the estimated free energies. Because we want to treat the buffered proton 

concentration as an external parameter, the effective protonation free energies are describing the 

ratio of concentrations at equilibrium of the protonated and deprotonated forms (as in the Henderson-

Hasselbalch equation). The final form for, e.g., an aspartate side chain in a protein is: 

       0 0ln Prot-D Prot-D Dip-D Dip-DAsp AspH
p b aG k T f K U U U U         

   (S6) 

In eq. (S6), the angular brackets denote ensemble averages, and “Prot” and “Dip” refer to the protein 

and dipeptide contexts, respectively. The first term expresses the quantum terms responsible for the 

intrinsic stability differences between the protonated and deprotonated forms. These differences in 

electronic energies are not represented in a classical force field and must be added as ad hoc 

parameters. We use here the same reference values as Radak et al.14 for the Ka values. Lastly, f° is a 

reference state correction for the chosen concentration scale. While it is easy to determine the 

dipeptide values to sufficient accuracy (see Table S1), the protein values will carry a statistical error. 

This error is expected to grow with the number of degrees of freedom left flexible in the protein. 

Changes in protein H-mers are, just like ligand binding, performed in the presence of possible charge 

imbalances. However, unlike in the case of the competition between ligand and buffer species, a given 

protein side chain occupies practically the same volume irrespective of its protonation state. Thus, we 

cannot devise an automated correction based on inorganic ions in the same way. As an example, 
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consider a pair of hydrogen-bonded ASP/GLU residues in a binding site, at least one of which is 

protonated. While the doubly charged conformation may favor the presence of a cation, the ASP/GLU 

side chains would first have to change conformation to accommodate this ion or ionic group. Thus, for 

estimating the free energies of conversion between protein H-mers, we do not introduce any 

additional changes to the ionic environment, which might cause errors. 

Table S1. Model compound value for the species given in the top row in kcal/mol. Superscripts indicate charged 

forms (“+” or “-“) and neutral forms (“0”, “”, “”) where for histidine the index of the protonated nitrogen atom 

is given. Protonated acids and deprotonated amines are asymmetric but allowed to rearrange through changes 

in dihedral angles during the simulation runs. The numbers in the first data row are used for all models with two 

exceptions: for Fig. 2(g) in the main text (based on old parameters), the data in the second row had to be 

employed while for Fig. S3(f) (reduced rFOS offsets on charged groups) the data in the third row had to be used. 

D- D0 E- E0 K0 K+ H H H 

-106.35 -19.63 -105.38 -18.24 -19.81 -101.38 -24.23 -26.87 -94.75 
-120.61 -19.45 -121.08 -18.07 -19.66 -115.58 -24.16 -26.64 -108.91 
-98.13 -19.59 -98.05 -18.25 -19.80 -93.89 -24.22 -26.87 -87.44 

The case of multiple ligand H-mers is particular. Here, ligand H-mers with identical net charge groups 

mean that the unbound protein state is identical, including ions. Because calculations are performed 

independently for every combination of ligand and protein H-mer, we average the values for identical 

simulations of unbound proteins in post-processing. Having stated these technical aspects, it is 

important to stress that the calculation of protein H-mer conversion free energies should follow the 

same physical model as the one used for ligand binding. Only this setup can ensure that the equilibrium 

constructed between all bound and unbound species is intrinsically consistent and thus meaningful. 

This poses a problem for the data shown in Fig. 2(i) in the main text. However, the cost of evaluating 

electrostatic energies in a Poisson model precluded us from generating mutually consistent data in this 

approximation, which would have ideally required molecular dynamics of complexes, proteins, and 

ligands in a Poisson model as described in S.2. As a compromise, complexes were minimized in rigid-

body/torsional space in a preliminary ABSINTH model for a maximum of 2000 steps using a Broyden-

Fletcher-Goldfarb-Shanno scheme according to Nocedal.15 These minimized complex structures were 

then used to derive Poisson estimates of electrostatic binding free energies according to standard 

methodologies with an assumed low (protein) dielectric of 4.0.16    

S.5. Combination of binding free energy predictions for multiple H-mers 

The selection of protein and ligand H-mers we considered is summarized in the main text (see 2.3.3). 

