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Abstract

While being a thoroughly studied model of dynamic allostery in a small protein, the pathway of signal
transduction in the PDZ3 domain has not been fully determined. Here, we investigate peptide binding
to the PDZ3 domain by conventional and fully data-driven analyses of molecular dynamics simulations.
First, we identify isoleucine 37 as a key residue by widely used computational procedures such as
cross-correlation and community network analysis. Simulations of the Ile37Ala mutant show disruption
of the coordinated movements of spatially close regular elements of secondary structure. Then, we
employ a recently developed unsupervised, data-driven procedure to determine an optimized reaction
coordinate (slowest-relaxation eigenvector) of peptide binding. We use this reaction coordinate to improve
sampling by restarting additional simulations from the transition state region. Significant differences in the
distributions of some of the pairwise residue distances in the bound and unbound states emerge from the
projection onto the optimized reaction coordinate. The unsupervised analysis shows that allosteric signal-
ing is transduced from the b2 strand, which forms part of the peptide binding site, to the spatially adjacent
b3 and b4 strands, and from there to the a3 helix. The domino-like transmission of a (peptide binding) sig-
nal along b strands and a helices that are close in three-dimensional space is likely to be a general mech-
anism of allostery in single-domain proteins.
� 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

Allostery is a term coined in the 1960s to
describe the phenomenon by which the binding
of a ligand to a protein is affected by the
interaction of another ligand at a different binding
site.1–2 The initial models of allostery were pro-
posed to describe cooperativity on multimeric
complexes, hallmarked by a conformational
change along the subunits.3 The realization that
proteins are dynamic instead of rigid structures
has called for new methods to describe allosteric
effects which have been observed also in single-
domain proteins. The new methods do not neces-
sarily rely on a specific conformational change of
rs. Published by Elsevier Ltd.This is an open acc
the backbone or a two-state model, but rather
consider the whole ensemble of states of the pro-
tein and the motion of its side chains.4 Computa-
tional methods can be employed to explore the
atomistic mechanisms of allosteric signal trans-
mission, the influence of thermodynamic and
kinetic components of the allosteric effects, and
rationally design systems that show allosteric
behavior.5 Advanced simulation algorithms and
protocols are needed to sample events that occur
on timescales not accessible by conventional
molecular dynamics, e.g., the transition path
between the unliganded (T) and tetraoxygenated
(R) structures of hemoglobin.6 Concerning the
analysis of the simulations, dynamic cross-
ess article under the CC BY license (http://creativecommons.org/licenses/
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correlation and correlation networks are frequently
employed to discern the pathways through which
the signal is transmitted.7–9

PDZ domains are a/b domains of about 100
residues that mediate protein-peptide interactions
in several hundred proteins, usually recognizing
C-terminal segments of their target proteins.10 The
peptide ligand binds in an extended conformation
into a groove between a two-strand antiparallel b
sheet (b2-b3) and an a helix (a2), and non-
covalently extends the b2-b3 meander into a
three-strand b sheet (Figure 1(c)). The PDZ3
domain from Rattus norvegicus PSD-95 has an
additional a-helix at its C-terminal end (a3), the
removal of which has been shown to reduce peptide
Figure 1. Geometric analysis of PDZ3/peptide simulation.
KETWV peptide with respect to the crystal structure, cente
RMSD vs minimum distance to PDZ3 colored by the trajector
unbound runs; green, from SAPPHIRE/PI-based reseeding
assigned: A: crystal-like bound state, B: fully unbound from P
noncanonical binding to other regions of PDZ3. (c) Crysta
elements labeled (PDB ID: 1TP5, residues Leu302 to Asn403
Distribution of minimum distances between the PDZ3 doma

2

affinity by about 20-fold, without an impact on the
global structure.11 The C-terminal a3 helix has been
defined as residues Pro93-Arg98,11 while we con-
sider Pro93-Ala101 as the a3 helix based on the
results of the simulations (see Results and Discus-
sion section) and to compare with a time-resolved
spectroscopy study of a3 helix (un)folding.12 Helix
a3 does not directly interact with the peptide ligand,
and its residue Tyr96 maintains a distance of at
least 6 �A to the glutamine residue of the C-
terminal segment of the CRIPT protein. Neverthe-
less, a3 has been reported to form stabilizing inter-
actions with the b2-b3 loop (residues Gly29-Gly34)
which favor binding, explaining the behavior upon
truncation.13 It was also shown that phosphorylation
(a) Distribution of RMSD values of the Ca atoms of the
red using Ca atoms of PDZ3. (b) Scatterplot of peptide
y of origin (blue, MD runs from the bound state; red, from
, yellow, from eigenvector reseeding). Four states are
DZ3, C: Encounter complex and incomplete binding, D:
l structure of PDZ3 with relevant secondary structure
which are re-numbered in the text as Leu1-Asn102). (d)
in and KETWV peptide.
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of Tyr96 in the first turn of the a3 helix perturbs its
secondary structure, and thus modulates peptide
binding by altering the b2-b3 loop.13–15

The group of Peter Hamm has shed light (both
literally and metaphorically) on allosteric signaling
in PDZ domains by a series of elegant time-
resolved spectroscopy studies.12 They have cova-
lently linked a photoswitchable azobenzene to the
a3 helix of PSD95-PDZ3, in the positions of Glu94
and Ala101, both mutated to Cys. These residues
are separated by two turns of the a helix, or approx-
imately 11 �A, which is the expected separation
between the Cys94 and Cys101 anchors of the
azobenzene in the cis state.16 The cis to trans tran-
sition of the photoswitchable linker was used to
study the influence of the a3 helix unfolding on the
binding affinity of a pentapeptide ligand, which does
not interact directly with either the a3 helix or the
linker.17 The stabilizing effect of the a3 helix
(azobenzene linker in the cis state) results in a
temperature-dependent increase in affinity of up to
120-fold. Conversely, peptide binding influences
the rate of cis-to-trans isomerization of the azoben-
zene. The strength of the allosteric force exerted by
the azobenzene conformation switching on peptide
binding has been determined to be of 1 nN, as mea-
sured by the cis-to-trans enthalpy difference and the
3�A change in the distance of the two anchoring resi-
dues of the photoswitchable linker.17 Time-resolved
spectroscopy has revealed a 4 ns timescale for the
helix unfolding, and a 200 ns timescale for the allos-
teric signal to reach the binding pocket.12

Previous simulation studies in our group have
revealed the mechanism of conformational
selection in the PDZ3 domain, as peptide binding
favors a reduced aperture of the groove between
the a2 helix and b2 strand.18 Similar results have
been obtained in a more recent simulation study
which used experimental data as input.19 In particu-
lar, the closing of the binding site emerged as the
principal component with most influence in a dimen-
sionality reduction analysis. Furthermore, the stabi-
lization of the b2-b3 loop by the a3 helix was
observed.19 Multiple ms simulations of spontaneous
binding to the PDZ2 domain of PTP1E have
revealed electrostatic steering by the formation of
non-native salt bridges between carboxy groups of
the peptide and basic side chains in the b2-b3 loop
and b3 strand.20 These findings are consistent with
simulation studies of the PSD95-PDZ3 domain,13

which show the importance of the ionic interactions
of the peptide with the loop for binding stability. Fur-
thermore, it has been proposed that the allosteric
modulation depends on the shifting of hydrogen
bonding networks, also implicating an interaction
between the b2-b3 loop and the C-terminal helix.21

