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Recent years have witnessed rapid developments of
computer-aided drug design methods, which have reached
accuracy that allows their routine practical applications in drug
discovery campaigns. Protein structure-based methods are
useful for the prediction of binding modes of small molecules
and their relative affinity. The high-throughput docking of up to
10° small molecules followed by scoring based on implicit-
solvent force field can robustly identify micromolar binders
using a rigid protein target. Molecular dynamics with explicit
solvent is a low-throughput technique for the characterization
of flexible binding sites and accurate evaluation of binding
pathways, kinetics, and thermodynamics. In this review we
highlight recent advancements in applications of ligand
docking tools and molecular dynamics simulations to ligand
identification and optimization.
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Introduction

Computational methods have played pivotal role in drug
discovery efforts for many years [1]. Development of
several approved drugs including early examples of cap-
topril [2], saquinavir, ritonavir, indinavir [3], and tirofiban
[4], has benefited substantially from the use of computer-
aided drug design (CADD), which nowadays constitutes
an essential part of the discovery pipeline at pharmaceu-
tical companies [5°,6°]. The CADD tools are commonly
classified into ligand-based (two-dimensional, 2D) and
protein structure-based (3D). In this review we will focus
on the 3D methods and discuss their potential and
limitations. Their principles and implementations have
evolved together with the concepts of molecular recogni-
tion on protein surface. In particular, the historic ‘lock and
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key’ mechanism that served as a textbook explanation of
substrate recognition at the enzyme active site has grad-
ually developed into ‘hand and glove’ concept to account
for protein flexibility and mutual adaptability of receptor
and ligand.

Structure-based CADD supports hit identification and
medicinal chemistry optimization by addressing two
major tasks: predicting how small molecules bind to
the protein target, and estimating (relative) binding affin-
ity. We first review docking, originally inspired by the
lock and key concept, which is used for both tasks. We
then present a fragment-based method for high-through-
put docking based on molecular mechanics and transfer-
able force field. Finally, we discuss molecular dynamics
(MD) protocols, which provide atomistic details of hand
and glove-like association events. The use of MD simu-
lation-based methods is increasing steadily as they are
most adequate for the analysis of thermodynamics and
kinetics of ligand binding and unbinding. The section on
fragment docking focuses on the methods and programs
developed in the group of the last author, while the
review of MD simulations of binding is more general.

Docking of small molecules to proteins

Automatic docking is concerned with the determination
of the optimal position(s) and orientation(s) of a small
molecule in a protein target. It has been reported that
while the success of the approach is target-dependent and
software suite-dependent, it poorly correlates with the
binding affinity but rather depends on the quality of
interactions that the ligand makes to the protein [7°].
Quality of protein-ligand interactions can be to some
extent expressed by the ligand efficiency (LLE), the aver-
age binding energy per non-hydrogen (or heavy) atom of
the ligand. However, it should be noted that most studies
of the predictive ability of docking are biased toward the
molecules that bind the protein target with detectable
affinity and available crystal structure. A study of about
300 kinase inhibitors has shown that a simple scoring
function (van der Waals energy only) outperforms total
energy (i.e. van der Waals and electrostatics) in fitting
binding affinity values but has poor predictive power (i.e.
lower enrichment than ranking by total energy) for 77 si/ico
screening by high-throughput docking [8]. The real chal-
lenge of in silico screening is the calculation of relative
binding energies with sufficient accuracy such that there
are as many true positives as possible among the final
selection of compounds for /z vitro testing. In turn, the
successful evaluation of binding energy relies on the
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94 Folding and binding

accurate prediction of the binding mode. Recent studies
have reported high success rate of fragment screening by
docking using transferable force fields with implicit sol-
vent treatment of electrostatics desolvation effects [9,10].