Once estimates of Gb have been calculated for a specific combination of ligand and protein H-mer 

according to eq. (S5), we need to calculate the apparent binding free energy from the set of numbers 

corresponding to an experimentally unique pair of protein and ligand. To do so, we assume that all 

species are at chemical equilibrium. As variables we have the concentrations of all species: protein H-

mers, ligand H-mers, and complexes of ligand and protein H-mers. The total ligand and total protein 

concentrations are constants, which we are free to choose (the predicted equilibrium constants do not 

depend on them beyond numerical precision). We also assume a buffered solution such that the 

proton concentration can be set and treated as a constant, here pH 7. The predicted free energies for 

individual reactions (see above) are used as input parameters. Temperature is another external 

parameter, for which we use a value of 310 K. 

In a first step, all protein H-mers are connected in a tree where each edge corresponds to a single 

protonation state change of a single side chain. For illustration, we use a hypothetical protein with 2 

relevant titration sites, D4 and H15. Histidine has 3 possible states while aspartate has 2, giving rise to 

6 different protein states, P1–P6. 



 S-7 

Table S2. List of protein H-mers in the example used for illustration. The dots indicate the omitted (identical) 

sequence context. 

Name Sequence 

P1 …D4
0…H15

… 
P2 …D4

0…H15
… 

P3 …D4
0…H15

… 
P4 …D4

-1…H15
… 

P5 …D4
-1…H15

… 
P6 …D4

-1…H15
… 

A set of 5 H-mer conversion reactions to connect these 6 species would be: 

+
( ) ( )

+
( ) ( )

+
( ) ( )

( ) ( )

+
( ) ( )

P4 H L1 P1 L1

P5 H L1 P2 L1

P6 H L1 P3 L1

P1 L1 P2 L1

P2 H L1 P3 L1

ion ion

ion ion

ion ion

ion ion

ion ion

  

  

  

 

  











         (S7) 

In eq. (S7), “L1” denotes the first H-mer of the ligand, which is included for formal clarity. In the actual 

calculations to derive free energy estimates for these reactions, which are described in S.4, the ligand 

is not present. The subscript (ion) indicates that P1–P6 are all simulated in the presence of m1 K+ and 

m2 Cl- ions where m1 and m2 are the numbers of identified charge groups with a net charge of +1 and -1, 

respectively. Unlike the ligand, the ions are present during the protein-only simulations and allowed 

to move in a (3 nm)3 cube centered at the binding site (see S.3). As mentioned, the free proton 

concentration is assumed to be buffered and is only represented as a constant in the equations. 

In the next step, the tree is replicated as many times as there are different ligand H-mers, here we 

assume 2 for our example. Because the ligand is assumed to be in the bulk in the reactions in eq. (S7), 

the predicted bulk distribution of ligand H-mers can be used to connect the trees to each other. We 

use an arbitrary protein H-mer for this, e.g.: 

( ) ( )P1 L1 P1 L2ion ion           (S8) 

There is one such reaction per ligand H-mer after the first one. The predicted equilibrium is 

precalculated for a specific pH, so these equilibria do not respond explicitly to the pH we choose but 

must instead be recalculated. Furthermore, the ion sets implied by eq. (S8) for P1 will differ if L1 and 

L2 differ in their charge groups with a net charge of 1. In these cases, there is an additional reaction 

required to connect the trees (change in ions). For this, we assume that the extra ions unique to only 

L1 or L2 are released into the bulk, and we apply an appropriate correction based on the same values 

mentioned in relation to eqs. (S4) and (S5). With this, we obtain a fully connected thermodynamic tree 

for the 12 combinations of protein and ligand H-mers in the unbound state. To complete the system, 

we simply connect every vertex of this tree to its corresponding bound form, i.e., we add all 12 binding 

equilibria as reactions, e.g.: 

1 2 ( ) 1 ( ) 2 ( )P5K L1 P5L1 K Clm m bulk bulk bulkCl m m            (S9) 

In eq. (S9), the ions are written explicitly to highlight both the differences in their thermodynamic state 

(bound vs. bulk) and the fact that the number is specific to each ligand (m1 and m2).  We emphasize 

again that the first species on the left-hand side does not need to be a protein H-mer with ions bound 
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to specific sites: it simply means that these explicit excess ions were present in a (3 nm)3 cube centered 

around the ligand. Thus, we arrive at 26 unknown species concentrations (12 protein H-mers, possibly 

with ions, 12 complexes, and the 2 ligand forms) with 24 reaction equations for which we have 

predicted equilibrium constants (12 binding equilibria, 10 protein H-mer conversion equilibria, 1 ligand 

H-mer equilibrium, and 1 ion exchange equilibrium for the protein H-mer chosen to connect the trees). 