Some simulation studies compare the bound and
ligand-free PDZ3 domain, and find the effects of
peptide binding by comparing different descriptors
for each residue. These descriptors include the
position of the residue to the center of mass, the
3

root mean square deviation (RMSD), non-bonding
interactions, etc.22, correlated motions on THz
scale,23 sectors of residues with related covari-
ance.24 Other studies rely on the effects of single-
residue mutations on residue communication25–26

and energy transduction27–28 to investigate the flow
of information in PDZ3. A recent analysis based on
dynamic communities show the importance of the
a3 helix in mediating the communication between
different regions of the PDZ3 domain.26 The study
focuses on the impact of single point mutations,
though, not on the process of peptide (un)binding.
Molecular dynamics simulations of biomolecules

yield a particularly high-dimensional data,
consisting of three-dimensional coordinates of
thousands of atoms, making it almost impossible
to analyze visually. A common strategy to better
understand the simulations is therefore to project
the multidimensional trajectories onto a one-
dimensional reaction coordinate (RC), which can
be used to describe a complex process (e.g.,
protein folding) in an intuitive way. Then, the
dynamics of the process can be described as
diffusion on the free energy profile (FEP) along
the RC, with basins describing states and the
height of the barriers determining the rates of
interconversion. This RC can either be a single
geometric variable, such as an interatomic
distance, or a combination of distances. It can
also be generated by a dimensionality reduction
strategy. Traditional dimensionality reduction
procedures are prone to fail due to how they treat
the redundancy of the degrees of freedom and the
loss of dynamic information, so a more tailored
approach is required to analyze the folding
process or allosteric effects. If the RC is poorly
chosen, for example by using only simple
geometric measures, such as RMSD or
interatomic distances, the information lost during
dimensionality reduction masks the true FEP
barriers, yielding sub-diffusive dynamics along the
FEP.29 For an optimal RC the kinetics of the system
are preserved, and therefore, dynamics are diffu-
sive on the projected FEP. Furthermore, the optimal
RC yields the highest possible cut profile, and a par-
tition function which is independent of the timestep
used for its calculation.30–32 Therefore, the choice
of an optimal RC is essential to correctly describe
such processes like protein folding or signal
transduction.
One example of an optimal RC is the committor,

which given two boundary states A and B,
describes the probability of reaching state B
before reaching state A from any point in the
phase space.33–34 Sergei Krivov has developed a
non-parametric method for calculating the commit-
tor, and a metric based on the cut function ZC,1 to
evaluate the optimality of the obtained RC.35 A
drawback of the committor is the necessity of defin-
ing boundary states. More recently, the same
author has proposed a fully unsupervised method
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for optimization of the RC that approximates the
slowest-relaxing eigenvectors of the transfer opera-
tor.36 No boundary states need to be defined. The
RC is iteratively optimized with features such as
interatomic distances or angles, transformed by a
polynomial function.32 Additionally, a criterion
based on cut profiles can be employed for further
validation.36

Here we combine the eigenvector optimization
procedure36 and the SAPPHIRE (States And Path-
ways Projected with HIgh REsolution) plot-based
analysis37 to investigate allosteric signaling upon
peptide binding to PDZ3. We reasoned that a fully
data-driven optimization of the RC(s) is most ade-
quate for investigating a priori unknown allosteric
transitions. Multiple unbiased molecular dynamics
(MD) simulations were started from the crystal
structure of the PDZ3 domain in complex with the
Lys-Glu-Thr-Trp-Val ligand (holo state of PDZ3),
and from the fully dissociated pentapeptide (apo
PDZ3). The MD trajectories were first analyzed with
traditional procedures based on intuitive geometric
variables. Then the slowest-relaxation eigenvector
was used as progress index for the SAPPHIRE plot
to identify hidden states in the free energy surface.
The combined analyses reveal a domino-like effect
of allosterism in which the residues and secondary
structure elements that mediate the transduction
of the allosteric signal are contiguous in the native
structure of the PDZ3 domain.
Results and discussion

Multiple independent MD simulations were
performed to analyze peptide (un)binding
(Table 1). Initially, 20 binding runs were started
with the KETWV peptide randomly positioned far
away from the protein domain. In addition, the
bound state was investigated by six runs started
from the crystal structure (PDB ID: 1TP5) of the
complex with the peptide inside the binding
groove. The obtained sampling was analyzed
using the progress index38 and SAPPHIRE37 meth-
ods. From the transition region (highest barrier) of
the SAPPHIRE plot, 20 frames were selected and
simulations were restarted from them. After an initial
blind (i.e., unsupervised) analysis with the optimal
Table 1 Summary of performed simulations.

Simulation Type Number of

runs

Length per run

(ns)

Start

Unbinding 6 1200 PDB

Binding 20 1000 1TP5

SAPPHIRE-guided

reseeding

20 100 Barri

SAPP

Optimal-RC reseeding 16 300 Barri

SAPP

Ile37Ala 24 200 1TP5

4

reaction coordinate framework, 16 additional runs
were launched. The cumulative sampling amounts
to 34 ms.
We first present the analysis of the MD

simulations by conventional protocols which make
use of geometric variables, e.g., RMSD of the
peptide backbone. For this analysis, the bound
and unbound states were defined based on
geometric criteria alone, namely RMSD and
minimum distance between peptide and protein.
We also monitor the distance between Glu94 and
Ala101, both part of the a3 C-terminal helix and
located two turns apart. These are the same
residues mutated in the experimental study to
cysteines and used as anchor for the azobenzene
photoswitch.17 We then present the unsupervised
analysis based on the optimization of the slowest-
relaxation eigenvectors and their use for projecting
the free energy of the binding process. We calculate
several statistical measures between inter-residue
distances along the FEP to discern residues rele-
vant to the transduction of the allosteric signal. In
the following text, the three-letter notation is used
for the residues of the PDZ3 domain while the
one-letter abbreviation is employed for the residues
of the peptide ligand.
Conventional analysis of the MD simulations

Seven complete binding events of the KETWV
peptide were sampled in the runs started from the
apo structure of PDZ3 (two of them are shown in
the Supplementary Movies S1 and S2) and the
reseeded trajectories (see subsection Reseeded
trajectories in the Materials and Methods). In
agreement with the ms time scale of KETWV
peptide unbinding from PDZ3,12 there was no full
unbinding during the 6 ms of cumulative sampling
starting from the peptide/PDZ3 complex crystal
structure. Furthermore, only two dissociation
events took place from the trajectories that were
restarted from the transition region. In contrast, par-
tial unbinding with the C-terminal valine of the
KETWV peptide still buried in the binding site was
observed frequently. The projection of the free
energy along an intermolecular distance that
reflects the burial of the side chain of the C-
terminal V shows that the highest barrier on both
ing structures Number of binding

events

: 1TP5 -

with peptide randomly placed 2

er region on geometric variable-based

HIRE plot

1

er region on optimal RC-based

HIRE plot

4

with Ile37Ala mutation 1
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the cut- and histogram-based Free Energy Profiles
corresponds to a distance of about 8 �A (Figure S
12). The aforementioned partial unbinding and the
free energy profile suggest that the rate limiting step
for peptide (un)binding is the insertion of the V side
chain. These results are in agreement with a previ-
ous simulation study of a PDZ2 domain,20 where
the rate-limiting step of binding was found to be
the burial of the C-terminal valine of the EQVSAV
peptide.
The two-dimensional projection of the phase

space onto the peptide RMSD and the minimum
distance between peptide and protein defines four
regions of peptide-protein interaction (Figure 1(b)).
The fully bound structure, with a peptide RMSD
smaller than 2.5 �A, is populated during 22% of the
simulation. The fully dissociated state, with a
minimum intermolecular distance of more than
10 �A, is present in 9% of the frames. The
encounter complex, defined as the state with
RMSD between 2.5 �A and 10 �A, is observed in
14% of the frames. In the remaining 55% of the
sampling, the peptide is non-natively bound. In the
subsection Unsupervised analysis, the free energy
states will be defined by a data-driven procedure
and analyzed in detail.
We first investigate whether a direct comparison

of holo and apo PDZ3 sections of the sampling
would give any insight into allosteric effects, by
analyzing 10 segments of 20 ns in which the
peptide was either fully bound or unbound. The
root mean square fluctuation (RMSF) analysis
shows that peptide binding stabilizes the protein
structure compared to the apo state (Figure 2(a),
(b)). The lower fluctuations of the bound state of
PDZ3 (on a 5-ns time scale) are observed not
only for the secondary structure elements of the
binding groove, i.e., the a2 helix and b2 strand,
but also for segments that do not interact directly
with the peptide ligand, e.g., the a1 helix and the
C-terminal segment. While this observation is
congruent with an allosteric effect upon ligand
binding it does not explain the mechanism of
signal transduction. Note that a higher stability of
holo PDZ3 vs. apo was reported also in previous
simulation studies.18,21,39

