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Summary

Computational combinatorial chemistry divides the ligand design problem into
three parts: the search for optimal positions and orientations of functional groups
in the binding site, the connection of such optimally placed fragments to form
candidate Hgands, and the estimation of their binding constants. In this review,
approaches to each of these problems are described. The present Hmitations of
methodologies are indicated and efforts to improve them are outlined. Applica-
tions to HEV-1 aspattic proteinase, which is a target for the development of AIDS
therapeutic agents, and human thrombin, a multifunctional enzyme that has a
central role in both haemostasis and thrombosis, are presented. The relation
between combinatorial methods for drug discovery on the computer and in the
laboratory is addressed.

Introduction

The cloning and sequencing of the human genome promises that an ever increasing
number of proteins will become available as potential drug targets in the coming years.
X-ray crystal structures {1], nuclear magnetic resonance solution structures [2-5] and
homology-modelling predictions [6-9] will provide the information necessary for structure-
based design of novel therapeutic agents for the treatment of a variety of diseases. Com-
puter-aided structure-based ligand design is concerned with the prediction of ligands that
are expected to bind strongly to key regions of biologically important molecules {e.g.,
enzymes, macromolecular receptors) of known three-dimensional structure, so as to inhibit
or alter their activity. An immense effort has been and continues to be dedicated to
developing methods by which drug design (o1, more properly, ligand design, since whether
or not a ligand will result in a drug involves factors beyond the present concerns) can be
made an automatic and rational process. Despite several successful case studies where
structure-based ligand design efforts led to compounds which are currently in clinical trials
[10], the field is still in its infancy, as is evident from recent reviews [11,12] as well as from
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Fig. 1, Schema representing the strategy for computer-uided structure-based ligand design. The three steps
of the strategy are depicted in the shaded rectangles; computer programs are in bold.

earlier evaluations [13,14]. Thus, new ideas and methods for approaching the ligand design
problem are still needed.

The combinatorial strategy we have chosen for structure-based ligand design consists
of three parts (Fig. 1). The first is an efficient method for the search of known binding
sites (or, more generally, receptor surfaces) for positions that interact strongly with a
range of functional groups. This is necessary for a ligand with high selectivity. To solve
this problem, the Multiple Copy Simultaneous Search (MCSS) procedure was developed
{15]. The importance of functional groups has been stressed recently in an assessment of
binding modes of inhibitors for trypanosomal triosephosphate isomerase [16]. Also, the
wealth of structural information available on thrombin and thrombin-ligand complexes
indicates that both its active site and the fibrinogen recognition exosite can be divided into
a number of pockets, each of which is filled by a preferred functional group in a variety
of known inhibitors [17].

Second, given a set of such positions and orientations for functional groups, it is
necessary to connect the functional groups to form putative ligands that are candidates
for synthesis. Two approaches will be discussed. The program CONNECT was developed
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to generate peptide leads from optimal positions of N-methylacetamide (NMA) groups
and functional groups representing side chains [18]. This method can also be used to
construct peptidomimetic compounds, e.g., oligo(N-substituted glycines), from N,N-di-
methylacetamide fragments. HOOK is another approach, which was developed to find
molecular skeletons from a three-dimensional database that fit well into the protein
binding region and make bonds to functional groups [19].

Third, a method is needed to estimate which of the resulting candidate molecules are
likely to have the strongest binding constants and can be synthesized without excessive effort.
Evaluating the free energy of binding of the resulting candidates in the third step requires
a more sophisticated and time-consuming analysis of the interactions as well as a treatment
of solvent and entropic effects. This can be applied only to a imited set of molecules.

A stepwise combinatorial procedure is used because it is much more efficient than
doing everyvthing at once. It would take an inordinate amount of time to dock hundreds
of thousands of ligands into the binding site and evaluate their energies. By first docking
functional groups and then connecting them to form candidate ligands, it is possible to
search through a very large mumber (10" to 10") of molecules in a relatively short time.
‘When a set of 100 to 1000 or so likely candidates have been selected, it is appropriate to
make a more detailed analysis of their binding properties and routes to their synthesis,
although the functional groups and linker fragments can be chosen with reference to the
ease of synthesis (D. Joseph, P. Deslongchamps and M. Karplus, work in progress).

Several methods have been developed that are related to various aspects of the three-
step approach. One is the GRID program [20-23], which is the best known and most
widely used method for functional group searches. GRID determines favorable binding
sites with an interaction based on an empirical energy function. It uses simple spherical
ligands and has emphasized positional information, although recently specific hydrogen-
bonding interactions have been included [22,23].

Another related approach is that embodied in the program LUDI [24-26]. It makes use
of statistical data from small-molecule crystal structures to determine binding sites of
molecular fragments, i.e., discrete positions on the binding site surface that are suitable
to form hydrogen bonds and/or to fill hydrophobic sites of the receptor. Alternatively, it
uses simple rules or the output of the program GRID to generate the interaction sites.
Finally, the fragments fitted in the interaction sites are connected by linker groups. Al-
though LUDI is very fast (i.c., it can be used interactively), the use of purely geometric
rules to position fragments in the binding site may miss the optimal positions of func-
tional groups. This is the case for polar groups, whose orientation in the binding site is
often a compromise between optimal intermolecular hydrogen bonds and more delocalized
electrostatic and van-der Waals interactions [27].

The program DOCK [28,29] pioneered the use of databases and geometric criteria to
select ligands which best complement the shape of the protein binding site. In its original
version, DOCK neglected electrostatic interactions and was unable to handle ligand
flexibility. Recently, the DOCK scoring function has been expanded to include a full
intermolecular force field [30]. In addition, Leach and Kuntz have supplemented the
program with a systematic search algorithm to introduce ligand flexibility {31].

Bartlett and co-workers developed CAVEAT [32], which uses databases of cyclic com-
pounds and functional group vectors in a manner that is similar to what is done in
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HOOK. However, CAVEAT searches through a database for molecules that link together
specified functional groups without consideration of the fit between the binding region
and the molecule. This is done in a postprocessing step.

Recently, the software package LEGO has been developed for de novo ligand design 7
based on the combination of multiple fragment docking, automatic connection by small
linker units (one to four atom chains), and searching of 3D databases for complementary
molecules {91,94]. The LEGO method has been implemented within the MOLOC molecu-
lar modelling system [94], which allows the visualization of the functionality maps and
interactive mode! building of the growing ligands. LEGO does not explicitly take into
account solvation effects; thus, it is very efficient and can be run interactively and almost
in real time. It is based on a force field which omits all hydrogen atoms and does not
require partial charges but uses geometrical criteria for hydrogen bonds and was succes-
fully tested by reproducing the structural aspects of 1589 compounds derived from the
Cambridge Structural Database [95].