Virtual screening by high-throughput docking
The principle of virtual screening is to evaluate the library
of molecules for possibility of binding to the protein, and
to shortlist the ones that are most likely to bind with the
highest affinity. As mentioned above, the main challenge
is not to identify the few nanomolar binders in the small-
molecule library (if any at all) but rather to reduce the
number of false negatives in the subset of compounds that
are selected for validation by 7z vitro assays. There are few
studies that systematically analyze the success ratio of
docking campaigns (also called the hit rate), that is, the
percentage of compounds correctly predicted to bind the
protein target. While many papers report very good hit
rates [11-13,14°,15], the criteria defining a hit are always
subjective and study-dependent. The most stringent
criterion is to consider as validated only those hits con-
firmed by the crystal structure of target-ligand complex.
In this context it has to be noted that even for millimolar
binders it is possible to obtain the crystal structure of the
complex with the target protein. On the other hand, it can
be very difficult and sometimes impossible to solve the
crystal structure of complex with a potent ligand (e.g.
nanomolar affinity) because the binding site can be either
occluded by crystal contacts or not accessible to the ligand
due to the tight packing of the protein molecules in the
crystal (which mainly affects soaking experiments). Most
commonly used criteria for the hit rate are based on
affinity as measured in biochemical assays or biophysical
experiments 7z vitro (typically Kp or ICsy below 100 pm)
or semi-quantitative data, for example, from ligand-based
NMR spectroscopy [16]. Such success stories have to be
approached with caution, as it is clear that the selection
process often involves visual inspection and examination
through users with significant expertise and can be biased
toward scaffolds disclosed previously in the literature. To
properly benchmark the performance of different software
suites, common criteria should be introduced and human
intervention should be minimized which is not simple
because of the complexity of the analysis of binding poses
[17] and/or costs related to the iz vitro validation.

Computer programs for flexible ligand
docking

There is a plethora of software suites developed for the
automatic docking of flexible small molecules into
(mainly rigid) protein structures. On the other hand, only
very few docking programs have gained broad recognition
and are used by a large community [18]. These include
Dock [19], GOLD [20], and AutoDock [21]. These
solutions have gained high popularity due to their pio-
neering role in the field and thanks to extensive devel-
opments, which have turned them into user-friendly

computer programs. More recently, rDock has emerged
as an efficient docking tool distributed as open source
code [22°]. The most popular docking tools share similar
sampling procedures (genetic algorithms-based optimi-
zation in the conformational space of the rotatable bonds
or grid-based searches) and some of them use force field-
based evaluation of the binding energy. A high degree of
convergence toward the same pose in multiple docking
runs of the same ligand (with different initial random
populations of the genetic algorithm) was reported as
necessary condition for successful prediction of the bind-
ing mode [23], despite being frequently neglected.
Importantly, the probability of successful prediction of
the binding mode decreases substantially as the intrinsic
flexibility of the ligand grows [23], and depends on high-
quality interactions made with the receptor [7°]. Thus
predictive ability has been validated for rigid fragments
[9,24], while docking of peptides with more than a dozen
rotatable bonds (backbone ¢ and ¥ angles and side chain
x angles) is considered speculative.

Fragment docking

Nearly 20 years ago, the group of the last author developed
a program for high-throughput docking of rigid fragments
called SEED (Solvation Energy for Exhaustive Docking)
[25]. SEED performs an exhaustive search in a discrete
space defined by rotations around individual protein/frag-
ment hydrogen bonds and/or hydrophobic contacts (Fig-
ure 1). This way, the essential feature of fragment-based
drug discovery — making the high quality interactions
with the protein [26] —is considered as a prerequisite
and allows to reduce the complexity of search in the
conformational space, and to enrich the docked poses in
positives. A very efficient evaluation of bad contacts for
filtering out poses with steric clashes and a two-step
evaluation of the binding energy make the execution of
SEED extremely rapid (about 1s per fragment). In both
steps the energy evaluation is based on a transferable force
field with continuum dielectric treatment of desolvation
effects. The first step filters out the majority of the poses by
the rapid evaluation of the van der Waals and Coulombic
interactions on a 3D grid with a crude and very efficient
approximation of desolvation effects [27]. In the second
step the nonbonding interactions are calculated without
grid-based approximation, and desolvation penalties are
evaluated by the generalized Born equation with numeri-
cal calculation of the Born radii [28]. Importantly, the
SEED binding energy does not require any fitting param-
eter and thus SEED can be used also for protein targets for
which inhibitors have not been reported.