In the bound state, the KETWV peptide is
involved in specific interactions with a2 and b2, as
well as stabilizing contacts of the W side chain
and the PDZ3 residues Phe39 and Leu41
(Figure 2(c)). The contact map can also be used
to identify differences in intra-protein contacts for
the sampling with bound or unbound peptide
(Figure 2(c)). It emerges that the contacts
between the b2-b3 loop and a2 helix are present
only in bound segments of the MD trajectories
(solid circle in Figure 2(c)). Another set of
exclusive contacts in holo stretches of the MD
sampling is the interaction of the a1 helix and b1
strand (dashed circle in Figure 2(c)). In the
unbound state there are a few additional contacts
5

in the antiparallel b sheet formed by strands b2
and b3 (red dots in Figure 2(c)). The similar
contact maps of PDZ3 in the presence and
absence of the peptide ligand provide further
evidence that simple geometric variables (e.g., the
inter-residue distances) are not adequate to
capture allosteric effects due to peptide binding.
Moreover, the contact map does not take into
account dynamic information, an important
component of MD simulations.
The analysis of the dynamic cross correlation

(DCC) of PDZ3 and the peptide ligand KETWV
gives a dynamic picture of the interactions
between the different residues by considering how
residues displace with respect to others. This is in
contrast to contact maps which only provide static
information. The DCC matrix shows a strong
correlation of the bound peptide with the
secondary structure elements of the PDZ3 binding
sites, namely a2 and b2, but also other regions
such as b3 and a1 (Figure 3(a)). A negative
correlation is observed between the N-terminal
segment and the peptide. Several regions of the
DCC differ in the bound and unbound trajectory
segments. A positive correlation between the a1
helix and both the b1 strand and the b1-b2 loop is
observed in the bound state and not in the
unbound state. Another difference is present in
the a2 interaction with b2. These two regions
which bind to KETWV are positively correlated in
the bound state, while in the unbound there is a
low negative correlation (Figure 3(b)). In general,
the a2 helix shows some negative cross-
correlation to the rest of the PDZ3 (b2, b3, and
a1) in the unbound segments, while there is less
negative cross correlation and even some positive
correlation in the bound state. This is to be
expected from the coupling effect of the peptide,
which bridges the relatively flexible a2 to the core
of the domain. These DCC results are consistent
with the hinge-like motion of a2, and its locking
due to peptide binding.18

As for the C-terminal region, in the bound state
there is a negative cross correlation to a2, which
is only partially present in the unbound state.
Furthermore, Ser97-Arg98 show a positive
correlation to the b2-b3 loop and the region
around a1, which is broken upon peptide binding.
This behavior has been shown in previous studies
describing an interaction between both regions
altered by peptide binding, after which the loop
interacts more with the peptide.14 The information
contained in the DCC matrices is detailed but hard
to interpret. Thus, a simpler way to illustrate the cor-
related displacement is to build dynamic communi-
ties from residues with similar correlated motions.
From the cross-correlation matrices of the bound

and unbound states, allosteric communities were
calculated using the bio3d R library (see
Methods).41 Residues with closely-correlated
motions are grouped together into communities,



Figure 2. Differences in PDZ3 backbone flexibility in the presence and absence of the KETWV peptide. (a)
Sequence profile of Ca RMSF averaged every 5 ns for 10 segments of holo (blue) and 10 of apo trajectories (red), of
20 ns each. (b) Secondary structure, with the naming of elements from,40 and difference in RMSF (bound-unbound).
(c) Contact map calculated with a distance threshold of 5�A and 80% occurrence. Contacts in black are conserved on
bound and unbound trajectories, while contacts in blue and red are exclusive for bound and unbound trajectories,
respectively. The horizontal line at the bottom of the contact map separates the KETWV peptide (abbreviated as p)
from the PDZ3 domain. The interaction between the b2-b3 loop and a2 (solid circle), and between b1 and a1 (dashed
circle) are present only in the bound state.

Figure 3. Analysis of correlated displacement of residue pairs. (a) Dynamic Cross-Correlation for bound (upper
half) and unbound (lower half) segments of the trajectories. (b) Difference in cross-correlation (DCCbound -
DCCunbound) (lower) and residue pairs with high difference in cross-correlation (upper). In both panels, the axes are
labeled with the sequence numbering of PDZ3. The pairs that involve the peptide (abbreviated as p) are in the bottom
and on the right of each panel (separated by a horizontal and vertical line, respectively).
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and these nodes are connected to each other
according to the closeness of correlated motions
between them. There are substantial differences
between the dynamic communities of holo and
apo states (Figure 4). First of all, the communities
(spheres in Figure 4) are larger in the bound state.
In both apo and holo states, the a2 helix (which is
part of the binding groove) forms its own commu-
nity, underlining its conformational independence.
6

In the holo state, the peptide is in the same
community with the b2 strand. When bound, the
peptide is extended and augments the b2-b3 mean-
der into a three-strand b sheet. Importantly, the
community of the a3 helix in the bound state (large
gray sphere in the bottom left of Figure 4(a))
includes also Ile37 on the b3 strand and is closely
tied to the b2-b3 loop (yellow sphere in Figure 4
(a)). Thus, the b3 strand is likely to mediate the



Figure 4. Dynamic networks for (a) bound protein and (b) unbound. Nodes (colored spheres) represent dynamic
communities, formed by tightly cross-correlated residues, while the edges (cylinders) connecting them have a
diameter proportional to the dynamic cross-correlation between communities. Both in the bound and the unbound
system, the a3 helix (dark gray and pink/cyan respectively) is connected to the binding site through the b2-b3
meander (orange bound, and olive unbound). The b2-b3 loop (yellow in bound) is connected to the a3 helix only in the
bound state. As expected, the KETWV peptide is part of the b2 community (orange). The a2 helix (dark gray in bound,
light grey in unbound) is disconnected from the b2 strand in both states.
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interactions between the b2 strand and the
C-terminal a3 helix (see also below). In the unbound
state, there is no interaction between the a3 helix
and the b2-b3 loop. Finally, it is worth noting that
in the unbound state the a3 helix is divided in two
small dynamic communities. This analysis suggests
that peptide binding helps maintaining the structure
of a3 together, which would otherwise move more
freely when the peptide is unbound.
A simple geometric variable like the RMSD can be

used for defining the bound state for the calculation
of binding times directly from the trajectories. Using
as threshold a peptide RMSD < 5�A (Figure S 1) we
can estimate the association rate constant kon even
if only seven binding events were observed (at 223,
330, 348, 387, 603, 1019, and 1047 ns,
respectively) on the 1.05-ms time scale of the
binding runs. For this purpose, the cumulative
distribution of the binding times is fitted by a single
exponential function f(t) = exp(-t /s) which yields a
characteristic time s of 3.6 ms (Figure S 2). Taking
into account the concentration of the peptide in
the simulation box (5 mM), the binding rate
constant kon is 55.5 ms�1mM�1. Considering a koff
of (1/200) ms�1,12 the equilibrium dissociation con-
stant is Kd = 0.09 mM (at the simulation temperature
of 26.5 �C) which is a factor of about 15 more favor-
able than the value of 1.4 mMmeasured at 30 �C for
the photoswitchable PDZ3.17 This discrepancy is
due, at least in part, to the slightly faster self-
diffusion coefficient of bulk water in the TIP3P water
model which is nearly three times larger than the
experimental value.42 The values of kon extracted
from the MD trajectories of binding are robust to a
7

range of RMSD thresholds between 3 and 7.5 �A,
and also comparable to those obtained using the
optimized RC as threshold for binding (Figure S 3).
Simulation analysis of the Ile37Ala point
mutant