A different approach for fragment-based de novo ligand design involves the sequential
buildup of a candidate ligand molecule. Moon and Howe developed GROW, which
utilizes a template set of in vacuo generated amino acid conformations (constructed as N-
acetyl-A-methylamides) and iteratively pieces them together by amide end group super-
imposition in the presence of a model of the receptor [33]. Their growth algorithm corre-
sponds to a tree search in which each library template is attached to the seed (or to each
actual construct) and the search space is kept under control by pruning according to an
energy evaluation, based on van der Waals, Coulombic, strain and desolvation terms,
Although the GROW results depend strongly on both the seed position and the choice
of templates, the method has been validated by reproducing the known binding orienta-
tions of inhibitors of both HIV-1 aspartic proteinase (HIV-1 PR} and rhizopuspepsin. A
limitation was demonstrated in the prediction made for MVT-101 {N-acetyl-Thr-Ile-Nie-
Y[CH,-NH]-Nle-Gln-Arg-amide) in HIV-1 PR [34]. Only the minor orientation of MVT-
101 was obtained, because the Ile-Nle peptide bond from the published crystal structure
was employed as a seed position.

Rotstein and Murcko developed GroupBuild, a fragment-by-fragment ligand generator
[35]. GroupBuild uses a library of common organic templates and a force field description
of the nonbonding interactions between the ligand and the enzyme to build putative
ligands that have chemically reasonable structures as well as steric and electrostatic prop-
erties which are complementary to the enzyme. To partially account for the hydrophobic
effect, the difference in solvent-accessiblte surface area upon binding is calculated for heavy
nonpolar atoms. Although no attempt is made to estimate the electrostatic contribution
to the free energy of desolvation, GroupBuild was able to reproduce known binding motifs
found in a variety of inhibitors for FKBP-12, human carbonic anhydrase, and HIV-1 PR.

A program similar to GroupBuild was recently described by Bohacek and McMartin
[36]. It uses a Boltzmann weighting factor to bias the probability of selection of new
atoms to be added to the growing chain towards those with a high complementarity score,
based on rewarding carbons in hydrophobic regions or hydrogen-bonding atoms near
appropriate partners, and penalizing mismatches between atom type and binding region.

Sequential fragment build-up procedures have several weaknesses. The main one is that
they do not use information about critical binding regions and often fail to connect
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distant binding pockets. Furthermore, the suggested compounds and their orientation in
the binding site are affected by the choice and position of the seed fragment. To solve the
latter problem, Moon and Howe [33] developed a preprocessing algorithm similar in spirit
to MCSS. To keep the number of molecules within bounds, pruning is done based on
energy calculations that could eliminate possible ligand candidates. So far molecules have
been constructed with fixed bond lengths and bond angles, and dihedral angles correspon-
ding only to the rotational isomeric states of each bond.

In the remainder of this review, the methodologies we have developed for structure-
based ligand design are considered in. more detail. Advantages and limitations of the
approaches are discussed and ongoing developments to deal with such problems are
described. Applications to HIV-1 PR and human thrombin are presented. It is shown that
the methods can be used for lead optimization, as well as for de novo design. We con-
clude by indicating the advances in ligand design that may be expected in the near future.
Methodologies for searching 3D databases to test pharmacophore hypotheses and select
compounds for screening are not discussed here; they have been reviewed in Ref. 37.

Probing the binding site

Multiple Copy Simultancous Search

The multipte copy simultaneous search (MCSS) method determines energetically favor-
able positions and orientations (local energy minima) of functional groups on the surface
of a protein of known three-dimensional structure [15,18]. Functional groups are small-
chemical fragments commonly found as substituents of larger organic molecules. To
investigate both the hydrophilic and hydrophobic character of the binding site, charged
(e.g., acetate, methylammonium, methylguanidinium), pelar (e.g., methanol, N-methylacet-
amide), aromatic (e.g., methylbenzene, naphthalene), and aliphatic {e.g., propane, iso-
butane, methylcyclohexane) groups are used. Additional functional groups can be intro-
duced by the user.

The method is fully automated, although certain critical parameters can be adjusted to
optimize it for specific applications. Several thousand replicas of a given group are ran-
domly distributed inside a sphere whose radius'is chosen sufficiently large to cover the
entire region of interest. This can be a known binding site or the entire protein, if one
wants to explore alternative binding pockets. The initial random distribution can also be
performed inside a parallelepiped if the region of interest is elongated in one or two
directions. A minimal distance can be given as input to avoid bad contacts between
functional group atoms and protein atoms for the initial distribution. More sophisticated
and less random initial seeding {(use of intuitive chemical rules, layer distribution on a
Connolly surface) are currently under investigation (A. Caflisch and C. Fhrhardt, work
in progress). Preliminary results indicate that for monofunctional groups {e.g., acetate,
methytlammonium} and polyfunctional groups (e.g.. N-methylacetamide) the more accurate
seeding results in savings of CPU time of up to about 50% and 30%, respectively, to
obtain the same minima as with a random initial distribution.

Subsets of between 500 and 3000 randomly distributed replicas of the same group are
simultaneously minimized in the force field of the protein. A classical version of the time-
dependent Hartree (TDH) approximation [38,39] is used to divide the system into two
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parts, protein and functional group replicas, each of which feels the average field of the
other. The inferactions between the group replicas are omitted, i.e., replica i does not
interact with replica j, for each i and j in the subset. In applications to the sialic acid
binding site of the influenza coat protein hemagglutinm [15], HIV-1 PR {18], and throm-
bin, the protein was kept fixed. Hence, the TDH approximation is exact. The force on
each replica consists of its internal forces and those due to the protein, which has a
unique conformation and, therefore, generates a unique field. Protein flexibility is being
taken into account in studies that use minimization and quenched molecular dynamics for
a system consisting of multiple copies of protein side chains, as well as functional groups
{C. Stultz and M. Karplus,-work in progress).