If, in this example, L1 and L2 were not to differ in both m1 and m2, the numbers are reduced 

accordingly: there would be 12 complexes, 6 protein H-mers with ions, and 2 ligand forms (20 

unknowns) along with 18 unique equilibria (12 binding, 5 protein H-mer conversion, and 1 ligand H-

mer conversion). The bulk reference state for the ions in eq. (S9) and elsewhere means that their 

concentrations could be variables although they would have to be coupled on account of 

electroneutrality. Instead, like for H+, we choose to assume that they are formally present in a buffered, 

dilute reference state. 

This type of system is straightforwardly solvable in reduced units where binding equilibria, eq. (S9), are 

in units of [L][P1] and protein H-mer conversions, eq. (S7), are in units of [P1], where P1 is an arbitrarily 

chosen reference H-mer, and [L] is the total free ligand concentration (including all ligand H-mers). 

Actual concentrations can be derived in the end by choosing the total ligand and protein 

concentrations and a subsequent iterative determination of [P1]. The predicted observed 

(macroscopic) binding equilibrium constant is computable as: 

( )
*

( ) ( , ( ))

P L

=

L P

NP NL

I J

NL

J

aq

obs NL NP

aq aq ion J
J I

I J

J I

K

  

     



 
       (S10) 

In eq. (S10), which is also part of eq. (4) in the main text, the numbers of protein and ligand H-mers 

are abbreviated as NP and NL, respectively. The asterisk denotes that, due to missing terms and 

reference state corrections, the numerical values should not be directly compared to experiments 

whereas the rankings should be. We developed an in-house R-script for solving the equilibria and 

determining the values of Kobs
* per complex. 

S.6. Changes to the ABSINTH force field 

The ABSINTH force field has a few particularities, which make it distinct from other force fields: first, 

reference free energies of solvation appear as direct parameters (see eq. (1) in the main text), which 

are values determined experimentally. However, for ionic groups in proteins, to avoid artifacts from 

excessive salt bridge formation, we added offsets of -30 kcal/mol in the original version.2 These offsets 

are retained here and also applied to ionic groups in ligands but with a reduced value of -15 kcal/mol. 

This change goes along with a homogenization of reference free energies of solvation for ionic 

compounds according to the work of Kelly and Truhlar.17 As Table S3 shows, the differences for the 

polypeptide groups are almost entirely due to the change in offset. The only larger differences due to 

the homogenization occur for inorganic cations and for arginine. 

The second particularity is the short-range interaction model. In ABSINTH, there are no short-range 

electrostatic interactions unless all pairs of atoms between two charge groups are allowed to interact 

according to the general nonbonded rules. The latter state that the two atoms must be at least three 

bonds apart and that their distance must not be fixed. Charge groups are defined as minimal sets of 

connected atoms adding up to a net integer charge (including 0), see S.3 and 2.2.3 in the main text. 

This depletion is coupled to two other concepts: 1) to perform simulations in an internal coordinate 

space; 2) to not use dihedral angle potentials on simple rotatable bonds. The former implies keeping 

most rings frozen, the only handled exception being pucker angles in proline and nucleic acids.18 
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Table S3. Changes to free energies of solvation. These data include the offset contributions. Note that the 

neutral forms of Asp, Glu, and Lys were not available in the original ABSINTH model. These data are taken from 

Cabani et al.19 

Compound acetate 
(D-) 

propionate 
(E-) 

n-butyl-
ammonium (K+) 

n-propyl-
guanidinium 

(R+) 

4-methyl-
imidazolium (H+) 

New (kcal/mol) -92.6 -91.2 -86.5 -80.0 -80.0 
Old (kcal/mol) -107.3 -107.3 -100.9 -100.9 -95.0 

Compound acetic 
acid (D0) 

propionic 
acid (E0) 

n-butylamine 
(K0) 

K+ Cl- 

New (kcal/mol) -6.7 -6.5 -4.3 -86.0 -74.5 
Old (kcal/mol) N/A N/A N/A -70.5 -74.6 

Scheme S1. Illustration of the short-range electrostatic depletions 

using benzene. Due to its symmetry, benzene is assigned the same 

partial charges for all its carbon atoms (-0.115) and all its hydrogen 

atoms (0.115). Each C–H group forms a charge group with a net charge 

of zero. In ABSINTH, exclusion rules are such that all atoms in pairs of 

charge groups must be at least 3 bonds apart (1–4). Thus, in benzene, 

only opposite C–H groups can theoretically interact via screened 

electrostatics. In a standard force field, all atoms interact except those 

separated by 2 bonds or fewer. This means, for example, that adjacent 

C–H groups interact exclusively via the H—H interaction as if they were 

fractional-charge monopoles. Additionally, in ABSINTH, a benzene ring 

is rigid: this implies that the distances between atoms in opposite C–

H groups cannot change. Thus, all intramolecular, electrostatic interactions are excluded. 