Both the Correlation Network Analysis (Figures 3
and 4) and the unsupervised optimal reaction
coordinate framework (see below) suggest that
Ile37, which is in the b3 strand, plays a significant
role in the allosteric signal transmission upon
peptide binding. We decided to provide further
evidence of the role of Ile37 by additional
simulations of the Ile37Ala point mutant, starting
from the unbound peptide. We focused on the apo
structure of the mutant and did not start
simulations from the bound state because of the
long timescale of peptide unbinding reported
experimentally, and the lack of unbinding events
in our simulations of the wild type PDZ3. The
secondary structure analysis showed a preference
for a one-turn a-helix in the C-terminal region,
present between Pro93 and Tyr96 (Figure S 13).
Consistently, the distribution of the Glu94-Ala101
distance, which monitors two turns of the a3 helix,
is shifted in the mutant towards a longer distance
in comparison to the wild type (Figure 5(a)). This
observation is consistent with the role of Ile37 as
allosteric mediator, since the mutation in the b3
strand reduces the stability of the a3 helix.
Additional evidence on the importance of Ile37 on
peptide binding emerges from the Community
Network Analysis which shows a significantly



Figure 5. Results of Ile37Ala mutation. a) Distribution of Glu94-Ala101 distance for the mutant PDZ3 (blue) and wild
type (orange). The first peak at 10.5 �A reflects two full turns of an a helix. The distribution in the mutant is shifted
towards a longer distance which reflects the reduced stability of the second turn of the helix. b) Correlation Network of
Ile37Ala-PDZ3. In contrast to the wild type, the a3 helix (gray sphere) in the Ile37Ala mutant is not linked to the b2-b3
meander (yellow sphere), and thus the domino-like allosteric signaling is compromised.
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different cross-correlation profile of the Ile37Ala
mutant (Figure 5(b)) with respect to the wild-type
(Figure 4(b)). In the mutant, the motion of the a3
helix is correlated with the b1 and b6 strands while
it is not linked to the b2 and a2 secondary
structure elements which form the peptide binding
site. In contrast, for the wild type the communities
of a3 and b2 are connected in both the apo and
holo trajectory segments (Figure 4). This provides
evidence of the reduced collective motions
between the b2, b3, and a3 elements upon
mutation of Ile37 into Ala.
Unsupervised analysis

As a point of departure with respect to previous
studies, we employ here an unsupervised, fully
data-driven framework based on the slowest-
relaxation eigenvector(s) as optimal RC(s).36,43

The slowest-relaxation eigenvector is calculated
for each snapshot of the MD trajectory (also called
frame hereafter) by iteratively and recursively
updating a RC functional r(kDt0) (where k is the
snapshot index and Dt0 is the trajectory saving inter-
val) using at each iteration a single variable chosen
from a set of interatomic distances or dihedral
angles.32 The functional form of the RC approxi-
mates the slowest-relaxation eigenvector if it mini-
mizes the total square displacement Dr2(Dt) = R[r
(kDt0 + Dt) - r(kDt0)]

2 (where Dt is the lag time which
is equal to Dt0 or its multiple), under the constraint
that the sum over all snapshots of the squared val-
ues of the RC is equal to one, i.e., Rk

Nr2(kDt0) = 1,
and that the calculated RC is othogonal to all previ-
ously optimized eigenvectors. This optimization
strategy is equivalent to a maximization of the auto-
correlation function.36 The iterative optimization of
8

the RC r(kDt0) is based on the nonlinear combina-
tion of a large set of variables, e.g., pairwise residue
distances. Although the result of each optimization
step depends on the residue-pair distance chosen,
the overall RC is independent of the distances used
and their order. Furthermore, since no definition of
edge states or knowledge of the system is needed
the method is fully unsupervised, i.e., “blind”.36 This
is in contrast to the committor optimization method,
where two edge states must be defined initially. In
the present study we take into account the different
rates of optimization previously described,35 mak-
ing it adaptive. This is achieved by an evaluation
of the optimality along the calculated reaction coor-
dinate. MD frames with a suboptimal value of the
RC are allowed to vary, while frames better opti-
mized are kept fixed and don’t contribute to the opti-
mization, which prevents overfitting.
The optimal RC methodology was originally

validated on simulations of protein folding36,43 while
it is adopted here to analyze peptide binding and
allosteric signaling. Random intra-protein distances
(80%) and protein-peptide intermolecular distances
(20%) are used to optimize a RC that approximates
the first eigenvector of an implicit Markov model
describing the system. The RC approximates the
optimal RC more accurately along the transition
region than at the free energy minima, as shown
by the optimality criteria (Figure 6). The first metric,
the optimality criterion h, is used to assess the qual-
ity of a RC approximating the slowest-relaxing
eigenvector.36 In the case of optimality, it is con-
stant along the values of the RC and close to zero.
For the obtained RC, h is constant and close to zero
for most of the transition region, with nonzero val-
ues denoting suboptimality in the free energy basins
(Figure 6(a)). The second metric is the committor



Figure 6. Reaction coordinate (RC) quality metrics applied to the optimized slowest-relaxation eigenvector u1. (a)
Eigenvector optimality criterion h(u1, Dt). Optimal RCs have a h(x, Dt) which is constant and close to zero, and
independent of Dt. (b) Free energy profile projected on the optimized RC u1. (c) Committor optimality criterion ZC,1.
The committor shows a ZC,1(x, Dt) which is almost constant at the barrier, and converges for large values of Dt. The
convergence to a value of about 13–14 is consistent with the seven binding events observed in the total sampling. The
profiles of h(u1, Dt) and ZC,1(u1, Dt) show that the transition region is very well optimized, while the two main basins are
not. In both (a) and (c) different colors correspond to different lag times Dt = [1, 2, . . ., 1024] used for the calculation of
both h(u1, Dt) and ZC,1(x, Dt).
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optimality criterion ZC,1, which shows a similar
behavior to the h criterion. In an equilibrated simula-
tion, ZC,1 should converge to twice the number of
transitions between the edge states defined for
committor calculation.35 The profiles converge at
ZC,1 � 13, which is nearly twice the number of
observed binding events (seven). The projection
of the MD sampling into the two RCs representing
the slowest-relaxing eigenvectors shows that there
is one main (un)binding pathway (Figure 7(c)).
There are two pronounced minima in the projection
onto the first (i.e., slowest-relaxation) eigenvector
u1 at u1 � �0.9 and 0.5. These minima are the
basins of the bound state (u1 � �0.9) and a state
that includes non-natively bound and fully unbound
frames (Figure 7(a)). These two states are sepa-
rated by a broad transition state region. The second
eigenvector u2 discriminates the transition region
between the two main basins of u1 (Figure 7(d)
and Figure S 7). In addition, the minor basins
9

around u2 = 0.9 and u2 = 0.5 include snapshots with
non-native associations of the peptide to the N- and
C-terminal regions of the protein, respectively (Fig-
ure S 11). The optimized reaction coordinates have
also been transformed to their “natural” counter-
parts, in which the diffusion coefficient is constant
and equal to one.44 The overall shape of basins
and large transition region are similar as for the
non-transformed eigenvectors (Supplementary
Information Figure S 4, Figure S 5, and Figure S
6). The projection of the free energy along the opti-
mized RC shows the height of the individual barriers
but does not illustrate directly the correspondence
between basins (minima) and protein conforma-
tions or peptide binding modes.
The SAPPHIRE plot is a one-dimensional

projection of the free energy which is useful to
illustrate and characterize all free energy
basins.37–38,45 As an extension to the original
method, we employ here the optimized eigenvector