The minimization begins with 500 iterations of the steepest descent algorithm, which
has the important property that it tends to reach the nearest local minimum, i.e., the
optimal position and orientation characterized by the smallest displacement from the
starting point. It also provides a better performance than higher order algorithms for very
poor starting conformations where the gradient is large. The conjugate gradient algorithm
is then applied to optimize the functional group positions in the local minima [40,41]. The
positions are compared every 1000 steps to eliminate replicas converging toward a com-
mon minimum. The criterla used to characterize a common minimum are an rms devi-
ation of 0.2 A or less between two replicas and a decreasing rms deviation in the final 200
steps. A convergence criterion of 0.001 keal/mol A for terminating the minimization is
utilized. For a complete minimization, between 4x 10 and 15x 10° steps arc usually
required, depending on the size of the functional group. Further details concerning the
methodology are given in Refs. 15 and 18.

Application to HIV-1 PR

Retroviral proteinases, which are members of the aspartic proteinase family, specifically
process high-molecular-weight viral polyproteins into individual structural proteins and
enzymes [42]. Mutation of the active site aspartate to asparagine in HIV-1 PR prevents
processing of polypeptides [43], so that immature, noninfective virions result. Hence,
specific inhibitors of HIV-1 PR would be candidates to serve as AIDS therapeutics.

As a test of the MCSS methodology, the functional group minima were compared with
those corresponding to the inhibitor MVT-101. This is the reduced analog of a hexapep-
tide substrate, with the sulfur of the methionine side chain replaced by a methylene group
in notleucine for synthetic simplification; it has an inhibition constant (K;) of 780 nM
[34]. A detailed description of the functionality maps in the binding site of the HEV-1 PR
structure has been presented previously [18]. Both the native conformation [44] and the
structure derived from the complex with the inhibitor MVT-1(01 [34] were used. When the
MCSS minima were compared with the positions of corresponding moieties in the MVT-
101 inhibitor [18], all of the backbone peptide groups of the inhibitor corresponded to one
or more NMA minima in the MCSS functionality map (rms deviations of 2.1 A or less).
Also, all inhibitor side-chain positions were found by at least one appropriate functional
group with an rms deviation of 2.4 A or less. It is likely that some of the deviations are
due to the fact that the binding of the complete inhibitor is not ideal in terms of individ-
ual functional group interactions; e.g., it was found that when the peptide backbone was
divided into NMA groups that were minimized separately, they converged towards the
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nearest {or next-nearest) minima found by MCSS. The same occurred for the MVT-101
side chains. Moreover, MVT-101 is a relatively poor inhibitor compared with known
subnanomolar inhibitors of HIV-1 PR [45,46].

Besides being a very useful first step for de novo design (as discussed in the following
sections), the MCSS results can-be used for lead optimization: Several aspects of the HIV-
1 PR functionality maps suggest modifications of MVT-101 for the improvement of
binding potency. The 79 propane minima obtained from MCSS in the HIV-1 PR structure
from the complex with MVT-101 are shown in Fig. 2. The six propane minima character-
ized by the best interaction energy with the proteinase are located at the 82 and S2'
subsites, and the two largest clusters of propane (Fig. 2) and isobutane (results not shown)
functionalities are at the S1 and S1' subsites. This is in agreement with the requirement
of hydrophobic residues at these subpockets in maost of the sequences of HIV-1 PR sub-
strates [47] and inhibitors [48]. From Fig, 2 it is clear that the S1 and S1' subsites can
accommodate a more bulky hydrophobic side chain than the butyl group of norleucine.
This suggests that modification of the MVT-101 norleucine residues (at P1 and P1'} into
cyclohexylalanine should result in tighter binding. Propane and methylcyclohexane have
similar free energies of desolvation (transfer from dilute aqueous solution to the gas
phase}, i.e., the value for propane is .24 kcal/mol more favorable than that for methyl-
cyclohexane [49]. Consequently, improved van der Waals/hydrophobic interactions with
HIV-1 PR should lead to better binding,

Figures 3a and b show that methanol minima are distributed over a large part of the
binding site and also at both open ends. They participate in interactions with most of the
charged and polar side chains, as well as with many proteinase main-chain NI and CO
groups. There are several minima for methanol that interact strongly with Asp™ and
Asp™. This is in agreement with the interactions between the hydroxyl functionality (at
P1-P1") and the catalytic aspartates present in most of the known HIV-1 PR—inhibitor
complexes [48,50]. One methanol minimum is invoived in hydrogen bonds to the main-
chain NH and CO of residue 48" (see the upper left part of Fig. 3a). It could be connected
to the C-terminus of MVT-101 by the replacement of the C-terminal -C=0 moiety with
a -C-CH,-OH group. Since the additional functional group interacts mainly with the main
chain of the proteinase, missense mutations are likely to have a small effect on the addi-
tional potency of the modified ligand.

The 20 methylammonivim minima can be grouped into eight clusters, the largest of
which contains five minima in the vicinity of the catalytic residues Asp™ and Asp™, see
Fig. 4. Although the desolvation of a charged group always involves a significant free
energy cost, it was suggested that introduction of an amino group in the P1-P1' position
(e.g., substitution of the main-chain methylene by a CH,NH;) could result in a tighter
binding ligand [18]. This is consistent with a report of C, symmetrical penicillin-derived
HIV-1 PR inhibitors having two secondary amino groups between P! and P1' [51] and
with the recent discovery of a series of aminodiol inhibitors [52].

Possible improvements in MCSS

The present version of MCSS does not take into account the effects of the solvent, i.e.,
all protein—ligand interactions are calculated with a vacuum potential [41]. This choice is
based on the principle that fast methods are necessary to perform effective searches of the
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binding site and that good candidate ligands subsequently can be ranked in terms of their
binding free energy (vide infra). A possible difficulty with this approach is that binding
sites may be missed or mispositioned due to the lack of a solvation correction. Such
effects are likely to be particularly important for relatively flat, solvent-exposed binding
sites, such as that in SH3 molecules (R. Tan and M. Karplus, unpublished results). Even
for protected binding sites, minimized positions of nonpolar fragments may be found in
hydrophilic pockets because of the lack of an energy penalty for protein desolvation. A
representative example is the cluster of propane minima overlapping the guanidinium
group of MVT-101 (Fig. 2). These are close to the Leu” side chain of HIV-1 PR, but -
partially desolvate the carboxyl group of Asp™'

In an MCSS study of thrombin (vide infra), it was observed that acetate minima tend
to cluster in the vicinity of lysine and arginine side chains on the thrombin surface (Fig.
5). There is only one minimum in the binding site; it accepts a hydrogen bond from the
primary ammonium of Lys*". As a simple test of the importance of electrostatic shielding,
a distance-dependent dielectric function [53] was introduced instead of the unit dielectric
constant in the vacuum potential. The overall shape of the map was found to be similar,
but there are three more acetate minima interacting with the Lys®" side chain. In the
constant dielectric calculation, the strong Coulombic interaction yields a smoother con-
figurational space than the one with the distance-dependent dielectric function. An alterna-
tive to the use of a dielectric function is to reduce exposed charges so as to mimic the effect
of solvent shielding. This approach has been used successfully in docking studies and in an
analysis of the reaction mechanism of prolyl isomerization by the immunophilin FKBP [54;
A. Caflisch et al., unpublished results).