Successful high-throughput docking campaigns with
SEED have been published for proteases, kinases, and
bromodomains [9,24,29°]. In a recent application SEED
was used to screen for the CREBBP bromodomain a
library of nearly 1500 fragments, which took less than
one hour on a commodity computer, and resulted in a 50%
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Figure 1

(b)
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SEED [25,27] performs an exhaustive search in the discrete space defined by rotations around optimal hydrogen bond vectors (black dashed line).
(a) Optimal pose according to calculated binding energy. (b) Bundle of SEED poses of 4-bromo-2-carboxymethylamide-pyrrole (C, N, O, and Br
atoms in yellow, blue, red, and brown, respectively). Note that the fragment is compound 1 of Figure 2A.

success ratio (i.e. of 39 putative binders 20 were con-
firmed by ligand-observed NMR spectroscopy), and four
crystal structures [14°]. Moreover, the binding mode of
the fragment hits predicted by SEED is essentially iden-
tical to the one observed in the crystal structures, which
were solved a posteriori (Figure 2). The program SEED is
available for free from the homepage of A.C.

Fragment growing

Once the hits are identified, they are subjected to chemi-
cal elaboration for the optimization of their binding
affinity and/or drug-like properties. In one approach
called fragment growing, further chemical moieties are
added to the binding fragment to pick up additional
interactions in the binding site. Such modifications can
also benefit from docking of potential derivatives and
other CADD approaches. As the accuracy of docking is
reduced with the conformational complexity of the
ligand, restraining the scaffold with confidently-deter-
mined binding pose of an anchor head group allows for
more accurate binding mode and energy predictions of
flexible molecules. Tethered docking relies on maintain-
ing the binding mode of the fragment hit during the
determination of the binding pose of the derived mole-
cule (Figure 3a). Thus, such approach can be considered a
knowledge-based implementation of the essence of frag-
ment growing, which is realized by means of restraints to
reduce the computational complexity.

A computational protocol called ALL'TA-VS (Anchor-
based Library TAiloring Virtual Screening) that comb-
ines the advantages of high-throughput docking with
those of fragment-based hit identification (Figure 3b)
was first applied to B-secretase, a protease implicated in

Alzheimer’s disease [30,31]. It consists of fours steps
(Figure 3b, [15,32]): (1) decomposition of each compound
of the initial library to its rigid fragments by cutting at
rotatable bonds; (2) docking of the fragments by SEED
with evaluation of van der Waals interactions, Coulombic
energy, and desolvation penalties (using the generalized
Born equation); (3) flexible docking of the parent mole-
cules that contain the top ranking fragments which are
used as non-covalent binding anchors during docking; and
(4) energy minimization with final evaluation of binding
energy including desolvation effects by numerical solution
of the finite-difference Poisson equation. Note that both
steps (2) and (4) make use of the continuum dielectric
approximation but the final step is based on the Poisson
equation which is more accurate than the generalized Born
approximation. Two essential advantages characterize
the ALLTA-VS approach with respect to the brute-force
docking of a large library of flexible molecules. The first
key element is the substantially smaller computational
requirements for the fragment-anchored docking of a set of
10°-10* parent molecules than the non-anchored docking
of a multi-million library of compounds (Figure 3b). The
other advantage is much higher accuracy of docked poses
of rigid fragments [14°,29°,33] than flexible molecules [23].
The successful identification of hit compounds by the
ALTA-VS approach has been reported for several protein
targets [8,15,30-32,34]. When starting from a known frag-
ment, it constitutes an attractive implementation of com-
putationally driven ‘SAR by catalogue’. More recently, the
group of the last author has also been implementing a
fragment-growing algorithm that goes beyond the com-
mercially available known chemical space. Importantly, it
takes into account synthetic feasibility of the predicted
molecules (Batiste e a/., submitted).
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Figure 2
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Structural validation of the fragment-based in silico screening campaign for the CREBBP bromodomain [14°]. (a-d) The binding mode in the
crystal structures (carbon atoms of ligands in cyan) are compared to the binding pose predicted by docking with SEED (carbon atoms in yellow)
for compounds (a) 1, (b) 2, (c) 3, and (d) 4 which correspond to the PDB structures 5MQE, 5MQK, 5MPZ, and 5MQG, respectively. Conserved
water molecules and water molecules present in the crystal structure but not used for docking are shown as red and cyan spheres, respectively.
Compounds 1 and 3 have a different relative orientation of the substituents, which could not be predicted by SEED since the compounds were
docked as rigid molecules. Reprinted from [14°] with permission from Elsevier.