Figure 7. Free energy surfaces of the process of KETWV-peptide binding process to the PDZ3 domain. (a)
Projection of the free energy on the slowest-relaxation eigenvector u1. The Free Energy Profile shows the different
basins from the bound state at around �0.9 to the unbound states at 0.5. (b) Distribution of distances between the Ca
of residues Glu94 and Ala101 in the a3 helix projected on the u1 eigenvector. (c) Two-dimensional, histogram-based,
Free Energy Profile of trajectory frames binned according to their u1 and u2 values. The use of the two first
eigenvectors, describing slowest relaxing processes, allows ruling out the presence of secondary pathways. (d)
Projection of the free energy on the second eigenvector u2.
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RC u1 as progress index to order the individual
snapshots (Figure 8). Note that we use the term
progress index instead of progress variable
because the former is defined only for the snap-
shots of the MD sampling while the latter is a func-
tion that can be evaluated for any coordinate set.
For the structural annotation, 17 inter-residue dis-
tances were selected, 12 of which correspond to
peptide-protein distances with the highest mutual
information calculated with respect to the different
basins (relative entropy, see Unsupervised analysis
subsection of Materials and Methods). The other 5
distances are intra-protein distances that show a
mutual information above the 99.9 quantile
(Table S 1). These distances are useful to describe
the binding process by monitoring the evolution of
contacts along the RC.
The u1 � �0.9 basin corresponds to the native-

bound state, and includes two subbasins defined
mainly by the orientation of the T side chain of the
10
peptide towards the a2 helix or towards b2 (His71-
T and Val27-T distances, Figure 8) and the
contacts of W to the b3 strand, which are stronger
in the first subbasin. The distance between the
secondary structure elements that make up the
peptide binding groove, i.e., a2 helix and b2
strand (Phe24-Lys75), is in general closer in the
bound basin, being more frequently less than 10 �A
compared to the rest of the RC. The second basin
(u1 � 0.5), corresponds to the non-natively bound
frames and comprises both fully unbound and
peptide-protein interactions outside the binding
site. The basin shows no strict clustering
according to minimum distance between protein
and peptide of the fully bound states. There is,
though, a separation between the regions where
the KETWV peptide is dissociated from the
protein, closer to the transition states, and where
the peptide is bound far away from the recognition
pocket, at the end of the RC (see minimum



Figure 8. SAPPHIRE plot of total sampling using the optimized first eigenvector u1 as progress index. From top to
bottom: structural annotation with interatomic distances; value of the slowest eigenvector RC, u1; minimum distance
between peptide and protein; RMSD of peptide Ca with respect to crystal structure; distance between residues Glu94-
Ala101 (which are the two residues connected by the azobenzene linker in17); kinetic and temporal annotation. The
kinetic annotation corresponds to the cut-based free energy profile of the RC as shown in Figure 7(a). The temporal
annotation shows the ordering of trajectories in real-time.
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distance panel or Asn62-V distance in Figure 8, also
visible in u2 as seen in Figure S 7). The intercalation
of fully unbound frames and non-natively bound
ones reflects the necessary unbinding of the
peptide after unstable contacts with non-canonical
sites of the protein. Furthermore, apart from the
basins at u1 � �0.9 and the transition regions, no
other protein-peptide interaction shows its own
basin along the projection of the FEP. These
results provide evidence that non-native binding
events are unstable and are not populated for a
significant amount of time, as there are many
transitions between the different non-canonical
bindings. This is also clear when looking at the
interaction map of the peptide for the basin at u1
� �0.9 (Figure S 9) where the peptide remains
tightly bound to the canonical binding site for a
majority of the frames. In contrast, for the basin at
u1 � 0.5 (Figure S 10) there is no stable
interaction and the peptide comes into contact
with most residues with similar probability. The
movies Movie S1 and Movie S2 illustrate the
structural stability of the native bound state and
the transient character of the non-native peptide/
protein interactions.
The geometric annotation at the transition state

region can be used to describe the process of (un)
binding from a structural point of view. In general,
11
the different basins show the importance of V for
the binding process, as they present a native or
near-native binding of V along the transition state
region. The importance of V has been previously
described for PDZ2.20 We found that the correct
burial of the V side chain on the binding site by con-
tact to the side chain of Leu 78 is a main barrier in
the binding process of PDZ3 as well (Figure S
12). The encounter complex, between u1 � �0.5
to 0.4, shows the initial interaction of V with a2
(Leu22-V, Gly23-V). Meanwhile, T has a nonnative
contact to Ala42, and afterwards to Ala75which is in
contact with T in the crystal structure. Overall, the
geometric annotation suggests a binding process
by which the peptide first interacts via its V with
the b2 strand (Leu22-V, Gly23-V), and via T to the
a1 (Ala42-T) or a2 helix (His71-T, Ala75-T). The
SAPPHIRE plot also shows that W interacts with
Ala77 on the a2 helix (Ala77-W). The nonnative
contacts then need to be broken in the high free
energy barrier. The E residue remains largely
unbound in the transition state region (Ser38-E),
and K does not appear at all in the important residue
pairs, due to its flexibility. Some intra protein residue
pairs also show closer distances on these regions,
such as Asn25-Ile37, and Asn25-Tyr96. Finally,
the side chain of E positions itself correctly, shown
by the distances to Ser38 and Tyr96, and so the
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bound state is reached. The E-Tyr96 distance of
between 5 �A and 10 �A has been previously
reported, and implies that the a3 helix remains
mostly docked to its site near the binding site while
the peptide is in the binding site.11

We now focus the analysis on the a3 helix for
which there is experimental evidence of allosteric
signaling upon peptide binding.11,17 The distance
between residues Glu94 and Ala101 is the one cho-
sen to report on the structure of the C-terminal
region. These residue positions are the ones used
in the time-resolved spectroscopy experiments with
the photoswitch.17 The selected residues are seven
residues apart and thus they span two turns of an a
helix, which correspond to a separation of 10.5�A. A
dssp analysis of these residues on the bound and
unbound stretches shows that a3 can comprise
either one or two turns (Figure S 14 and Figure S
15). The two peaks of the distribution of the
Glu94-Ala101 distance at 10.5 �A and 13.5 �A corre-
spond to a two-turn and one-turn a3 helix,
respectively.
The distance between the Ca atoms of Glu94 and