Depleting short-range electrostatic interactions in this way has the advantage that only proper 

moments (predominantly monopoles and dipoles) interact. This would not be the case if simple 1-2/1-3 

exclusion rules are used (see Scheme S1). To determine the charge groups for arbitrary molecules, we 

use an automatic partition scheme that we refined here with the goal of yielding small, compact groups 

based on a tolerance threshold. The ABSINTH approach to short-range electrostatic interactions carries 

with it a twofold caveat: first, important interactions might be missing that would have an influence 

on local conformational preferences; second, the effective many-body terms used for describing 

solvation imply that the absolute internal energy of a system will not respond correctly if a fixed 

conformation is desolvated by the presence of other explicit solutes. This second effect is akin to how 

in PB/GB models of continuum electrostatics the charging or “self” energy must depend on the size 

and geometry of the low-dielectric cavity.20 In ABSINTH, the leading error term would be due to missing 

monopole-monopole interactions, and we suggest to correct it here. This is a conservative change 

since in a normal protein with CHARMM-21 or OPLS-based22 charges there are no such missing 

monopole-monopole terms in proteins or nucleic acids (except at uncapped termini). However, in 

small molecules they can be abundant, e.g., citrate or free amino acids, which occur repeatedly as 

ligands in our selected PDBbind data set (see 2.3 in the main text). 

The corrections use the same monopole approximation we employ for long-range corrections 

elsewhere,23 and which is shown as the second sum in eq. (2) in the main text: 
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     (S11) 

In eq. (S11), the coordinate vectors and solvation states for individual atoms are written as r and , 

respectively. The curly brackets denote sets of these quantities for all atoms in the system. The values 

of  for the complex depend on the protein coordinates, i.e., they express the amount of desolvation 

incurred by the presence of the receptor. They can either be calculated as atom-specific quantities 

(ABSINTH default) or averaged over charge groups as used in Mao et al.24 The indices k and l identify 

the atoms in charge groups i and j, respectively, which are closest to the corresponding centers of 

charge. ML is the number of charge groups in the ligand, and the integer charges of the two groups are 

denoted as Qj and Qj. The remaining parameters are the relative dielectric of water (w, 78.2) and the 

vacuum permittivity (0). Finally, the factor fij is 0.0 whenever this interaction was not excluded at the 

level of interatomic potentials, and 1.0 otherwise. For the purpose of this work, we implemented the 

correction as a post facto term applied to the final structures only. Since the correction is conservative, 

a complete addition to the CAMPARI implementation of ABSINTH is envisioned in future work. Note 

that the correction can only (but need not) play a role for ligands containing at least two charge groups 

with a net charge of 1. 

The final change to the ABSINTH model is to the Lennard-Jones (LJ) parameters. To support new 

chemotypes, additional atom types were needed. They are listed in Table S4. 

Table S4. Lennard-Jones parameters for new atom types required for parameterizing small molecules. The 

halogen parameters are those for organohalides and not for ions. 

Atom  type  (Å) ϵ (kcal/mol) 

sulfonyl-like S 3.60 0.40 
sulfinyl-like S 3.60 0.40 
trivalent P 3.60 0.30 
F  2.90 0.05 
Cl 3.50 0.30 
Br 3.70 0.50 
I 4.00 0.60 

It has been recognized that the published parameters can be improved in terms of local steric 

preferences by adding additional energetic restraints25 and, similarly, that the spatial packing they 

predict is too tight.26 Both effects hint at the fact that some of the LJ size parameters are too small. 

Table S5 summarizes the changes relevant to this work. Most of the interaction strength parameters 

are unchanged but listed for clarity. 

Table S5. Updated Lennard-Jones parameters along with the original values. 

Atom type New  (Å) Old  (Å) New ϵ (kcal/mol) Old ϵ (kcal/mol) 

any N 3.05 3.20 / 2.70 0.15 0.15 
sp3 O 2.90 3.00 0.15 0.15 
acid O 3.10 3.00 0.20 0.20 
sp3 C 3.40 3.30 0.10 0.10 
sp2 C (non-ar) or sp C 3.15 3.00 0.10 0.10 
sp2 C (ar) 3.25 3.00 0.10 0.10 
polar H 2.35 2.00 0.025 0.025 
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Cl- 3.84 4.42 0.15 0.12 
K+ 3.20 4.93 0.10 0.0003 

Unlike in the original model, where most size parameters were smaller, the updates require that there 

are exceptions for atoms separated by exactly three bonds. These are needed to avoid rotational 

barriers becoming too stiff when bond lengths and angles are fixed. A list is provided in Table S6. 

