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ABSTRACT: The early oligomers of the amyloid Aβ peptide are
implicated in Alzheimer’s disease, but their transient nature
complicates the characterization of their structure and toxicity.
Here, we investigate the stability of the minimal toxic species, i.e.,
β-amyloid dimers, in the presence of an oscillating electric field. We
first use deep learning (AlphaFold-multimer) for generating initial
models of Aβ42 dimers. The flexibility and secondary structure
content of the models are then analyzed by multiple runs of
molecular dynamics (MD). Structurally stable models are similar to
ensemble representatives from microsecond-long MD sampling.
Finally, we employ the validated model as the starting structure of
MD simulations in the presence of an external oscillating electric
field and observe a fast decay of β-sheet content at high field
strengths. Control simulations using the helical dimer of the 42-residue leucine zipper peptide show higher structural stability than
the Aβ42 dimer. The simulation results provide evidence that an external electric field (oscillating at 1 GHz) can disrupt amyloid
oligomers which should be further investigated by experiments with brain organoids in vitro and eventually in vivo.
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1. INTRODUCTION
Alzheimer’s disease (AD) is the most frequent threat to the
mental health of the elderly. At the molecular level, the self-
assembly of the amyloid-β peptide (Aβ) impairs the structure
and function of the neurons. The final products of the
aggregation process are the amyloid plaques which consist of
fibrils of the 42-residue (and/or 40-residue) Aβ peptide.1
Nevertheless, the evidence for the toxicity of plaques has been
put into question,2,3 and there is substantial evidence for the
role of early oligomers in the progression of AD.4−6 The
minimal oligomers are Aβ dimers, which are transient and can
aggregate into stable protofibrils.7 Cellular assays and in vivo
experiments have revealed that Aβ dimers contribute to
synapse dysfunction by perturbing glutamatergic transmission,
and disrupt the memory of learned behaviors in rodents.8,9
Experimental data and kinetic modeling have shown that the
transient oligomers of Aβ42 are particularly stable and
productive in their conversion to fibrils, even in comparison
to other aggregating peptides. These qualities make the
oligomers interesting therapeutic targets under either the
oligomer or fibril theories of Aβ42 toxicity.10,11
The pathways and kinetics of amyloidogenic peptides are

di!cult to monitor at the atomic level of detail by experimental
means. Molecular dynamics (MD) simulations have shed light
on the early aggregates despite the approximations inherent to
the force fields and the short time scales accessible by atomistic
models.12−14 The most populated conformations of the Aβ42
homodimer have been recently predicted by the use of

atomistic MD simulations.15 First, an equilibrated structure of
the monomer was sampled by microsecond-range MD
simulations, after which two representative structures of the
monomer were chosen for simulations of the dimeric system.
An initial 1 μs simulation was performed, from which five
subsequent 1 μs simulations were randomly restarted for a
total of 6 μs sampling. This analysis has shown the propensity
of the Aβ42 dimers to form β-strand hairpins in solution.15
Other groups have used di"erent techniques to predict the
ensemble of conformations of the dimer. One of such
approaches is the use of blockwise excursion sampling, which
has yielded dimers with a secondary structure content in
agreement with circular dichroism (CD) experimental data.16
Furthermore the dimers were shown to consist mostly of turns
and coils, with no highly populated cluster containing the
hairpins, though propensity of β-strands was observed to be
high in the C-terminal regions. Nonetheless, previous
experimental results supported by MD simulations explored
the importance of β-sheet-based planar dimers for the
formation of stable fibrils.17 An important factor to consider
in the simulation of intrinsically disordered proteins (IDPs) is
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the choice of force field used.18 The simulation results of
Dehabadi and Firouzi provide evidence that CHARMM36m19

is an appropriate force field for the simulation of Aβ42
dimers.16
Deep learning (DL) has made a significant impact on the