Ala101 fluctuates frequently during the sampling
(Figure 7(b)) in accordance to an unfolding
timescale of 4 ns as measured by time-resolved
spectroscopy.12 The larger distance at around
15 �A corresponds to a partial unfolding of the helix
and stretching of the Glu94-Ala101 segment, which
can be seen when visualizing the trajectories
(Movies S1 and S2). In the photocontrollable
PDZ3, the azobenzene isomerizes from the cis con-
formation, which favors the a-helix conformation, to
the loop-favoring trans conformer. This imposes a
change of roughly 4 �A between the anchoring
points,46 which is only part of the fluctuation range
observed in the simulations. Conversely, a Glu94-
Ala101 distance substantially shorter than 10�A cor-
responds to a coil conformation that cannot be
reached in the presence of the photoswitchable lin-
ker. As can also be seen in the SAPPHIRE plot (Fig-
ure 8), this distance fluctuates greatly, from less
than 5�A to more than 20�A, in both the first and last
basin, while it remains rather constrained between
10 �A and 16 �A in the transition region. The highest
fluctuations (down to values shorter than 10 �A)
occur when the C-terminal helix is dislodged away
from the b2 strand, meaning a Val27 CB to Phe99
CZ distance greater than 12.5�A. In contrast, fluctu-
ations of the Glu94-Ala101 distance between 10
and 16�A are observed when the distance between
a3 and Val27 is below 10 �A, although at a separa-
tion of 5 �A the distance between Glu94 and
Ala101 can fluctuate down to 8 �A. This behavior
shows the importance of the packing of the a3 helix
towards the protein and how it impacts its own sec-
ondary structure.
The optimal RC framework and SAPPHIRE

plot analysis allow for a fully data-driven
definition of the main free energy basins which
is useful for further geometric analysis. We
12
used the trajectory reordered according to the
newly obtained RC to calculate a series of
metrics between distributions of pairwise
distances along the trajectory. First, we
compare the distributions of distances in the
bound and non-natively-bound and unbound
basin (Figure 9, top panel). The first metric
used is the Kolmogorov-Smirnov (KS) test
value, which takes the maximum distance
between two empirical distributions, while the
second is a measure of distance between
distributions, namely the Kullback-Leibler (KL)
divergence, which is based on their relative
entropy. Afterwards, (Figure 9, bottom panel),
we chose metrics that capture the information
content of the distances projected on the RC.
One such measure is the mutual information,
for which the relative entropies of each basin
were calculated, cutting at points u1 = [�0.887,
�0.74, �0.552, �0.325, 0.094, 0.227, 0.269,
0.375, 0.561]. The other was the correlation of
the distances to the RC itself.
For the C-terminal region, the interaction

presenting the greatest change in distance
distribution is the one between a3 and the a2
binding helix. Another important variation is
observed between a3 and the b2-b3 loop
(Figure 9). We have also checked which distance
pairs, excluding peptide-protein interactions,
belong to the 99.9 percentile of the different
values tested (Table S 1). Many of these
interactions involve either Leu78 and Lys79 in
helix a2 or Asn25 in the b2 strand (both forming
the binding groove) and other regions of the
protein. Ile37, which was discovered by the
conventional analyses, also shows up, with the
Ile37-Asn25 and Ile37-Lys79 distances shown as
highly variable ones. The distance between Lys79
and Asn25 reports on the degree of opening of
the binding site, and has previously been used as
RC18 and shown to have a big variance in molecular
simulations.19 In this trajectory, it fluctuates on a
lower range in the bound basin compared to the
unbound one, which is consistent with what was
found previously. Another interesting interaction is
the one between Lys79 and Glu57, located in the
b4 strand, which is also in the vicinity of a3. Further
interaction is seen between Lys79 and residues
Gln90-Glu94 of a3, which have both a high KS test
value and mutual information. This means their dis-
tance distribution varies significantly between
bound and unbound states, and it is a distance with
a high relative entropy when partitioned in the
basins studied.
Meanwhile, correlation and KL divergence inform

particularly on the interactions of Asn25 and Leu78
with other residues. Leu78, like its neighboring
Lys79 on a2, has a significative KL divergence to
the residues Gln57-Leu59 of b4, which are in
close contact with the a3 helix as mentioned
above. Leu78 also reports on the interactions with



Figure 9. Analysis of pairwise distances in the bound and unbound states. (Top) Differences in pairwise distances
between bound (u1 � �0.9) and unbound (u1 � 0.5) basins. (Upper diagonal) Kolmogorov-Smirnov (KS) test value for
pairwise distance distributions. (Lower diagonal) Kullback-Leibler (KL) divergence for pairwise distance distributions.
These metrics and distance measures between empirical distributions show residue pairs with significant variation
between the bound and unbound basins of the FEP projected on u1. (Bottom) Information content of pairwise
distances. (Lower diagonal) Mutual Information (log) of pairwise distances clustered by basin. (Upper diagonal)
Pearson correlation of pairwise distances and RC. Mutual Information captures the relative entropy of each distance
distribution along the RC, and the correlation shows the similarity of the distance between the residues to the RC
itself. In all, the pairs of residues with more influence on the optimized reaction coordinate are elucidated.
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the b2 strand (mainly through Asn25), and other
regions of the protein, such as Phe36-Ser38
located between b2 and a1, and Lys92 at the
beginning of the C-terminal a3 helix.
Overall, these findings provide evidence that the

signal is transmitted from the b2 strand, which
forms antiparallel b-sheet hydrogen bonds with the
peptide ligand, to the Phe36-Ser38 and Arg53-
13
Ile58 segments of the strands b3 and b4,
respectively. From the latter strands, the signal is
transduced to the spatially close C-terminal a3
helix, in a domino-like process.47 The importance
of Ile37 has already been highlighted by the com-
munity network analysis in the Conventional analy-
sis of the MD simulations section. Some of these
residues, especially Asn25, Ile37, and Leu78 have
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been identified in previous MD and energy
perturbation studies as possible carriers of allosteric
signals, although those simulations did not investi-
gate the unbound state.25,27–28,24 In contrast to our
simulation results, a study of electrostatic interac-
tions highlighted the importance of the b2-b3 loop
in allosteric regulation,21 which does not seem to
emerge from our unsupervised analysis.
Finally, the transmission of the peptide binding

signal by a domino effect does not necessarily
exclude other mechanisms of signal transduction.
Although the binding signal is transmitted to the
a3 helix mainly via spatially adjacent elements of
secondary structure, some remote regions of the
protein like the b1 strand and a1 helix seem also
to react to the binding of the peptide according to
the comparison of inter-residue distance
distributions (Figure 9). A more diffuse
propagation of the signal is congruent with the
observation that allosteric transitions are “felt” by
all residues in the protein, though in different ways
depending on their environment and properties.22
Conclusions

We have investigated allosteric signaling in the
PDZ3 domain by multiple molecular dynamics
simulations started from the KETWV-peptide
bound state or the fully dissociated state
amounting to 34 ms of sampling. The analysis with
conventional methods, such as the contact maps
and cross-correlation analyses, has provided
information on pairs of residues potentially
involved in the transmission of the signal upon
peptide binding. The community network analysis
has identified Ile37 (on the b3 strand) as a key
residue in the allosteric communication. It also
suggested a potential role of the b2 and b3
strands in propagating the signal from the peptide
to the C-terminal helix a3. Thus, we decided to
investigate in depth the role of Ile37 by additional
simulations of the Ile37Ala-PDZ3 mutant. These
simulations show that the Ile to Ala mutation at
position 37 reduces the correlated motions, and
therefore the allosteric signal transduction.
An important difference with respect to previous

simulation studies of PDZ domains is the
unsupervised analysis of the MD trajectories
based on the optimal RC framework. We have
projected the free energy along the slowest-
relaxation eigenvector. This is an optimal RC that
captures the process of peptide (un)binding while
resolving intermediate transition state regions.
Importantly, the optimized RC was used to guide
further sampling of the transition regions which
has resulted in four additional binding events. This
RC is able to elucidate important structural
changes between the basins on the projected FEP
which are comparable to, but more detailed than,
those obtained by more traditional methods such
as cross-correlation. Furthermore, the RC clearly
14
distinguishes the bound and unbound states, and
shows some partition in the bound basin. In
contrast to geometric approaches, the use of the
slowest-relaxation eigenvector as the progress
index in the SAPPHIRE plot results in a
description of the whole binding process. The
combination of slowest-relaxation eigenvector as
optimal RC, SAPPHIRE analysis, and methods
based on information theory provides evidence
that the signal of peptide binding to PDZ3 is
transmitted from the binding groove to the a3 helix
in a domino-like cascade through regular elements
of secondary structure that are spatially adjacent.
The overall agreement between our results and