Table S6. Lennard-Jones parameters to use as the source for deriving pairwise interaction parameters for 

atoms separated by exactly three bonds. No such exceptions are present in the original model. 

Atom type  (Å) (1-4) 

any N 2.90 
sp3 O 2.70 
acid O 3.00 
sp3 C 3.30 
sp2 C or sp C 3.00 
any S/P except phosphate 3.40 
polar H 2.20 
F  2.70 
Cl 3.30 
Br 3.50 
I 3.80 

Lorentz-Berthelot combination rules are applied as in the original model. This holds for both the 

normal and the 1-4 parameters. As is apparent from Tables S5 and S6, we increased the size of polar 

hydrogen atoms. However, this is primarily to avoid close contact between such atoms in cases where 

electrostatic interactions are missing on account of the ABSINTH short-range exclusion model (see 

above). To compensate for this, nearly all interactions involving polar hydrogen atoms are overridden 

in a pair-specific manner as shown in Table S7. 

Table S7. Pairwise overrides for polar hydrogen atoms. For specific pairs, both for atoms separated by three 

bonds (4th column) and otherwise (3rd column), the Lennard-Jones parameters are not obtained by combination 

rules but by the overrides listed. 

Atom type i Atom type j ij (Å) ij (Å) (1-4)

any N polar H 2.05 1.95 
(di)sulfide/thiol S polar H 2.30 2.20 
any P or any other S polar H 2.80 2.80 
sp2 O polar H 1.85 1.85 
sp3 O polar H 1.95 1.85 
acid O polar H 2.05 2.00 
sp3 C polar H 2.65 2.65 
sp2 C (non-ar) or sp C polar H 2.60 2.50 
sp2 C (ar) polar H 2.575 2.60 
nonpolar H polar H 2.10 2.00 
F  polar H 2.00 2.00 
Cl polar H 2.75 2.75 
Br polar H 2.85 2.90 
I polar H 3.00 3.05 
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S.7. List of PDB codes retained for 3.2 in the main text 

The list is a subset of the 855 complexes identified by Greenidge et al.27 It contains 754 entries as 

follows: 