To account for the solvent contributions during the MCSS minimization of the func-
tional group replicas, the CHARMm energy can be used, supplemented by a simplified
continuum methodology. This allows one to calculate analytically the screened electro-
static interaction energy and the electrostatic self energy of a molecular system in solution
by integrating the energy density of the electrostatic field {55,56].

An approach that takes into account specific water molecules between the ligand and
the protein can be introduced into the MCSS procedure. A functional group consisting
of an organic fragment and one or more water molecules is defined (A. Caflisch and M.
Karplus, unpublished results). A well-characterized example of this methed is the water
bridging the two HIV-1 PR flaps and the CO groups at the inhibitor positions P1 and P2'.
Such an approach does not include the effect of bulk solvent.

An important attribute of the MCSS methodology that is just beginning to be exploited
is its utility for including flexibility in the binding surface [15]. This contrasts with other
search methods (e.g., GRID). An effective way of doing this is to follow a standard
MCSS run for a given functional group with a minimization or quenched dynamics
simulation in which the side chains and parts of the main chain involved in the binding
are replicated. In this way, optimum functional group positions can be obtained without
excessive use of computational resources (C. Stultz and M. Karplus, work in progress).

Connecting optimally placed fragments

Two approaches to forming molecules from functional groups are discussed in this
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section. One of these links together the functional groups themselves and the other uses
compounds from a database to link them.

Design of peptides and nonpeptidic peptidomimetics

Although peptidic compounds are easily metabolized and often show poor pharmaco-
logical profiles, they offer several advantages as lead compounds with respect to nonpep-
tidic molecules: (i) they are easier to synthesize than most organic molecules; (i1} they are
sufficiently flexible to fit even in a complex binding site (though this is a two-edged sword,
since more rigid compounds undergo a smaller loss of conformational entropy upon
binding); and {iii) their energetics can be analyzed by well-parametrized molecular mech-
anics force fields: '

The MCSS positions and orientations for selected functional groups in the binding site
can be connected directly to build candidate peptide ligands. A computer program (CON-
NECT) was developed to form the backbone from N-methylacetamide minima and to
generate the side chains by attaching the various functional groups to the main chain [18].
Since no linker pieces are required and only MCSS minima are used, all connected frag-
ments have optimal interactions with the protein, MCSS minima of any side-chain type are
evaluated for attachment to each C* atom of the NMA backbones, In addition, if an active

_peptide ligand sequence is known, but its bound conformation is not, CONNECT can be
“used as a docking algorithm to suggest one or more binding conformations for the peptide.

In constructing the peptide ligands, the functional groups are kept fixed in their res-
pective minimized positions and a simple pseudoenergy function, E =E, +E,, is used to
evaluate all possible ways of connecting the groups. Here E, represents a ‘bonding’ inter-
action and is used to determine whether two groups have relative positions that permit
them to be joined together; E, is a nonbonded interaction that ehminates interacting
groups with bad steric contacts, Both pseudoenergy terms are quadratic and positive
definite. The use of fixed functional group positions enables the rapid construction of
plausible ligands, However, because the groups are fixed, a rather permissive pseudo-
energy criterion is used in joining them together. Subsequent minimization serves to
regularize the internal structure of the relatively small number of chosen ligands with
satisfactory bonding geometry.

Given the pseudoenergy function, the construction of peptides is performed in four
steps: main-chain generation, clustering of backbone structures, side-chain attachment,
and final minimization. Since the function I, contains only positive contributions, it is
possible to discard a partially built structure if its pseudoenergy E is larger than a cutoff
value. The fixed functional group positions, the simple energy function, and the use of a
cutoff for eliminating incomplete ligands makes the calculation very fast. An algorithm
of the branch-and-bound [57] type is used to generate main chains. Increased efficiency
relative to an exhaustive search is achieved by pruning the search tree, whose interior
nodes represent partial solutions, i.e., n (peptides) of an m {peptide) candidate ligand
{where n<m). A branch is eliminated when it can be determined with certainty that its
elongation will yield a peptide with a pseudoenergy larger than the cutoff value. This
pruning criterion is guaranteed to find all optimal solutions, because it is based on evalu-
ation of a pseudoenergy function that is always less than or equal to the true pseudo-
energy; it consists of a subset of the terms in the complete pseudoenergy, all of which are
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positive definite, It is feasible, for example, to evaluate on a single processor of an SGI
340GTX in less than 20 s all possible ways of building terminally blocked hexapeptide
backbones from the 83 NMA minimized positions obtained by running MCSS in the
HIV-1 PR binding site [18]. This would be an impossible task if all 83!/{83 -7)! (about
2% 10" complete hexapeptide main chains would have to be evaluated. After possible
main chains have been constructed, a clustering procedure based on their rms deviations
with respect to each other can be performed to reduce the number of putative peptide-
ligands for further study. Details of the clustering algorithm can be found in Ref. 18.

Side chains for the selected set of backbone representatives are constructed in a manner
simifar to that used for the main chain. For each backbone C* the MCSS-minimized
position with the lowest value of the pseudoenergy after attachment is selected. To prior-
itize fragments for side-chain selection, several methods to estimate the free energy of
desolvation of different functional groups are currently under investigation (E. Evensen
and M. Karplus, work in progress). For deeply buried MCSS minima, the fastest ap-
proach is to retrieve from a look-up table the hydration free energies of the standard
amino acid side chains [58] and a collection of non-ionic monofunctional and bifunctional
compounds {49]. For partially exposed fragments one could multiply the ratio between
their buried and total surface with the value retrieved from the look-up table.