previous experimental and computational studies
on PDZ3 suggests that the optimal RC approach
could prove valuable for other complex systems
for which the allosteric pathways have not been
described. Further analyses such as the pairwise
comparison of additional free energy basins, for
example using KL divergence of residue
distances, could provide even a richer description
of the binding process, showing the key
interactions at each barrier of the FEP. We plan to
further investigate the transduction of the allosteric
signal by MD simulations of forced (un)folding of
the helix a3, which will directly emulate the
photoswitching of the azobenzene linker.48 Further-
more, the residue pairs and interactions highlighted
in the present simulation study could be analyzed
by mutational studies in vitro. More directly, their
role in the wild type PDZ3 domain could be verified
by means of NMR spectroscopy (15N backbone
relaxation and side chain 2H-methyl relaxation
experiments) and other biophysical techniques
(e.g., isothermal titration calorimetry) which have
already proved useful in studying allosteric effects
in PDZ domains.
Materials and methods

Molecular dynamics simulations

Molecular dynamics simulations were prepared using the PDZ3
domain of Rattus norvegicus PSD-95 in complex with the
KETWV pentapeptide, which has the same sequence as in the
experimental study.17 The PDZ3 residues from Leu302 to
Asn403 are here re-numbered from 1 to 102, and are shown with
the three-letter code, while the peptide is unnumbered and des-
ignated with its one-letter code. All simulations were run byGRO-
MACS 2020.549 using the CHARMM36 force field50 and the
TIP3P water model.51 Six independent runs were started from
the crystal structure of the complex (PDB ID: 1TP5), immersed
in a 6.9-nm cubic box, and neutralized with Na+ and Cl� ions at
a concentration of 150 mM. The system was first minimized for
500,000 steps, and then underwent a 2 ns isothermal-isobaric
(NPT) ensemble equilibration to 300 K and 1 bar, using the
Berendsen barostat with a coupling time of 2 ps.52 Afterwards,
production runs were carried out in the canonical (NVT) ensem-
ble, utilizing the velocity rescaling thermostat with a coupling time
of 1 ps.53 Furthermore, 20 binding runs were started from random
positions and orientations of the peptide in the simulation box
which were generated using the GROMACS insert-molecules
command. The equilibration and production phases were similar



P. A. Vargas-Rosales and A. Caflisch Journal of Molecular Biology 434 (2022) 167661
as for the runs started from the complex. All simulations were car-
ried out with periodic boundary conditions, and long-range inter-
actions were treated by the particle mesh Ewald method with a
cutoff of 12 �A.54 The same 12 �A cutoff applied to van der Waals
interactions. The time step of integration was 2 fs. Production
sampling was collected to 1200 ns, and energies and coordinates
were saved every 25 ps for analysis. Considering simulations
restarted from transition regions, as described afterwards, the
total sampling collected amounts to 34 ms.
Structural analyses

Native contacts were determined from a crystal structure, while
other descriptive contacts between peptide and protein were
extracted from one of the binding trajectories. The trajectory
was split into four states according to the RMSD of the Ca
atoms of the peptide (upon structural overlap of the PDZ3) and
minimum distance criteria. Ten intervals of 20 ns each were
selected from the unbinding trajectories in regions where the
Ca RMSD of the peptide was below 2.5 �A. Ten sections of
20 ns were sampled from the unbinding trajectories in which
the minimum distance between peptide and protein is above
10 �A (Figure S 8). The root mean square fluctuation (RMSF)
was calculated independently for bound and unbound sections
of the trajectory, using intervals of 5 ns for structure averaging
as previously done for PDZ3.18 The trajectory was reordered
geometrically by a progress index,45 and visualized using the
States and Pathways Projected on High Resolution (SAPPHIRE)
visualization method to find structural insights about the states
found.37 This visualization was used to reseed 20 new trajecto-
ries (see Reseeded trajectories subsection).
A strategy commonly used for the analysis of allostery is the use
of Dynamic Cross-Correlation of atomic displacements to find
correlated motions.9,55 Such an analysis was performed using
the Bio3d R library.41 The cross-correlations were calculated
for all heavy atoms, and averaged per residue. Cross-
correlations were calculated for trajectory segments where pep-
tide was bound and where it was completely unbound, as previ-
ously defined. Furthermore, the cross-correlation difference was
calculated to find regions where a change in the collective move-
ments is caused by the presence of the peptide. From the cross-
correlation matrix, a community network can be constructed by
clustering residues with similar cross-correlation patterns into
macro-nodes of highly dynamically connected residues.7 Such
an analysis was performed with Bio3d and visualized on VMD.56

A kinetic analysis of the binding events was performed by fitting
an exponential curve f(t) = exp(-t/s) to the probability of the
peptide being unbound at each time. This was calculated for
the 20 binding trajectories. In addition, binding events during
reseeded trajectories were also selected. These are one of the
SAPPHIRE reseeded trajectories, and four of the eigenvector
projection reseeded trajectories, yielding a total of 25 binding
trajectories (Table 1). For the reseeded trajectories, the time of
binding was calculated as the time of the trajectory plus the
time of the sampled frame in the original trajectory. Thus, the
data are not fully independent as each of the five reseeded
trajectories shares a segment with one of the original binding
trajectories. This approximation introduces an error that is
smaller than a complete neglect of the original trajectory which
would result in too rapid binding times. The probability of the
peptide being unbound was calculated by setting 25 binary
vectors of length 1000, and setting the value of each frame to 1
if unbound. For each binding event, the vector was set to zero
for all frames after the RMSD threshold was crossed. The
binding rate constant kon is the reciprocal of the product of the
exponential decay factor s and the peptide concentration
(5 mM according to the size of the simulation box). The KD

dissociation constant was calculated as koff /kon, using an
unbinding rate constant koff of (1/200) ms�1 as previously
reported12. The unbinding rate cannot be calculated as only
15
one unbinding event was observed. This is expected from the
experimentally measured ms time scale of the dissociation pro-
cess. To assess the robustness of the threshold used to define
a binding event, the time for binding was calculated for three val-
ues of the peptide RMSD (3, 5, and 7.5 �A). Furthermore, the
kinetic constants were also calculated using the value of the opti-
mized reaction coordinate, described in the following section, and
setting 0.1 and �0.75 as threshold values (Figure S 3).

Mutation studies

The geometric analysis revealed the role of Ile37 as essential to
signal transmission. Thus we decided to perform MD simulations
of the Ile37Ala mutant of PDZ3. A set of 24 independent
trajectories, of 200 ns each, was seeded. The initial topology
was obtained by mutating Ile37 to Ala utilizing an in-house
developed graphical user interphase (ACGUI) which accesses
the function from the software CAMPARI.57 Due to the long time-
scale of peptide unbinding, only binding simulations were carried
out, in which the peptide was randomly positioned around the
Ile37Ala-PDZ3. The simulations were performed as previously
described in the section Molecular dynamics simulations. RMSD
of the peptide with respect to the (mutated) crystal structure was
monitored to determine binding events.
To explore the effect of the mutation on the structure of the C-
terminal a3 helix, the secondary structure of Lys92-Asn102
was determined using the MDTraj python library.58 Furthermore,
the distance betweenGlu94 and Ala101wasmonitored and com-
pared with that of the wild type PDZ3. The dynamic cross corre-
lation was calculated for the mutated trajectories, excluding three
of them where the peptide bound to the binding groove. The
cross correlation matrix was used to calculate the correlation net-
works as previously described.