Contemporary challenges in docking

Even though software solutions for docking based on end
point calculations (i.e. evaluation of binding energy using
a single, rigid structure of the protein) have achieved
performance that guarantees their standing involvement
in discovery pipelines, several issues are to be addressed.

Improved description of binding energetics:
polarization effects

The continuous and vigorous development of additive
force fields for proteins [35-37] and small molecules
[38-40] plays a fundamental role in the correct evaluation
of relative binding affinities upon docking or MD-based
(un)binding protocols. Furthermore, efficient tools for
automatic atomtyping and parametrization of large libraries
of compounds have been developed [41°]. Despite the
robustness and accuracy of classical force fields, a number
of energetic effects of binding remain challenging to be

described by energy functions based on fixed partial
charges. Key backbone and/or side chain groups can be
treated as quantum mechanical (QM) probes to accurately
approximate the local electronic structures in the binding
site [42,43]. Briefly, QM probes use semi-empirical Ham-
iltonian for the evaluation of the interaction energy
between ligand and individual polar groups of the protein
to reproduce polarization and charge-transfer effects. One
advantage is that partial charges are not needed. The main
drawback is that dispersion effects are not captured by
efficient semi-empirical methods. Alternatively, applica-
tion of polarizable force fields is expected to improve the
description of binding energetics in the coming years [44].

Solvent treatment: conserved water
molecules

The treatment of water molecules remains a challenge, as
it is difficult to predict which solvent molecules are

Current Opinion in Structural Biology 2018, 48:93-102
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Figure 3
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(a) The principle of tethered ligand docking — only the movement of the tethered black part of the molecule is allowed, the fragment-derived
anchor shown in white is restrained to its position. (b) Anchor-based Library TAiloring Approach for Virtual Screening (ALTA-VS) [32]. A chemical
library, with up to tens of millions of compounds, is decomposed into non-rotatable fragments, which are docked and scored. Parent compounds
containing the top ranking fragments (red) are retrieved and docked with tethering of the fragment head-group. Those docked molecules are then
further energy minimized with a force field and evaluation of electrostatic desolvation effects by the finite-difference Poisson approach. Thus, the
ALTA-VS protocol selects 10-102 compounds for in vitro validation (bottom, left panel) from libraries of 10°-107 molecules (top, left) by docking
only 10%-10* fragments (top, middle) and 10°~10* compounds (bottom, middle).
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98 Folding and binding

obligate in the binding site, and which can be displaced by
incoming ligand. The water stability in the binding site can
be determined based on analysis of multiple crystal struc-
tures, or more thoroughly by running MD simulations with
explicit solvent [45]. The treatment of solvent during high-
throughput docking can be mixed [12,14°,29°,33,46°,47,48],
i.e. some water molecules that are structurally conserved in
the binding site (i.e. those that act as bridges in intermolec-
ular hydrogen bonds) are usually considered explicitly,
while bulk water can be approximated efficiently by implicit
solvent models to account for desolvation effects [25,27].

Binding site flexibility

Protein flexibility constitutes another challenge of com-
puter-aided drug discovery. Since the advent of structural
biology methods and their application in structure-based
drug discovery [49], it has become apparent that many