field of protein structure prediction by utilizing advancements
in language models to model the sequence−structure relation-
ship. The remarkable precision of AlphaFold20,21 and the
availability of its source code have revolutionized computa-
tional and structural biology. Although initially designed for
monomeric structures, AlphaFold intrinsically demonstrated a
notable capacity for predicting protein complexes through
input manipulation, such as adding a linker to the protein.
While these input-adapted versions outperform previous state-
of-the-art methods, the recently introduced retrained Alpha-
Fold-Multimer system further improves interface predictions
to 58% in a recent benchmark.22 However, AlphaFold is
limited in its ability to predict structures for polypeptides that
do not conform to the one-sequence/one-fold rule, especially
relevant for disordered proteins. The implications of IDP
prediction using DL tools have been reviewed.23,24 More
understanding is needed on the relationship between the
confidence metrics generated by the DL tools and the dynamic
behavior of the predicted structures. Recent research has
shown that the predicted alignment error21 is correlated to the
dynamics of the protein in MD simulations and the root-mean-
square fluctuation (RMSF) is related to the predicted local
distance di"erence test.25,26 Another recent preprint showed
that the inter-residue distances predicted by AlphaFold for
disordered proteins can be used as a prior to construct accurate
structural ensembles with MD simulations.27

External (oscillating) electric fields can be employed in MD
simulations to study their e"ect on biomolecules.28 Todorova
et al. found that electric fields have a strength-dependent
influence on the secondary structure and dynamics of
amyloidogenic peptides.29 Further studies investigated the
e"ects of varying frequencies on aggregation propensity, with a
1 GHz field at a low strength (around 10 mV/nm) trapping
the peptide in a specific conformation. Meanwhile, higher
strengths, of 700 mV/nm but already at 70 mV/nm, showed a
breakup of the hairpin conformation.30 Simulations of the
Aβ40 peptide under a static electric field showed a transition
from α-helical to β-stranded structure.31 Short Aβ42 fibrils
(pentamers) showed a partial degradation of the first β-strand
segment due to the disruption of their charged N-termini.32 A
thorough review on the simulations of biomolecules under
electric fields has been published recently.33
A very recent study has investigated the e"ects of oriented

external electric fields on the aggregation of oligomers of a 7-
residue segment of the β-amyloid peptide.34 The authors used
the Aβ42 heptapeptide segment K16LVFFAE22 which
aggregates into plaques faster than the full sequence. Ten
peptides in a simulation box were allowed to aggregate for
500−1000 ns. Afterward, both static and oscillating electric
fields were applied to study the degradation of the peptide
aggregation. The oscillating field was applied at a high strength
of 200 mV/nm, with frequencies of both 0.1 and 1 GHz. In
both cases, a thorough disaggregation was observed. Upon
removal of the electric field, the peptides did not aggregate
back. The authors therefore concluded that microwave
radiation can revert amyloid aggregation in a nonreversible
manner.

Figure 1. (a) Model structures of the Aβ42 dimer predicted by AlphaFold-Multimer (AF-M) with 3 recycling steps and ColabFold (CF) with 50
recycling steps. (b) Predicted local distance di"erence test (pLDDT)26 score for the Cα atoms. A higher value indicates higher confidence. (c)
Matrices of predicted aligned error (PAE). In each matrix, the intrachain confidence is shown in the top-left and bottom-right quadrants while the
interchain, i.e., dimeric interface, confidence is shown in the top-right and bottom-left quadrants. Low PAE values indicate high confidence.
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Here, we set out to study the stability of the minimal β-
amyloid toxic species in the presence of an external oscillating
electric field in the middle of the microwave range. We first
apply deep learning (DL) tools (AlphaFold-Multimer and
ColabFold) to predict model structures of the Aβ42 dimer
which is the smallest toxic oligomer. We then use MD
simulations to analyze the flexibility of the predicted structures.
The top models are structurally stable in 50-ns MD runs and
compare to highly populated clusters of μs scale MD
simulations (published by others15). Next, we use the
highest-confidence prediction to test the e"ect of an oscillating
electric field on the behavior of the Aβ peptide dimer. The
100−300 ns simulations reveal a field-strength-dependent
decay of the β-sheet content. Control simulations using the
HY5 leucine zipper of Arabidopsis thaliana show a slower
degradation and only upon application of the strongest
external electric field.