1a4k 1a4w 1a69 1a8i 1a99 1aaq 1adl 1ai4 1ai5 1ai7 1aid 1ajn 1ajp 1ajq 1ajv 
1ajx 1apw 1ax0 1axz 1b05 1b0h 1b1h 1b40 1b46 1b6h 1b6k 1b7h 1b9j 1bcu 1bdq 
1bgq 1bhx 1bju 1bjv 1bq4 1br6 1bv7 1bv9 1bwa 1c3x 1c5n 1c5o 1c5p 1c5q 1c5s 
1c5t 1c5x 1c5y 1c5z 1c70 1c83 1c84 1c86 1c87 1c88 1ce5 1cea 1ceb 1d4h 1d4i 
1d4k 1d4l 1d6v 1d7i 1d7j 1db1 1df8 1dfo 1dhi 1dhj 1dmp 1drk 1dzk 1e1v 1e1x 
1e2k 1e2l 1e3v 1e6s 1eb2 1ebw 1eby 1ebz 1ec0 1ec1 1ecv 1efy 1ejn 1ela 1eld 
1ele 1enu 1epo 1erb 1ezq 1f0r 1f0u 1f4e 1f4g 1f4x 1fcx 1fcy 1fcz 1fd0 1fh7 
1fh8 1fh9 1fhd 1fj4 1fkg 1fkh 1fki 1fl3 1fpc 1g2k 1g2l 1g30 1g32 1g35 1g36 
1g74 1g7g 1g85 1gcz 1ghv 1ghw 1ghz 1gi1 1gi7 1gj6 1gja 1gni 1gpn 1gu1 1gyx 
1gyy 1gzc 1h1p 1h1s 1h22 1h23 1h9z 1ha2 1hbv 1hmr 1hms 1hmt 1hps 1hpv 1hpx 
1hsh 1hvh 1hvi 1hvj 1hvk 1hvl 1hvr 1hvs 1hwr 1hxb 1hxw 1i00 1i5r 1igj 1ii5 
1izh 1izi 1j14 1j16 1j17 1j4r 1jak 1jet 1jgl 1jqy 1jsv 1jwt 1jys 1jzs 1k1i 
1k1j 1k1l 1k1m 1k1n 1k21 1k22 1k4g 1k4h 1kdk 1kv1 1kyv 1kzk 1kzn 1l2s 1l83 
1laf 1lag 1lah 1lbk 1lee 1lf2 1lgw 1li2 1li3 1li6 1lke 1lnm 1lpg 1lpk 1lpz 
1lst 1m2q 1m2r 1m48 1mes 1met 1mfi 1mq5 1mq6 1mrw 1mrx 1msm 1msn 1mtr 1mu6 
1mu8 1n1m 1n1t 1n2v 1n46 1n4h 1n7m 1n8v 1nc1 1nc3 1nf8 1nfu 1nfw 1nfy 1nhu 
1nl9 1nli 1nny 1no6 1nq7 1nt1 1nvq 1nvr 1nvs 1nw7 1nz7 1o2o 1o2q 1o2s 1o2w 
1o2x 1o2z 1o30 1o33 1o36 1o3d 1o3i 1o3j 1o3k 1o3p 1o5a 1o5b 1o5c 1o5e 1o5g 
1oba 1ocq 1od8 1odi 1odj 1ogd 1ogz 1ohr 1ony 1onz 1os5 1oss 1owe 1owh 1oyq 
1oyt 1p1n 1p1o 1p1q 1p57 1pb8 1pb9 1pbq 1pot 1ppc 1pph 1pr1 1pxn 1pxp 1pzi 
1q63 1q65 1q66 1q72 1q8t 1qan 1qaw 1qb1 1qbn 1qbo 1qbr 1qbs 1qbu 1qbv 1qi0 
1qiw 1qy1 1qy2 1r0p 1r4w 1r5y 1r6n 1r9l 1rd4 1rpj 1s38 1sbg 1sdt 1sdu 1sdv 
1sgu 1sh9 1siv 1sqo 1sr7 1srg 1ssq 1stc 1sv3 1sw2 1swg 1swr 1syh 1syi 1t4v 
1t7j 1ta2 1ta6 1tcw 1tcx 1td7 1tng 1tnh 1tni 1tog 1toi 1toj 1tok 1tom 1u1w 
1ugw 1ugx 1uou 1upf 1urg 1usi 1usk 1utj 1utl 1utm 1utn 1uv6 1uvt 1uw6 1uwf 
1uz4 1v0k 1v0l 1v1j 1v2j 1v2k 1v2l 1v2n 1v2o 1v2q 1v2r 1v2s 1v2t 1v2u 1v2w 
1vfn 1vj9 1vja 1vyf 1vyg 1vyq 1vzq 1w0z 1w11 1w13 1w3j 1w3k 1w5v 1w5w 1w5x 
1w5y 1wcq 1wdn 1we2 1wht 1wm1 1ws4 1ws5 1x8j 1x9d 1xap 1xff 1xgi 1xgj 1xhy 
1xk9 1xka 1xkk 1xow 1xt8 1y1z 1y20 1y3n 1y6q 1y6r 1yc1 1yc4 1ydk 1ydr 1yds 
1ydt 1yqj 1z1r 1z6e 1zgi 1zhy 1zoe 1zog 1zp8 220l 2a4m 2a8g 2aac 2aj8 2aqu 
2avo 2avs 2avv 2ayr 2azr 2b07 2b1v 2b4l 2bak 2bal 2boh 2bok 2bpv 2bpy 2bq7 
2bqv 2br1 2brb 2brm 2bt9 2bvd 2bvr 2bvs 2byr 2bys 2bz6 2bza 2c1p 2c3l 2cbu 
2cej 2cen 2cgf 2cht 2cji 2csn 2d0k 2d3u 2d3z 2drc 2dri 2e2r 2e7f 2epn 2exm 
2f1g 2f2h 2f34 2f35 2f5t 2f80 2f81 2f8g 2fgu 2fgv 2flr 2fpz 2fqw 2fqx 2fr3 
2fw6 2fwp 2fx6 2fxu 2g79 2g8r 2g94 2gl0 2glp 2gss 2gst 2gv6 2gv7 2h4g 2h4k 
2h6b 2ha2 2ha3 2ha5 2ha6 2hb1 2hb3 2hhn 2hjb 2hs1 2hs2 2hxm 2i0a 2i2b 2i4j 
2i4u 2i4v 2i80 2idw 2ien 2ieo 2ihq 2iko 2il2 2iuz 2iwx 2izl 2j2u 2j34 2j47 
2j4g 2j4i 2j77 2j7e 2j7g 2j7h 2j9n 2jds 2jfz 2jh0 2jh5 2jh6 2jiw 2nmy 2nmz 
2nnk 2nnp 2nt7 2nta 2o0u 2o2u 2o4j 2o4k 2o4r 2o4s 2oag 2ogy 2ojg 2ojj 2ok1 
2on6 2oxd 2oxx 2oxy 2oyk 2oym 2p16 2p4j 2p4y 2p7a 2p7z 2p95 2pcp 2pgz 2pk5 
2pk6 2pql 2pqz 2psu 2psv 2pu2 2pvh 2pvj 2pvk 2pvl 2pwc 2pwd 2pwg 2pwr 2pyn 
2q54 2q55 2q5k 2q63 2q64 2q88 2q89 2qbq 2qbr 2qbs 2qbu 2qci 2qd6 2qd7 2qd8 
2qe4 2qfo 2qg0 2qg2 2qhm 2qhy 2qhz 2qi0 2qi1 2qi3 2qi4 2qi5 2qi6 2qi7 2qm9 
2qmg 2qnn 2qnq 2qrl 2qt5 2qtg 2qu6 2r2m 2r2w 2r38 2r3t 2r3w 2r43 2r5a 2r5p 
2r6w 2r6y 2ra0 2rcb 2ri9 2rkf 2rkg 2sim 2std 2tpi 2uwo 2uxz 2uy0 2v00 2v3u 
2v95 2vh6 2vkm 2vnt 2vw5 2vyt 2z4b 2zb0 2zb1 3aid 3b4p 3b50 3b5r 3b65 3b66 
3b67 3b68 3b7j 3be9 3bex 3bfu 3bgb 3bgc 3bgq 3bgz 3bra 3brn 3bu1 3buf 3bug 
3buh 3bvb 3c2u 3cct 3ccw 3ccz 3cd0 3cd5 3cd7 3cda 3cdb 3cf8 3cj2 3cj4 3cj5 
3ckp 3cs7 3cyw 3cyx 3d0b 3d1x 3d1y 3d1z 3d20 3d7z 3d83 3d94 3djk 3e5a 3e5u 
3e64 3e92 3e93 3ebl 3eko 3ekr 3eqr 3f8c 3f8f 3gss 3gst 3jdw 3kiv 4ts1 5er1 
5std 5yas 6std 7std 
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Supporting Figures 