Figure 4

protein binding sites cannot be represented as a single
snapshot, as significant structural rearrangements take
place to accommodate diverse ligands. The pioneering
work of Wells and coworkers targeting the interleukin-8
established protein-protein interactions as challenging
targets to comprise flat and featureless surfaces that are
inherently flexible and adapt to different binders [50,51].
Since then, several other examples of protein flexibility
upon ligand binding have been shown. Cryptic pockets
could be discovered by accident or through detailed analy-
sis, often by more than one independent approach, as in
the case of the polo-box domain of polo-like kinase 1, a
mediator of phosphorylation-dependent protein-protein
interaction and cell-cycle dependent cancer target [52—
54] (Figure 4a,b). It has been also shown that structural
adaptations are not limited to protein-protein interfaces —
the enzymes are also more plastic than originally predicted
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(a) The principle of observed ligand-dependent conformational changes of the protein surface. (b) Four crystallographic conformational states of
the surface of polo-like kinase 1 exposed to different ligands ([52,61°] and unpublished data). (c) Comparison of docked and crystal structure
(carbon atoms in cyan and green, respectively) of the hit compound targeting the CREBBP bromodomain [62]. (d) MD time series revealing stable
hydrogen bonds between the key moieties of the compound and the protein (shown in blue and red, as in the panel c). Adapted with permission

from Ref. [46°]. Copyright 2016 American Chemical Society.
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by lock and key model, as shown in the case of mollusk
acetylcholine binding protein, a structural model for the
campaigns targeting the corresponding human enzyme
[55]. Information on binding site flexibility, available from
experimental and/or simulation studies, can be taken into
account to prepare one or more conformations of the target
protein for (high-throughput) docking [46°].

Molecular dynamics (MD) and receptor
flexibility

MD simulations have been long proposed to provide
insight into protein dynamics beyond that available
crystallographically, and unravel novel cryptic binding
sites, expanding the druggability of the targets. One of
the first described approaches was the relaxed complex
scheme, which combines all-atom nanosecond-long MD
simulation of the protein target to describe its conforma-
tional flexibility with rapid docking of small molecules to
the protein snapshots saved along the MD run [56,57°].
This scheme has seen a number of successful applica-
tions, including one to the cancer-relevant MDM2/
MDMx-p53 interaction [58] or HIV integrase [59].
Rewardingly, the cryptic pocket first proposed i silico
in the latter case, has been then validated experimentally
and is exploited by enzyme inhibitors approved for use
against HIV infection in the clinic [60].

While the idea is conceptually correct, often the confor-
mational change needed to uncover the pocket would not
be observed at the 1-ps timescale accessible to explicit
solvent MD simulations with conventional protocols on
commodity compute clusters, highlighting the need for
more sophisticated sampling schemes. The molecular
dynamics-induced fit (MD-IF) protocol makes use of
atomistic simulations to increase (or reduce) the aperture
of subpocket(s) in the active site [63]. The initial pose of
the ligand that induces the fit can be obtained by manual
docking of a known inhibitor into the target protein or
structural alignment of the target with the holo structure
of a cognate enzyme [64]. Another approach to the long
timescale problem predicates on the fact that the cryptic
sites are more likely to open (or remain open) in the
presence of their cognate ligand, and several groups have
proposed to perform ligand-mapping simulations. These
include the MD-based protocol called SILCS (Site Iden-
tification by Ligand Competitive Saturation), which uses
high concentration of the small-molecule ligands to map
possible binding sites on protein surface. In this case the
ligand aggregation is avoided by turning off the attractive
part of the Lennard-Jones potential [65,66]. Alternatively,
the aggregation can be avoided by running the simulation
in the presence of lower ligand concentration (e.g. 0.2 M
for benzene), which has been demonstrated to efficiently
probe the conformational space of Plk1 and propose new
cryptic pocket, subsequently validated experimentally
[61°]. More recently, enhanced sampling by Hamiltonian
replica-exchange in the presence of ligand probes has

been shown to reproduce previous results (e.g. those for
Plk1) and be less computationally expensive [67]. Its
applicability to unprecedented targets remains to be seen
though.

MD simulations of ligand binding and
unbinding

The application of MD to drug discovery projects is
expanding, following the need for insights into binding,
unbinding, and conformational change events at spatial
and temporal resolution that is not available experi-
mentally [10,68]. MD simulations can be used to map
ligand binding sites and analyze (un)binding pathways
[69,70°,71-73]. Extensive MD simulations have been per-
formed to determine binding sites and bound conforma-
tions of allosteric inhibitors of the M2 muscarinic acetyl-
choline receptor [74°]. These simulations have revealed a
new binding site dependent on cation- interactions which
is placed 15 A away from the classic recognition site, and
was validated by radioligand binding experiments.