2. RESULTS AND DISCUSSION
We predicted the structure of the Aβ42 dimer using two deep
learning tools, AlphaFold-Multimer and ColabFold. We first
analyze the 50-ns runs (abbreviated as ns-MD in the following)
for quantifying the flexibility of the structures predicted by
deep learning. We then compare the predicted structures with
the publicly available microsecond sampling15 which we call
μs-MD in the following. Finally, we analyze the kinetics of
secondary structure decay under the influence of an external
electric field (EF-MD simulations of 100−300 ns).
2.1. Prediction of Dimeric Aβ42 by Deep Learning

The top-ranking AlphaFold-Multimer (AF-M) and ColabFold
(CF) models were chosen for further analysis (Figure 1). Both
structures have a similar fold, although the AF-M is more
planar, while the CF prediction resembles part of a β barrel
(Figure 1a). The overall confidence, as measured by the

predicted local distance di"erence test (pLDDT) score,26 is
relatively low for both predicted structures (Figure 1b). The
low scores are below the pLDDT threshold of 70, which is
reported by the authors of the DL tool as threshold for a
“generally correct” backbone prediction.20 This is not
surprising given the Aβ42 peptide has a disordered nature,
something for which the DL tool is not trained. The score is
stated to estimate the local agreement to an experimentally
solved structure; therefore, a low score can be seen as a
conformationally “diverse” region of the prediction. The low
score is congruent with the description of Aβ42 as an ensemble
of structures. Furthermore, the pLDDT depends on the
information given by the depth of the multiple sequence
alignment (MSA) used to find coevolutionary information on
the sequence.35 Only 81 homologous sequences were found by
MMseq2 and for the MSA of Aβ42 and 131 unique sequences
with jackhammer. This means the MSA is shallow in both
cases, which can lower the confidence of the model.21 Both
predictions yielded β hairpins as observed in previous
simulation studies.12 The two β hairpins form an antiparallel
4-stranded β-sheet in both the AF-M and CF models. The AF-
M prediction has a slightly higher confidence overall. This is
probably because the strands are continuous on the AF-M
structure, while they are interrupted in the middle in the CF
model. These arrangements are similar, but not identical, to a
″dimeric base″ arrangement which has been proposed as the
only seed for toxic Aβ42 oligomers.17 Interestingly, the 7-
residue stretch K16LVFFAE22 of the Aβ42 peptide which was
studied by Kalita et al. is predicted as β strand in both
structures.
The predicted aligned error (PAE) is a matrix whose

elements reflect the confidence of the model at the level of
individual pairs of residues. It illustrates the model confidence
in the contacts inside a domain (diagonal quadrants of the
plot) and in the interaction between domains (o"-diagonal

Figure 2. Dynamic behavior of the AlphaFold-Multimer model (AF-M) and the ColabFold (CF) model. (Top) Sequence profile of the RMSF of
the nonhydrogen atoms along the eight ns-MD runs (green, AF-M; blue, CF). The reverse pLDDT normalized to the RMSF is also shown (black).
The Pearson correlation coe!cient (PCC) is shown as inset. (Bottom) Time series of RMSD from the model structure. Residues 1−5 were
ignored as they show large fluctuations for both models.
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quadrants).22 The confidence on the intrachain structure is
slightly higher than the dimeric interface (Figure 1c). The AF-
M and CF model structures show similar confidence for the β-
strand regions of each chain and for the interchain contacts.
The PAE for the N terminal segments of both chains is higher
with respect to other residues, meaning their localization is of
low confidence, i.e., random. This can be explained by their
large flexibility.
The dynamic behavior was explored through the root-mean-

square fluctuation (RMSF) and root-mean-square deviation
(RMSD) of the ns-MD simulations started from each model
(Figure 2). Most of the fluctuations are seen in the N terminal
segment, so the RMSD was calculated only on residues 6 to 42
to avoid excessive noise. The CF model shows a lower RMSD