Unsupervised analysis

An approximation to the first eigenvector of the transfer operator
of the underlying dynamics of the system was calculated as
previously published,36 adapting the code described in43,59. The
eigenvector time-series is approximated by a linear combination
of basis functions. In short, a seed reaction coordinate is itera-
tively and recursively optimized using randomly sampled collec-
tive variables from the trajectory coordinates. In this case,
interatomic distances between pairs of residues were chosen.
For each step of the optimization, the RC is updated as a function
of the RC itself and a new, randomly chosen, distance. Although
the result of each optimization step might depend on the distance
chosen, overall the optimization converges independently of the
order and distances used. Furthermore, the high number of steps
ensures all distances are considered. A basis function combines
the information from the chosen collective variable and the exist-
ing RC. The coefficients of the basis functions are chosen such
that they provide a solution to the generalized eigenvalue prob-
lem as described in the original publication,36 and result in a min-
imum of the total displacement along the RC. In this way, a value
of the RC is assigned to each frame in the trajectory. This RC
approximates the slowest-relaxing eigenvectors of the system.
The MD trajectories were sub-sampled with a timestep
Dt0 = 100 ps and then concatenated. A Dt of 256*Dt0 (25.6 ns)
was chosen as lag time to calculate the eigenvectors. A slightly
larger lag time helps mask the suboptimality of the eigenvector.
A lag time Dt1 of 1024*Dt0 (102.4 ns) is used as reference to
test the convergence of the optimization. This value should be
smaller than the characteristic lag time of the process to be
described. In this case, the signal transduction occurs on a
timescale of 200 ns, while peptide unbinding is expected to
happen after 200 ms.12 For the iterative optimization of the RC,
interatomic distances were calculated between (non-
replacement) combinations of peptide Ca, protein Ca atoms,
and protein side chain atoms. In each iteration step, the distances
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were chosen randomly. Furthermore, to avoid dominance of
intra-protein distances, peptide-protein intermolecular distances
were chosen every five iteration steps. This can be understood
as assigning a 20% weight to the peptide protein distances
(510 distances), against an 80% weight to intra-protein (Ca and
side chain) distances (18537 distances). Distances
were transformed by a sigmoidal function
f xð Þ ¼ 1� ð1þ expð�ðx � vÞ=sÞÞ�1

centered at v = 7�A andwith
a sharpness of s = 2�A.With these values of v and s the sigmoidal
function captures the formation of van der Waals contacts and
hydrogen bonds and decays to zero for large separations at
which the energy contribution is essentially zero. In other words,
the sigmoidal transformation is equivalent to a contact map
transform.
The committor calculation framework introduces adaptivity as a
way to avoid overfitting of the transition regions and sub-
optimality in the basin areas.35 Adaptivity is based on scanning
of the profile of an optimality criterion along different values of
the RC. Frames for which the value of the RC shows optimality
are kept constant on the next iteration of the RC optimization.
In this case, we use the eigenvector optimality criterion h(x, Dt),
which for an optimal RC is constant and close to zero along x (re-
action coordinate) and Dt. The difference in the optimality crite-
rion h is calculated for different timesteps, to find the timestep
which shows the highest difference along the h profile. This is
described as Dh(x, Dti, Dt) = h(x, Dti) - h(x, Dt), with Dti equal
the timestep for which Dh(x, Dtj, Dt) has the largest range. Then,
the suboptimality at each point x of the RC is defined as s(x) =
exp(Dh(x,Dti,Dt) - maxx(Dh(x,Dti,Dt))). Finally, s(x) is normalized
to the 0 to 1 range. This suboptimality is used as probability for a
Bernoulli random variable which fixes each x with probability s(x).
The optimization was carried out for 80,000 steps. A cut-based
free energy profile FC ;1 ¼ �kTln ZC ;1 xð Þð Þ was calculated from
the partition function ZC ;1 xð Þ. At a point x of a reaction
coordinate, the partition function considers one half of the sum
of the distances in the coordinate of all the steps going through
this point.30 Based on the FEPs projected on the two slowest-
relaxation eigenvectors, a two-dimensional histogram was
obtained by binning the values of each trajectory frame based
on the value of the frame on each of the two coordinates. This
projection elucidates parallel pathways along the RC. The
slowest-eigenvector projection was used to determine the poorly
sampled transition regions between the bound and unbound
states, fromwhich 16 new simulationswere started asmentioned
above (subsection Reseeded trajectories).
For each interatomic distance, a series of statistics were
calculated based on the basins obtained from the FEP.
Distance value distributions pi were calculated as a histogram,
with the binning being the maximum between the Sturges and
Freedman-Diaconis estimators using NumPy 1.20.1
functions.60 The RC was discretized at the points u1 = [�0.887,
�0.74, �0.552, �0.325, 0.094, 0.227, 0.269, 0.375, 0.561],
and the mutual information for each distance x was calculated
as I ¼ H �PNbasins

k¼1 qkHðx jak Þ. H ¼ �P
i¼1pi logðpi Þ describes

the total entropy of the distance values, calculated with SciPy
1.5.3. Meanwhile, H(x|ak) is the entropy of basin k, with qk being
the size of basin k, measured as the number of frames in it.61–62

The difference in the distribution of distances at the natively
bound and non-natively bound basins was calculated using the
two-sample Kolmogorov-Smirnov (KS) test and the Kullback-
Leibler (KL) divergence. The two-sample KS test was calculated
with the SciPy python library on empirical distributions of pairwise
distances. The assumed null hypothesis is that pnative = pnonnat,
The test value D is calculated as
D ¼ supx jX

�
native xð Þ � X

�
nonnat xð Þj. The test finds the least upper

bound of the difference in the empirical distribution X
�

of dis-
tance X between the native and nonnative basins. Distance pairs
with a two-tailed p-value higher than 5% were omitted for the
analysis, being considered non-significant. The KL divergence,
was calculated as

P
pnativeðiÞlogðpnative ðiÞ

pnonnat ðiÞÞ, orP
pnonnatðiÞlogðpnonnat ðiÞ

pnative ðiÞ Þ if the first expression is undefined, for
16
each bin i of the distance distribution.63 Additionally, the correla-
tion of each pairwise distance to the RC itself was also calcu-
lated. Once calculated, the RC was used as Progress Index for
a SAPPHIRE-style analysis. The structural annotation was deter-
mined by the previous analysis of all pairwise distances, choos-
ing distances with high mutual information. Twelve peptide-
protein and five intra-protein pairwise distances were chosen in
the end to describe the process.
Reseeded trajectories

An initial analysis of the six unbinding and twenty binding
trajectories was performed using the SAPPHIRE visualization
method,37 in which frames are ordered according to their pairwise
geometric similarity.45 For the calculation of the progress index, a
set of 105 peptide-protein distances was used as geometric vari-
able and the Euclidean distance was employed for pairwise com-
parison of snapshots. From the kinetic annotation, the transition
region was defined and 20 frames were selected as coordinate
sets for restarting 20 new trajectories, respectively, using newly
generated velocities (Table 1). Production MD was collected for
100 ns for each of the 20 reseeded runs. Two runs, one with a
binding and one with an unbinding event were then extended to
300 ns. This reseeding was inspired by a previously published
adaptive sampling procedure called progress index guided
sampling.38

A further reseeding was undertaken using the projection onto the
slowest-relaxation eigenvector calculated previously (see section
Unsupervised analysis). From the initial (un)binding runs, and the
reseeded trajectories mentioned above, the free energy profile of
peptide (un)binding was calculated. From the transition state
region, 16 frames were sampled and their coordinates used to
restart trajectories with new velocities. Production runs were
collected for 300 ns (Table 1).
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