Unbiased simulations of ligand unbinding are useful, not
only because they provide insight into affinity of the
complex [71]. It is also possible to study the dynamics of
complex formation and dissociation, and quantify com-
plete energy landscape and kinetics for these processes
[70°]. It has been reported that the unbinding rates are
strongly dependent on the state of the protein receptor,
which in turn depends on the conditions of the experiment
and in particular the concentration of the ligand. There-
fore, as the unbinding of small ligands can be order(s) of
magnitude faster than relaxation (i.e. conformational
change) of the protein, it is crucial to select the right con-
formational state when executing high-throughput dock-
ing campaigns [75]. The ligand binding/unbinding kinetics
can also have strong implications in pharmacology, as the
residence time of the complex has been proposed to be
more accurate predictor of drug efficacy than the affinity
itself [76]. As a result, a number of simulation protocols
have been designed to address this issue and estimate the
kinetic parameters of drug (un)binding [77].

MD simulations for ligand optimization

MD simulations are used frequently to guide further
optimization of the molecules stemming from iz silico
discovery campaigns, particularly in the absence of a crystal
structure of the complex with the target protein. Even if
the structure has been solved, MD may provide insight as
to which interactions are stable over time and contribute
mostly to binding. This way, in a campaign to develop
compounds targeting the bromodomain of CREBBP, MD
simulations revealed the amide linker of an initial hit
compound as not contributing directly to binding [46°]
(Figure 4¢) and thus replaceable (Batiste ¢7 /., submitted).
In another example targeting the EphB4 tyrosine kinase
MD simulations were used to prioritize the docking hits
that were maintaining a stable hydrogen bond network in
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the protein active site, which were then validated as true
inhibitors with nanomolar affinity [78].

Perspective

Two main techniques seem to emerge in the contempo-
rary application of protein structure-based CADD meth-
ods. They are particularly useful in the initial phase
(ligand identification) and advanced phase (ligand opti-
mization) of drug discovery projects, respectively. For
ligand identification, high-throughput docking of large
libraries of small molecules (up to 10° molecules of 10-25
non-hydrogen atoms each) to a rigid protein structure is
the method of choice. Importantly, classical force fields
with implicit solvation and end point calculations (i.e.
evaluation of binding energy using only one structure of
the complex) have shown substantial predictive power
[9,12,14°,15,24,29°,46°,79°].

For ligand optimization, MD simulation-based free energy
calculations can be carried out on small sets (up to a few
hundreds) of related molecules. The prediction of relative
binding affinity by explicit solvent MD simulations is
the more accurate the higher the pairwise compound
similarity as statistical convergence, that is, sufficient sam-
pling, is easier to achieve if the binding mode does not
change substantially. The MD-based protocols include
free energy perturbation and thermodynamic integration
[80,81], alchemical free energy calculations [82,83], and
umbrella sampling (see [84] for the theory and [85] for a
successful application). Furthermore, MD simulations of
spontaneous (un)binding can provide atomistic informa-
tion on pathways and kinetics [70°,71-73,74°,75], and have
shown potential for the identification of allosteric sites
[69,74°]. While the rigid-protein docking of large libraries
of fragments can be carried out on a conventional desktop
(or even laptop) computer, enhanced sampling protocols
and the availability of a compute cluster are essential for
the MD-based calculations of (relative) free energies and
binding kinetics. The continuous development of graphi-
cal processing units (GPUs) is benefitting the MD-based
protocols substantially.

Note

A recent paper has disclosed four fragment hits for the
bromodomain of BAZ2A which is a protein target impli-
cated in prostate cancer [86]. These hits were identified
by high-throughput docking using the SEED program
(see section Fragment docking) and consensus scoring
based on force field energy terms with generalized Born
solvation. The predicted binding mode of the four frag-
ment hits was validated by X-ray crystallography (PDB
codes SMG]J, SMGK, SMGL, 5SMGM). Notably, these are
the first crystal structures of the BAZ2A bromodomain in
the complex with non-peptidic small molecules.
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