than the AF-M one in the eight ns-MD trajectories, denoting
higher stability of the predicted conformation. Consistently,
the CF model structure has lower fluctuations along the ns-
MD. The higher rigidity might originate from the β-barrel-like
structure, which keeps the flexible loops in place more firmly
than the flat arrangement of the AF-M model. The predicted
confidence (pLDDT) anticorrelates with the backbone
flexibility as shown by the sequence profiles of the
renormalized pLDDT (i.e., reverse normalized pLDDT, see
the Methods section) and the RMSF (Figure 2, top). A similar
anticorrelation in the sequence profiles of the pLDDT and
RMSF has been reported for globular proteins.25
To further validate the DL predictions we compared them to

the equilibrium sampling of Aβ42 dimers reported by others.

Figure 3. SAPPHIRE plot of the μs-MD (6) sampling of the Aβ42 dimer15 and the ns-MD simulations of the predicted models. (Top) Geometric
annotation: Sequence profile of secondary structure. (Middle) Geometric annotations: Cα RMSD from the CF (blue) and the AF-M (green)
structures; number of interchain contacts with a distance lower than 5 Å (black line, red reference lines at 25 and 50 contacts, respectively);
number of β-strand residues (black line, red reference lines at 10 and 20 residues). (Bottom) Temporal annotation (dots) illustrates the position of
each frame of the trajectory along the progress index. The colors of the dots reflect the six independent runs from the μs-MD and the 16 runs of the
ns-MD which are separated from the μs-MD by a thin black line. The cut-based free energy profile illustrates the transitions between states
(black).36 The insets show the centroid structure from each basin, the N terminal residue is marked by a sphere. The position of the centroids along
the progress index is marked by a red star. The percentages show the relative weight of each free energy basin. Basins are delimited by red vertical
lines.
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Fatafta et al. have generated a total sampling of 6 μs of the
Aβ42 dimer in explicit solvent, and these data are publicly
available. We refer to this sampling as μs-MD. We use the
SAPPHIRE analysis to compare the DL-predicted structures
and the μs-MD sampling (Figure 3). The SAPPHIRE analysis
is an automatic and unsupervised tool for determining the free
energy basins of a complex system and quantifying the number
of transitions between them.36,37 It also provides a fully data-
driven clustering of the phase space.38 Briefly, the SAPPHIRE
analysis consists of a reordering of the trajectory snapshots
based on geometric similarity (called progress index) with the
assumption that structural similarity corresponds to kinetic
proximity. Here, we employ interchain Cα distances for the
reordering of the snapshots. The cut function (black solid line
in the bottom part of Figure 3) is an approximation to the free
energy profile, which is very useful for identifying the barriers
between basins.
The central basin (20% weight, progress index value

between 14,500 and 21,000) is populated mainly by the fifth
μs-MD run and is visited also by the other μs-MD runs.
Importantly, the ns-MD sampling (started from the AF-M
model) is almost fully included in the central basin which
consists mainly of conformers with antiparallel arrangements of
the interchain contacts. The remaining free energy basins
include conformations with a substantial amount of β-stranded
secondary structure but, unlike the DL models, the interchain
contacts have a parallel arrangement.
The geometric annotation shows that the snapshots on the

right of the central basin have generally less than 10 contact
pairs between the chains, while to the left, the number of
contacts oscillates between 10 and 20. The content of β-strand
residues is slightly larger in the central basin than in the
remaining sampling. The small basin on the extreme right, with
progress index around 32000, corresponds to the unbound
chains, as shown by the lower number of contact pairs. The Cα
RMSD of the DL models from the μs-MD simulation
snapshots ranges between 5 and 10 Å in the central basin,
which together with the location of the ns-MD frames in this

basin, show that the DL predictions resemble states visited by
the μs-MD simulations.
As each of the two DL models has an identical structure for