The resulting peptides are optimized in the field of the protein by a conventional
minimization algerithm (e.g., conjugate gradient) or by Monte Carlo Docking (MCD),
a stochastic optimization scheme which combines the advantages of the Metropolis
Monte Carlo methoed in global optimization and that of the conjugate gradient algorithm
in local minimization [18,59]. Figure 6 shows seven NMA minima in the HIV-1 PR
binding site which were selected by the CONNECT program as a terminally blocked
hexaglycine ligand (before side-chain attachment), superimposed on the minimized
structure. Most of the hydrogen bonds with the proteinase binding site are preserved ..
upon minimization and additional ones are formed, e.g., from the NH of the third NMA
minimom (the ordinal number refers to the order in the hexaglycine sequence and not
to a ranking based on inferaction energy) to the CO of Gly” and from the NH of the
seventh NMA minimum to the side chain of Asp™ (Fig. 6). Only one hydrogen bond is
lost, from the NH of Gly*' to the CO of the seventh NMA minimum.

With the MCSS/CONNECT/MCD methodologies, the published structure of MVT-101
in HIV-1 PR was reproduced and the end-to-end flipped orientation of MVT-101 was pre-
dicted to be more stable [18]. This result was a posteriori found to be in agreement with
recent high-resolution crystallographic data (M. Miller and A. Wledawer, private com-
munication).

The approach described in this section is also appropriate for the de novo design of
polymeric ligands consisting of nonpeptidic peptidomimetic units, or for any other syn-
thetic method that is based on linking together a relatively small number of different
functional group units. Thus, it could be used to complement and analyze results from
combinatorial libraries. The use of peptidomimetic units should lead to putative ligands
with better metabolic stability and enhanced pharmacokinetic profiles. A set of N-substi-
tuted glycine units has been created, each bearing a nitrogen substituent similar to those
of the natural g-amino acid side chains [60]. The polymerization of these monomers
results in a class of compounds which was termed ‘peptoids’. Recently, certain biological
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activities have been established for specific peptoid sequences [61]. MCSS can be used to
probe the binding site of a given protein target for N,N-dimethylacetamide as a peptoid
main-chain representative, and a variety of functional groups for the side chains. The
resulting optimal positions and orientations can be used by CONNECT to generate
peptoid ligands. Due to the efficient assembly of diverse pepteid libraries from readily
available starting materials [62] and automated synthesis technology [63], the number of
potentially available compounds is greater than the number that can be efficiently and
accurately screened in solution-phase competition assays [61]. Hence, one of the goals of
computer-aided peptoid ligand design is to generate suggestions which can be used for
planning experiments, e.g., to limit the number of members in each monomer library to
focus it towards functional groups that are predicted to bind welt by theoretical methods.
As an example, if many of the computer-designed peptoid ligands contain a hydrogen
bond-accepting side chain at the N-terminal monomer, one could exclude all aliphatic and
basic residues from the library used in the first synthesis step.

An example of the design of nonpeptidic ligands: Thrombin

The program HOOK. [19] has been developed to connect a suitably chosen set of func-
tional groups (MCSS minima and/or fragments from known inhibitors) and generate mol-
ecules that satisfy the chemical and steric characteristics of a macromolecular binding site.
HOOXK uses as input the 3D structure of a protein binding site, and a collection of func-
tional group sites that reflect how and where putative ligands could be positioned to make
favorable interactions with the protein. These functional groups are linked by searching
through a precomputed database consisting of molecular skeletons. Ideal skeletons are
relatively rigid hydrocarbon molecules with CH bonds that can be replaced by bonds to
functional groups. In this way novel molecules are suggested that contain several func-
tional groups in favorable positions. The linkage is introduced by fusing specified bonds
in the skeleton (called ‘hooks”) with free CH,-R bonds in two or more functional groups.
The resulting molecule has its skeleton positioned in the binding site and the fit between
a given molecule and the binding site is estimated by computing an ‘overlap score’ based
on a simplified form for the van der Waals interactions. The program is designed in such
a way that a large number of functional group sites and skeletons can be searched very
rapidly. HOOK was first applied to construct ligands in the binding site of the hemag-
glutinin molecule of the influenza A virus and in the binding region of chloramphenicol
acetyltransferase [19].

Recently, we have applied HOOK to the active site of human thrombin. In preparation
for the use of HOOK, MCSS was used for the active site with the structure from the
PPACK complex [17,64]. The active site of thrombin has both hydrophobic and polar
character (Fig. 5). Its precleavage sites (S1-53 subpockets) have been targeted for the
development of small-molecular-weight noncovalent inhibitors [65,66). The following
MCSS groups were used: propane, methylcyclohexane, methylbenzene, methanol, N-
methylacetamide, methylguanidinium and acetate (Table 1). All of these, except methyl-
benzene and methylcyclohexane, have been employed previously in a survey of the throm-
bin binding site and in a comparison of the functional group sites with the interactions
of known inhibitors (P. Grootenhuis and M. Karplus, unpublished results).

Methylcyclohexane and methylbenzene minima are distributed over the entire binding
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TABLE 1

MINIMA FOUND BY MCSS FOR THE THROMBIN BINDING SITE

Group Lowest Highest Lowest Highest Cutoff No. No. dis-
ligand ligand energy® energy” energy’ accepted  carded
strain strain

Propane 0.0 0.1 79 238 2.0 96 1

Methyleyclohexane 0.0 7.9 -10.6 10.0 1.7 329 11

Methylbenzene 0.0 2.0 -14.8 ~3.0 -0.9 109

Methanol 0.0 1.1 -29.6 -1.5 =51 84 7

N-methylacetamide ~1.4° 79 —41.5 12.8 2.7 99 23

Methylgranidinium 0.1 5.8 -112.9 -18.1 -37.5 84 36

Acetate 0.0 0.5 -86.3 2.2 —46.5 g 11

Acetate (R dielectric) 0.0 0.9 —86.1°¢ 295 -46,5 12 38

All erergy values are in kcal/mol. The energy of the isolated fragment minimized in vacuo is: propane, 0.0

keal/mol; methylcyclohexane, —0.1 kcal/mol; methylbenzene, ~0.2 kcal/mol; methanol, 0.0 kcal/mol; N-

methylacetamide, 3.5 kcal/mol; methylguanidinium, 17.4 kcal/mol; acetate, 0.0 kcal/mol.

* Sum of ligand strain and interaction energy with the thrombin active site, ‘

® For the nonionic compounds the energy cutoff corresponds to the free energy of desolvation, i.e., the free
energy of transfer from dilute aqueous solution to the gas phase [49]. For methylguanidinium and acetate
the energy cutoff corresponds to one-half the selvation enthalpy of the functional group [92]; the values
were derived from Ref. 93. '

¢ ¢is-NMA has lower intcrnal energy (because of a more favorable Coulombic and no dihedral penalty).