 

Figure S1. Statistical analysis of data in Fig. 2 in the main text. Here we are primarily interested in answering 

the question whether statistical errors arising from the use of a noisy molecular dynamics protocol can be 

responsible for the differences in correlation reported in Fig. 2. This is different from, for example, subsampling 

data to check for robustness with respect to individual data points. Because Spearman rank correlations have a 

weaker outlier sensitivity than linear correlation coefficients, we use rank correlations in this test. As mentioned 

in the main text, we reran the entire data set with the final model five times. This is computationally too 

expensive to do for all cases shown in Fig. 2. Thus, we extracted crude standard deviation estimates per data 

point from these five runs, restricting ourselves to the 742 complexes where all runs gave an interpretable result. 

The errors are clearly heteroscedastic, which we highlight in Fig. 3 in the main text. We then resampled the data 

points assuming zero-mean, normal errors of the inferred widths 5000 times. Each resultant data set was 

analyzed using the same threshold criteria as used for Fig. 2, and the Spearman correlation was recorded. (a) 

Rank correlation distributions for the five copies of the final model are shown as Tukey-rule boxplots. The 

horizontal lines are the correlation values for the same data without added noise (the blue one is hidden behind 

the pink one). The assumed mean per data point is taken as the actual value for each run independently, which 

means that we add errors to what is itself a noisy estimate. This leads to a slight drop in correlation. More 

importantly, the distributions resulting from this procedure appear consistent with the spread observed across 

the five independent runs. (b) Using the same errors per data point, other data sets were resampled, and the 

histograms of correlation values are shown. The data refer, in order, to the nine panels of Fig. 2. The only 

distribution overlapping with that of the final model is the one for leaving out the self-correction. This is expected 

since these data are largely identical (see main text). The lack of overlap between the histogram for the final 

model vs. those for the other cases strongly suggests that the differences in rank correlations are significant. 
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Figure S2. Robustness of Pearson correlation coefficients from bootstrapping. This figure is identical to Fig. S1 

except that Pearson correlations are shown and that the underlying distributions were generated from 5000 

bootstrap samples. Specifically, for each run, we subsampled the observed data as shown in Fig. 2 in the main 

text without replacement to ~80% (600 complexes). Under these settings, the conclusions are the same as for 