the two chains, we also used the SAPPHIRE analysis and its
associated plot to compare the DL models and the μs-MD
sampling at the single-chain level. For this, we extracted the
coordinates of each chain separately and then concatenated
them, treating the concatenated sampling as a single 12 μs
trajectory of an Aβ42 monomer (Figure S1). The two DL
models are similar to the representatives of the most populated
free energy basin of the μs-MD sampling which are
characterized by a β-hairpin conformation. These results are
consistent with the analysis at the dimer level (Figure 3). Thus,
the comparative analysis of the DL-predicted structures with
the ns-MD and μs-MD simulations provides evidence that
both DL structures are good candidates as starting points for
MD simulations in the presence of an external electric field.
Finally, we sought to validate our ns-MD simulations with

experimental data. Circular dichroism (CD) spectra were
predicted39 for the frames of the AF-M ns-MD and μs-MD
from several basins of the SAPPHIRE plot (Figures S2 and
S3). They were then compared to experimental CD spectra
from the literature (Figure S4). A caveat for this comparison is
that the predicted spectra are generated for individual
structures, while CD measures the ensemble of protein in
the sample being analyzed. The CD spectra predicted from the
ns-MD runs suggest a mixture of disordered loops and β-strand
content which is consistent with the experimental spectra
acquired for Aβ42 at concentrations of 2540,41 and 50 μM42 at
early time points. This corresponds to the oligomeric state of
the amyloids at the beginning of the measurements, before
they start aggregating into fibrils. Therefore, the predicted ns-
MD CD spectra help validate these conformations as similar to
those of experimental Aβ42 oligomers.
2.2. E!ect of Electric Field on Aβ42
The top structure predicted by AF-M was chosen as starting
conformation because it presented a higher confidence

Figure 4. Decay of the β-strand content. (a−c) Two-exponential function (black) was fitted to the average β-strand secondary structure content
(colored lines). The individual values for each of the 16 trajectories are also shown (colored dots). (d) At the highest field strength, a single-
exponential function can be employed to fit the decay.
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(pLDDT) than the best CF model. The residues 1−5 were
neglected as they show very high fluctuations (Figure 2) and
they are disordered in the fibrillar structures of Aβ42
determined by solid-state NMR spectroscopy.43,44 A total of
16 independent MD runs, which we call EF-MD, were started
under the influence of an oscillating electric field of di"erent
strengths (0, 10, 100, and 200 mV/nm) with a frequency of 1
GHz. Each of the 16 copies of the four systems was initially
simulated for 100 ns. Some systems were extended to better
di"erentiate the behavior between di"erent simulation
parameters.
We focus the analysis on the β-strand content as the fibrillar

structures of Aβ consist of β sheets.45,46 Moreover, α-helical
structure was observed in the EF-MD simulations only
transiently for short periods of time (Figures S5−S8). There
is a significant decay of the β-strand content in all simulations,
and the rate of decay correlates with the field strength (Figure
4). Furthermore, after an initial fast decay, the rate of the
slower phase depends on the field strength. The initial fast
decay takes place in the first 5 to 10 ns of simulation, where the
β-strand content drops from 50 to around 35 residues. The β-
strand content in the initial phase of decay is similar to the one
observed in the central free energy basin of the SAPPHIRE
plot (Figure 3). An analysis of the number of intra- and
intermolecular hydrogen bonds in the dimer suggests a
possible explanation for the disruption of the secondary
structure caused by the electric field (Figures S5−S8). The
polar groups of the solute, e.g., backbone NH and CO, have a
fixed dipole moment in the classical (i.e., nonpolarizable) force
field. Thus, they can respond to the change in the external
electric field only by reorienting themselves.47 The Aβ(6−42)
peptide dimer cannot rapidly rotate to adjust to the changing
direction of the field, while the water molecules can rotate
rapidly in the sub-nanosecond time scale. As the strength of
the field increases, the hydrogen bonds between β-strands
break and there is an increase in the number of peptide−water
hydrogen bonds.
Figure 5 shows representative snapshots from the EF-MD

simulations at di"erent strengths of the electric field. The
cartoon representation helps to visualize the rapid degradation