¢ A distance-dependent dielectric was used during minimization, but the final energy (after minimization) was
evaluated with e=1.

site from $3 to 82'. The intermolecular van der Waals energy of the 20 best methylcyclo-
hexane minima ranges from —10.58 to —8.79 kcal/mol. Most of these minima occupy the
S2 pocket and the region between the S2 and S1 pockets. To facilitate the analysis, they
were clustered with a 2.6 A rms criterion and the lowest energy minimum within each of
the resulting nine clusters was chosen as the cluster representative. Figure 7 shows the nine
representatives, The distribution of the 20 best methylcyclohexane minima looks similar
to that for propane, except for the lack of methylcyclohexane minima at 83. The mini-
mum overlapping the alkyl part of the arginine side chain in PPACK suggests that modifi-
cation of arginine into cyclohexylamidine could result in good binding. The intermolecular
van der Waals energy of the 20 best methylbenzene minima ranges from —14.84 to -9.48
kcal/mol, similar to that for methyleyclohexane. The 10 representatives are shown in Fig.
8a, along with minimum 24 which cccupies the 83 subsite and has a van der Waals energy
of —9.32 kecal/mol. The four lowest energy minima are in the S1 pocket; they overlap the
alkyl part of the arginine side chain of PPACK, as in the propane and methylcyclohexane
functionality map. Minimum 1 occupies the same region of the specificity pocket as the
benzene ring of benzamidine in NAPAP (Fig. 8b).

Methanol and NMA minima are scattered over all polar regions of the binding site.
Minimum 12, which donates to Asp'® on the bottom of the S1 pocket, suggests modifica-
tion of the arginine side chain into an alky! side chain with a terminal hydroxyl group
(Fig. 9). This may result in a slightly reduced intermolecular interaction, since the Arg-
Asp'™ salt bridge is enthalpically stronger than the alkyl hydroxyl-Asp'® hydrogen bond.
However, this would be expected to be balanced, at least in part, by the fact that desolv-
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ation of an alkyl hydroxyl is less unfavorable than desolvation of an alkyl guanidinium.
Such a modification should increase selectivity against trypsin and plasmin, since com-
pared to these compounds, the S1 pocket is more hydrophobic in thrombin. This results
from the Ala™ to serine and Glu' to glutamine substitutions in both trypsin and plas-
min, and the Val*"? to threonine substitution in plasmin. In addition, substitution of the
positively charged group (guanidinium) with a polar but uncharged (hydroxyl) moiety
should facilitate intestinal resorption and diminish side effects [65].

To connect MCSS minima to form candidate molecules, 481 accepted functional group
minima were used, including all the minima, except for those involving methyleyclohex-
ane. A database was used composed of 100 small hydrocarbon skeletons constructed from
a set of mono-, bi-, and tricyclic hydrocarbons with ring sizes of five and six carbons. The

- parameters of EHisen et al. [19] were employed, except for the rms overlap criterion be-
itween the skeleton hooks and the functional groups (0.3 A instead of 0.5 A), the minimal
distance between functional group atoms and skeleton atoms (2.0 A instead of 1.0 A) and
the distance range where the overlap score has its maximal value (O, =3.5 instead of 3.2
A; Opn=4.5 instead of 4.2 A). Furthermore, only the hits with scores larger than 100
(instead of 50) were saved. The use of more restrictive parameters resulted in 4494 hits
with reasonable geometry and no bad contacts with the protein binding site atoms.
HOOK generated four compounds, each having five functional groups. Among the
HOOK hits with more than three MCSS minima, there were several with a guanidinium
group in S1 and/or a benzene in 83, while a few also had acetate at S1'.

Figure 10a shows the best candidate ligand proposed by HOOK after first sorting the
4494 hits by their number of hooked groups and then by overlap score. This molecule
consists of a tricyclic hydrocarbon ring connecting five MCSS minima, i.e., methylbenzene
minfmum 31 in S3, methanol minimum 28, which makes two hydrogen bonds with the
polar groups in (ly*', propane minimum 28, which interacts with the side chain of Trp'¥,
methylguanidinivm minimum 8 in S1, and N-methylacetamide minimum 35 between the
Trp®® and Ser' side chains. In addition, one of the two outer five-membered rings of the
skeleton is positioned in the 81 site. This structure has most of the noncovalent interac-
tions between PPACK and the thrombin active site and appears to be a good ligand
candidate. Another candidate ligand suggested by HOOK (number 7} consists of a tri-
cyclic hydrocarbon ring with four MCSS minima as substituents (Fig. 10b). These are
methylgnanidinium minimum 3 in S1, methylbenzene minimum 17, which overlaps the
proline side chain of PPACK. in 82, and methanol minima 35 and 42, which donate to the
side chain of Glu" and the backbone CO of Cys™ (Fig. 10b).

A bicyclic hydrocarben ring linking four MCSS minima is shown in Fig. 10c (HOOK
candidate number 14). It has methylbenzene minimum 4, whose aromatic ring is ‘sand-
wiched’ between the two amide groups in the top half of §1 (backbone of residues 191-
192 and 215-216) and it overlaps the alkyl part of the PPACK arginine side chain. The
other MCSS minima are NMA 36, which donates to the His” side chain and accepts from
the NH of Gly', acetate 12 (obtained with a distance-dependent dielectric), which forms
a salt bridge with Lys*™ at SI', and methylbenzene 82, which occupies part of the S2 and
S3 sites. Figures 10a and 10c show that the 52 and 83 pockets are contiguous and suggest
that the hydrophobic portions of these sites may be linked by an ethylene or phenyl ring,
thereby increasing the rigidity of a candidate ligand having apolar side chains at 82 and S3.
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Fig. 10. (continued).
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Limitations of CONNECT and HOOK

To circumvent the problems originating from the poor pharmacological properties of
peptides, a more general version of the program CONNECT is currently being developed
(A. Caflisch, unpublished results). This will allow the treatment of novel synthetic mono-
mers which, when connected in a combinatorial fashion, could yield relatively low molecu-
lar weight polymeric compounds with enhanced pharmacological profiles. This computa-
tional approach will be ideally suited for complementing combinatorial synthesis method-
ologies [67,68].