Fig. S1 indicating that the improvements highlighted in Fig. 2 are not spurious trends due to few complexes. We 

chose Pearson correlations for the subsampling to complement the analysis in Fig. S1. 
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Figure S3. Robustness of data for the final model. This figure is analogous to Fig. 2 in the main text. (a)–(d) Data 

for the 4 copies of the final model mentioned in the main text. Differences across these copies are used to 

calculate the statistical errors highlighted in Fig. 3 in the main text and used in Fig. S1. (e) Data for a rerun of the 

final model where the simulation temperature was increased to 310 K throughout. The reference dipeptide 

values listed in Table S1 were not adjusted specifically for this setting as their mutual differences are expected 

to be largely insensitive to temperature. (f) Data for a rerun of the final model where the offsets on the reference 

free energies of solvation of charge groups in organic molecules and polymers are reduced from -15.0 

to -7.5 kcal/mol (see Tables S1 and S3).   
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Figure S4. Analysis of individual contributions to estimated binding free energies. These plots are created from 

the same source data as Figs. 2(b) and 2(i) in the main text, i.e., they are for the single microscopic equilibrium 

per complex involving the most likely H-mer(s) in the unbound state. The estimated binding free energies have 

been split into non-electrostatic and electrostatic/solvation contributions. For ABSINTH, the latter include 

nonpolar solvation, which is not a separable contribution in the ABSINTH/EEF1 paradigm. For Poisson, 

electrostatic contributions are the only available data, and they do not include contributions from nonpolar 

solvation. The color code is the same as in Fig. 2, i.e., color signifies the number of charge groups carrying a 

nonzero net charge per ligand. (a) Correlation of experimental data with non-electrostatic contributions. (b) 

Correlation of experimental data with electrostatic/solvation contributions from ABSINTH. Note the consistent 

and expected anticorrelation for molecules with zero charge groups that is largely lost for the remaining ligands. 

(c) Correlation of electrostatic/solvation contributions between Poisson and ABSINTH data (based on Figs. 2(i) 

and 2(b), respectively) for molecules free of any charge groups with nonzero net charge. There is clear 

correlation, and the ranges of values are comparable. (d) The same as (c) for all other ligands yielding 

interpretable data. The dramatic deterioration of correlation is clear evidence that large differences between 

ABSINTH and Poisson arise due to contributions from charge interactions and not due to nonpolar solvation. 

Note that in (a) and (b) the directions of both axes are flipped relative to Fig. 2. 
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Figure S5. Analysis of the impact of using single-point energies calculated from minimized poses instead of 

trajectory averages. This figure is analogous to Fig. 2 in the main text. For every panel except (i), the change is 

that the predicted binding affinity for an individual combination of protein and ligand H-mers is calculated by eq. 

(S5) but using single-point energy values instead of trajectory averages. Single conformations for complex, 

protein, and ligand were obtained separately by minimization for a maximum of 2000 steps using a Broyden-

Fletcher-Goldfarb-Shanno scheme according to Nocedal.15 In (i), only the Lennard-Jones contributions are 

replaced in this way, and the Poisson-derived electrostatic and solvation components, which are obtained 

similarly (see S.4 above), are the same as in Fig. 2. Note that the differences to Fig. 2 are generally within the 

expected level of statistical errors (Fig. S1). 
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Figure S6. Further analyses for the enrichment data set. (a) The decadic logarithms of the experimental affinities 

(Table I in the main text) are plotted against the best energies across poses for the 16 positive controls. The color 

code is the same as that in Fig. 4 in the main text. Spearman and Pearson correlation coefficients are listed. (b) 

The total predicted binding free energies from the MM/P protocol are plotted against the corresponding 

ABSINTH values with ion corrections for individual poses obtained for the positive controls. Three points are cut 

from the plot for ease of visualization. Note that the number of available poses per positive control differs 

considerably. These numbers of valid poses per compound are listed along with the corresponding correlation 

coefficients (Spearman|Pearson) in the figure (color code in the legend). Here, Pearson correlation coefficients 

are sometimes significantly larger than Spearman ones (e.g., for 4j3i or 3mxf), which is due to individual outlier 

poses having particularly favorable or unfavorable energies in both models. The overall correlation coefficients 

across all of these poses are 0.32 and 0.37 (Spearman and Pearson, respectively). 
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