of secondary structure and the correlation between rate of
decay and field strength (see also Supporting Information,
Movies S1−S4). There is a gradual deterioration of the
intrachain and interchain β-strand structure at all field
strengths. Short, mainly one-turn, α-helical segments are
observed sporadically (Figure 5). Furthermore, there is a
monotonous decrease of symmetry from the initial AF-M
model structure in which the two peptide chains have identical
structures.
The decay in the mean β-strand content can be fitted by a

two-phase model up to a field strength of 100 mV/nm (black
line Figure 4). As mentioned above, there is a fast loss of
secondary structure to a level of around 70% (35 residues),
followed by a slower decay. The fast decay channel reflects the
relaxation of the initial structure. The slow channel captures
the voltage-dependent degradation of β-strand content. For the
EF-MD with no external field, the mean lifetime is very large at
around 3 μs. A weak field of 10 mV/nm results in a shorter
lifetime of 1.7 μs while a field of 100 mV/nm shortens the
lifetime to about 0.4 μs. A large variability is observed for the
16 independent EF-MD runs at each of the field strength
values. At field strengths of 0 and 10 mV/nm the β-strand
content ranges between 40 and 80% after 0.3 μs. At a field
strength of 100 mV/nm, there is a 20−60% range of β-strand
content after 0.2 μs. In contrast, at the highest field strength
(200 mV/nm), the extremely fast decay can be modeled by a
single exponential and a lifetime of 0.014 μs. The
preexponential factor is close to one which supports the
choice of the single-exponential model at the field strength of
200 mV/nm. Overall, the simulation results provide evidence
for a substantial loss of β-strand content in dimeric Aβ42
within a 1 μs time scale for 1 GHz alternating electric field of
strength higher than 10 mV/nm.
2.3. Control Simulations with a Helical Dimer

We then asked the question if a dimeric system with a di"erent
secondary structure shows similar kinetics of structural
disruption. To answer this question we have simulated the
HY5 leucine zipper from a transcription factor of A. thaliana
(PDB ID: 2OQQ) which has an α-helical dimeric topology.
This peptide segment was chosen as it has the same number of

Figure 5. Snapshots from single EF-MD simulations showing the decay of secondary structure along time (x-axis) for di"erent strengths of the
external electric field (y-axis). The two Aβ42 peptides are shown by di"erent colors (blue and red). The N-termini are marked by spheres. The fast
degradation is exemplified by the snapshot of the 200 mV/nm EF-MD trajectory at 50 ns, where no β-strands are visible.
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residues of the (nontruncated) Aβ42. External electric fields at
100 or 200 mV/nm and an oscillation frequency of 1 GHz
were employed in these control simulations. The leucine zipper
showed no degradation at a field strength of 100 mV/nm
during the 200 ns of simulation for any of the independent
runs. At 200 mV/nm, degradation of the α-helices is observed
but it is significantly slower than for the Aβ dimer (Figure 6).
The number of intra- and intermolecular hydrogen bonds does
not decrease in the simulations at 0 and 100 mV/nm electric
fields (Figures S9 and S10). At the field strength of 200 mV/
nm, there is a replacement of the intrasolute hydrogen bonds
with solute−solvent hydrogen bonds (Figure S11). It is
important to note that the leucine zipper is a folded peptide
which is stable enough to crystallize, while Aβ42 is an
intrinsically disordered peptide. Further studies using peptides
and proteins of di"erent topologies, disordered/globular,
mixed β-sheet, and α-helix, could shed light on the behavior
of di"erent proteins under external electric fields.