The main limitation of HOOK and related approaches based on the connection of
isolated fragments is that synthetic problems can arise in the compounds that are gener-
ated; in fact, the suggested molecules may not even be stable. In many cases, a skilled
otganic chemist can quickly choose the best candidates. Also, it would be possible to do
postprocessing based on retrosynthetic programs, such as the LHASA program developed
by BE.J. Corey and co-workers at Harvard University [69]. As an alternative, known com-
pounds in databases such as the Fine Chemicals Database [70] can be used in HOOK (R.
Hubbard, private communication). Finally, the skeletons can be defined such that the
allowed hooks are limited to the position where derivatization by functional groups is
known to be possible.

HOOK and related database search methodologies are limited to finding candidate
ligands that are derived from a set of known compounds. This is not a problem if the
objective is to start with compounds from a proprietary database. For ‘de novo’ candi-
dates, a method has been developed that creates connecting fragments from a distribu-
tion of carbon atoms in the binding site. This approach (Dynamic Ligand Design) em-
ploys a Monte Carlo optimization procedure with an appropriately chosen pseudoenergy
function [71]. An alternative is to use genetic algorithms for constructing new molecules
[72].

Estimation of the free energy of binding

Any computer-aided ligand design approach requires a methodology for the evaluation
of the binding free energy of a protein-ligand complex. The compounds suggested by
CONNECT, HOOK, and related approaches have fo be ordered in terms of their ex-
pected binding constants, as well as other properties (e.g., solubility) to choose certain
ones for synthesis and testing for their biological activity. This means that relatively
simple approaches are needed that can be used for the evaluation of 100 to 1000 com-
pounds. Methods with the required accuracy and speed are not yet available, but some
progress is being made in their development. In many cases, the problem is simplified
somewhat by the fact that an absolute binding constant is not needed, L.e., relative values
of binding constants are sufficient for determining which modifications of a lead com-
pound are the best candidates for further investigation.

The most reliable approach, particularly for small changes, is based on free energy
simulations. Successful examples of applications of such simulations for the comparison
of the binding constants of similar ligands are given in Refs. 73-75. Unfortunately, free
energy simulations cannot be used for large-scale screening because they are too cosily in
terms of computer time. This has led to the introduction of other methods that are much
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simpler, and in most cases more approximate, but can be useful, particularly if a series
of refated compounds are being examined.

To introduce the simplified models, we decompose the binding free energy, AGypgimg
as follows:

AGbi.udiug = AGinteractjun + AG-strain + AGdssclvation + A(}\rib,esmf (1)
Here AG, .00, cOntains the interactions between the protein and the ligand. This is
primarily an enthalpic term and consists of van der Waals and electrostatic contributions;
the latter is mediated by the solvent. Polarization of the solvent by the partial charges of
the solute affects the electrostatic energy of a protein-ligand complex in two ways: the
interactions between solute partial charges are screened, and the solvent reaction field
interacts directly with each solute charge (self energy). The screening reduces the electro-
static interaction between the protein and the ligand, as well as the intramolecular electro-
static interactions. The former term is included in AG; 00> Whike the latter is present in
AG g onaicn- The solvent reaction field is responsible for the significant desolvation penalty
upon binding of a charged or polar group to the protein binding site. Binding of any
fragment to a solvent-exposed hydrophilic protein side chain yields an additional desol-
vationt cost. AQ.opmics 15 the difference between the free energy of solvation of the mol-
ecular complex (nonpolar solvation and electrostatic self energy) and the free energy of
solvation of its isolated components. AG,,.., represents the difference in the internal
energy of the ligand and the protein on binding. Finally, AG,y, ., inctudes the change in
the number of contributing conformers, the vibrational entropy differences, and the loss
in the translational and rotational entropy of both the ligand and the protein on binding;
a discussion of this term has been given in a recent analysis of insulin dimerization [76].
The terms in Eg. 1 are approximately additive and so can be considered separately.
Furthermore, for a given system, some of the contributions can be neglected if one is
interested in differences in binding free energy.

As an approach to the problem of evaluating AGyqing, We have studied the differences
in binding free energy, AAG, for a single ligand docked into different binding regions of
the same protein. Although this is not the problem generally encountered in ligand design
(where a variety of ligands against a given protein target are compared), it provides a
simple test problem of interest. Since the separate ligand and protein are the same,
AAG,.... and AAG jonames depend only on differences in the complex. This is important
because the separate components are often very flexible. Also, results of this type of study
can be compared with the observed binding sites of different solvents in protein crystals
[77]. We used the 83 NMA minima found by MCSS on the surface of HIV-1 PR [18].
Since the HIV-1 PR was assumed to be rigid and the NMA ligand is essentially rigid,
AAG ., and AAG,, .- are equal to zero. Thus, the difference in binding free energy of
the different ligand positions equals

A'AGbi.ndi.ng = AAG.in[eranticm + AAGdesolvmion (2)
where, as described above:

AAGintcraclion = AAG'.'acuo + AAGelect,screening (3)
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and
AAGdC‘SOlVatiOD = AAGuonpolar + AAC}el(-:ct,self (4)

The CHARMM program was used to compute AAG,,,.. the intermolecular energy in
vacuo, while the effect of the solvent on the relative stability of the 83 NMA minima was
estimated by separately evaluating the nonpolar and electrostatic contributions. The
nonpolar term (AAG,,...,;) Was approximated by computing the loss in solvent-accessible
surface area on binding [78]. The effect of the solvent on the electrostatic energy of a
protein—ligand complex, which corresponds to screening of the electrostatic interaction
(AAG oy serecning) a0 the direct solvation energy (AAG e ,e), Was estimated by numerical
solution of the finite-difference Poisson—Boltzmann equation [79-82] by use of the UHBD
program [83-86]. The solute diclectric was set to 1 to be consistent with the parametri-
zation of the charges used in the CHARMM energy function; a dielectric constant of 78.5
was assigned to the aqueous solvent. Focussing to a grid space of 0.2 A was used to
reduce the error in solving the Poisson—Boltzmann equation. Figure 11a shows the corre-
lation between the Coulombic interaction energy calculated with CHARMM (7.5 A
cutoff) and the same interaction as screened by the solvent. Although the values calculated
with the continuum methodology are up to a factor of six smaller (as expected because
of the shielding effect of the solvent), the relative values do not change dramatically, as
confirmed by the correlation factor (R) of 0.757 for the 83 minima. By contrast, desolva-
tion of HIV-1 PR and NMA on binding can significantly alter the ranking of the MCSS
minima. As shown in Fig. 11b, the electrostatic contribution to the free energy of HIV-1
PR desolvation (AAG .0 strongly anticorrelates with the electrostatic free energy of
interaction between HIV-1 PR and NMA; the correlation coefficient is R =—0.714. This
is not surprising, because the NMA minima that bind most strongly also lead to the
largest reduction of polar surface area of NMA and the protein. The three best MCSS
minima of NMA in terms of the in vacuo energy orient their dipoles to optimize the
electrostatic interactions with Asp® and Lys™ at an open end of the HIV-1 PR binding
site (see Fig. 4b in Ref. 18), rather than with the solvent. Thus, therc is a large desolv-
ation free energy for these charged side chains. Similar results were obtained for the 72
methanol minima. We are currently employing this approach for postprocessing the
MCSS minima of acetonitrile on the surface of Subtilisin Carlsberg to compare these with
experimental data on the ligand binding positions in a crystal with acetonitrile as the
solvent [77]. The results will be published elsewhere.