3. CONCLUSIONS
There is substantial experimental evidence for the toxic role of
the early oligomers in amyloid-like diseases.4,5 The smallest
toxic species of the Alzheimer’s disease-related Aβ peptide is
the dimer.7 β-Sheet containing Aβ42 has been shown to be
essential for neurotoxic oligomer aggregation. Disrupting the
β-strand content in Aβ42 oligomers is of clinical interest.9,17 A
large number of antibodies and small molecule inhibitors of Aβ
oligomerization and/or amyloid fibril formation have failed in
clinical trials in the past decade. Can electric fields be applied
to break down toxic aggregates? Are MD simulations adequate
for investigating the stability of the early oligomers in the
presence of an oscillating (or static) electric or electromagnetic
field?
As MD simulations require starting conformation(s), one

challenge is that monomeric Aβ is an IDP and very little is
known on the conformations populated by the dimer. Recent
advances in deep learning have allowed the rapid generation of
structural models for globular proteins.20,21 These predictions
must be taken carefully particularly for IDPs, as the DL neural
networks have been trained on structured proteins.23,24 In the
present study, the power of DL tools was exploited to generate
predictions for the structure of Aβ42 dimers. We have first
compared the predicted structures of the dimers against
previous μs-MD simulations. The DL predictions are

congruent with the sampling obtained by μs-MD simulations
as they are close to highly populated conformations of the
dimer. Validation with the ns-MD simulations shows that both
predicted structures of the Aβ42 dimer have a high structural
stability particularly at the segment 6−42. Comparison to
experimental results reveals a secondary structure content that
is similar to that observed in ensemble measurements by
circular dichroism. These findings give us confidence on the
use of a DL-generated model as the initial structure for our EF-
MD simulations.
Then, to try to answer the questions posed above, we have

performed MD simulations in the presence of an external
oscillating field using the DL model with the highest prediction
confidence as starting structure. We have focused the analysis
of the MD trajectories on the e"ect of electric fields of di"erent
strengths on the secondary structure content of the
homodimer. The simulations provide evidence for a direct
relationship between the strength of the field and the rate of
decay of the β-strand content.
Previous studies have shown that the application of an

external electric field would prevent the formation of hairpin
structure of the apoC-II (60−70) peptide.30 Furthermore, in a
simulation study of oligomers of the heptapeptide segment
Aβ(16−22) degradation of the secondary structure content
was observed upon application of oscillating electric fields (of
strengths 100 mV/nm at 0.1 GHz and 200 mV/nm at 1
GHz).34 There are major di"erences between the work by
Kalita et al.34 and our study. First, they simulated the 7-residue
segment Aβ(16−22) while we investigate the segment 6−42 of
Aβ (residues 1−5 are disordered in several fibrillar structures).
Shorter zwitterionic peptides have a higher susceptibility to the
external electric field than a longer peptidic chain which is also
more similar to the biological species. Second, we focused on
the minimal toxic species, i.e., the dimer, while the previous
study used 10 copies of Aβ(16−22) which can form a
protofilament. Third, we used a starting conformation of the
dimer generated by DL while Kalita et al. started from random
positions and orientations of the peptides. Fourth, Kalita et
al.34 investigated mainly the geometric properties of the
heptapeptides while we focus on the kinetics of the β-content
decay.
Our simulation results for the minimal toxic species, i.e., the

Aβ(6−42) dimer, provide evidence that the application of an
oscillating (at 1 GHz) external electric field of 100 mV/nm (or

Figure 6. Slow decay of the α-helical content of a leucine zipper. (a, b) No degradation is observed at the simulations without and with an external
electric field of 100 mV/nm. (c) Degradation at the 200 mV/nm field strength.
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higher) results in the rupture of β-sheet content in a μs time
scale. A significantly slower decay of β-sheet content is
observed at a field strength of 10 mV/nm. Thus, the wide
range of electric field strengths used in the present study
provides a nuanced picture of the e"ect of the external field on
the β-sheet structure of the Aβ homodimer. As a control, we
have simulated the helical dimer of a leucine zipper which
shows substantially higher structural stability than the Aβ
homodimer as decay of the zipper helical content is observed
only at the field strength of 200 mV/nm. Individual water
molecules can rotate faster than the Aβ homodimer or leucine
zipper to optimally align with the external electric field. Thus,
degradation of the regular elements of secondary structure is
promoted by a loss of intrasolute hydrogen bonds and an
increase in solute−solvent hydrogen bonds.
Because of the computational cost of μs MD sampling, we