The correlations and anticorrelations described above support the use of simple models
for the estimation of binding constants. One example is the use of the vacuum interaction
energy, AG,,.,., a5 the estimator. A number of studies have shown that for related com-
pounds, which bind in the samc binding site, AAG,,,,,, can have a significant correlation
with AAGy4,, Examples are given in Ref. 87 and in our analysis of 24 HIV-1 PR in-
hibitors ranging in size from three to six amino acids and containing a hydroxyethylene
dipeptide isostere at P1--P1' [88]. For this set of compounds, we performed a least-squares
fit of the calculated free energy of interaction, consisting of CHARMM van der Waals
and UHBD electrostatic terms (screened by the solvent), to the experimental value of pK;
and obtained a correlation coefficient of 0.671. For each subset of five compounds in
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Fig. 11. (a) CHARMM Coulombic intcraction energy of the 83 NMA minima on the HIV-1 PR surface,
plotted versus the Poisson-Boltzmann electrostatic free energy of interaction. (b) The change in the electro-
static solvation of the HIV-1 PR plotted versus the electrostatic free energy of interaction.

series 1, IT, and V [88], R values larger than 0.88 were found. Starting with such results,
it is possible to parametrize the various terms contributing to AG,,, to fit and extrapolate
experimental binding constants.

We also mention an approach proposed by Bohm, because of its simplicity and caicula-
tional efficiency. He uses an empirical binding free energy function which takes into
account hydrogen bonds, ionic interactions, the lipophilic protein-ligand contact surface,
and the number of rotatable bonds in the ligand [89]. This function is fitted to a set of 45
protein-ligand complexes to optimize the parameters involved. The quantity AGy;ygn, 18
obtained with the assumption that AG,.;, = AGuuapuion = 0 in Eq. 1. The model showed a
cross-validated correlation coefficient of 0.696 for the set of complexes. To complement
Bdhm’s approach, we are computing the electrostatic contribution to AGy.onasen With the
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finite-difference Poisson—Boltzmann technique. The contribution AG, ., is being calculated
by optimizing the geometry of the isolated ligand and taking the energy difference be-
tween that structure and the bound form. The term AG,, ., 1S being estimated by various
approaches, including simple counting procedures, as well as more sophisticated models
based on conformational searches with a simplified solvation correction [90; G. Archontis
and M. Karplus, unpublished results].

At present, a number of such empirical procedures for estimating binding constants are
in use. They tend to work well for a limited set of closely related ligands. However,
extrapolations to different types of ligands generally yield much poorer results. This
implies that additional factors need to be taken into account explicitly because the re-
quired correlations are not valid for the entire set of compounds. Progress in this area
based on theoretical approaches and simulation analyses can be expected in the near
future.

Conclusions

The essential element of the methodology reviewed here for structure-based ligand
design is to divide a very complex problem into a set of three solvable tasks. The primary
reason for this approach is that it enables ‘combinatorial chemistry’ to be done on the
computer, In the MCSS—HOOK method, on the order of 10™ ligands can be tested in a
week or so of computer time on a fast workstation. This impressive figure, which rivals
combinatorial chemistry in the laboratory, is obtained for 10° skeletons, each with 10
hooks for 10 different functional groups, five of which can be used in a given molecule.
The combinatorial set of molecules 1s provided by functional group docking and connec-
tion to form candidate ligands. These methods have been effectively implemented and are
llustrated by applications to HIV-1 PR and human thrombin. Both of these enzymes are
very good candidates for structure-based ligand design; in particular, they have almost
identical conformations in their complexes with a range of different inhibitors. However,
the present methodelogy can be applied also to a macromolecular receptor whose struc-
ture changes upon binding of different ligands (C. Stultz and M. Karplus, work in prog-
ress). The most difficult and yet unsolved problem remains the accurate estimation of {ree
energy of binding for candidate ligands generated by the first two steps. Once this prob-
lem is solved, theoretical methods will become an essential part of optimizing the drug
discovery process.

At the present stage, and probably for the indefinite future, ligand and drug design will
work best if it involves a threefold collaboration between structural chemists, who deter-
mine native and inhibitor complex structures, medicinal chemists, who are willing to make
and test compounds, and theoretical chemists, who can suggest new compounds {whether
modification of known leads or de novo designs). Only by an interactive process involving
all three groups, as well as biologists who do the appropriate testing, can one hope to
make use of the best that each group has to offer. An iterative process to optimize ligands
in terms of binding, synthesis and biological efficacy is required.

While large efforts are dedicated to develop methods by which experimental screening
programs can operate in a more rational way [67,68), an increasing number of computer-
aided de novo design methods employ random or combinatorial approaches. In other
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words, there is a general trend to replace ‘rational design and random screening’ strategies
by ‘random design and rational screening” approaches [91]. If many candidate ligands
suggested by the de novo design programs can be synthesized rapidly by using combina-
torial technologies, one might be able to circumvent the need for accurate estimations of
the binding constants, i.e., if a very Jarge number of designed compounds can be tested,
the theoretical evaluation process becomes less important. Also, as more techniques for
combinatorial chemistry in the laboratory become available, computational approaches
will be used to provide useful information for the planning of combinatorial synthesis
experiments (e,g., as a guide in the selection of monoemer libraries for diversity and for
specific targets). Such developments are expected to have a significant impact on the
manner in which new ligands and drugs are discovered in the near future.
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