have chosen only one structure as starting point for the MD
simulations in the presence of the electric field. This could be a
potential limitation of our study given the disordered nature of
the amyloids. A diverse set of initial structures could be
considered for further simulation studies. Furthermore, the
e"ect of electric fields could be studied on globular proteins
consisting mainly of β-sheets or α-helices. Very little is known
on the reversibility of the folding of globular proteins under
oscillating fields. Since the time scale of folding of most
globular proteins is in the millisecond range, it is not possible
to investigate the influence of external electric fields on
(un)folding with conventional atomistic simulations. In future
simulation studies, it will be of interest to analyze the e"ect of
the external oscillating electric fields on the structure of
(oligomeric) Aβ42 at the membrane. Fatafta et al. have
sampled the conformational space of dimeric Aβ42 at a lipid
bilayer that reflects the composition of neuronal membranes.15
This sampling could be used as starting point for a simulation
study in the presence of an electric field. Due to the low
dielectric constant of lipid bilayers (around 3, ref 48)
compared to that of water at physiological temperature
(78.5), one can expect a stronger influence on the electrostatic
interactions between polar groups of Aβ42.
Another important caveat is that the loss of β-sheet content

in the (early) oligomers of Aβ might not be necessarily
beneficial. Stabilization of the cross-β fibrils of the prion
protein by small molecules has shown a therapeutic e"ect in
mice models of the prion disease.49 Thus, the rupture of β-
sheet content might even be counter-productive as it might
promote fragmentation which could result in a larger number
of toxic oligomers. The complexity of the Aβ self-assembly
process (e.g., presence of kinetic traps and kinetic control of
amyloid fibril formation) and the very small knowledge of the
toxic species are major challenges in the development of
therapeutic agents for Alzheimer’s disease.50
In conclusion, the use of oscillating electric fields is a

promising new avenue of research into the degradation of
amyloid oligomers. The radiofrequency chosen in this study (1
GHz) is comparable to that observed by everyday appliances
like smartphones, although at a higher field strength. The
present simulation results should spur further characterization
of external electric fields on (neuronal) cell lines, brain
organoids, and animal models. Experimental evidence for a
direct link between reduction of symptoms (e.g., improved
memory in rodents) and electric field treatment could open the
path to a novel therapy for Alzheimer’s disease.

4. METHODS

4.1. Modeling
The AlphaFold-Multimer deep learning tool was used to predict the
structure of homodimeric Aβ42 (two chains of D1AEFRHDSG-
YEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA42). Two inde-
pendent predictions were carried out. The first prediction was
generated using a local installation of the AlphaFold-Multimer (AF-
M) v2.1 with default settings in which the multiple sequence
alignment (MSA) was performed on a reduced version of the BFD
database optimized for speed and hardware requirements.21 Due to
the disordered nature and the high flexibility of the Aβ42 peptide, a
second modeling session with a high number of recycling steps was
performed. Recycling executes the network multiple times by re-
embedding the 3D structure to the pairwise distances representation
as input.21 A higher number of recycles has been reported to increase
the quality of models of interacting proteins.51 The second prediciton
was generated with ColabFold (CF). CF is an implementation of
AlphaFold that can be run on Google Colaboratory52 without
downloading the databases for generating multiple sequence align-
ments. Instead, fast and sensitive MSAs are created with MMseqs2 by
searching homologous sequences in the uniref30 and environmental
database (ColabFoldDB).53 A total of 50 recycling rounds were
carried out for the CF prediction. No template was used for modeling.
The prediction with the highest model confidence (0.8 pTM + 0.2
ipTM) was chosen for further validation.
4.2. Validation of Models
Despite being fast and easy to use, the validity of computationally
predicted models can be put to question. Therefore, the DL-generated
models have been validated against the extensive 6 μs MD sampling
reported previously by Fatafta, et. al.,15 which we refer to as μs-MD.
The trajectories were obtained from https://data.mendeley.com/
datasets/92mkp4pk86. A SAPPHIRE analysis37 was performed to
assess the similarity of the monomer of the DL models and the μs-
MD sampling (Figure S1). As the two peptides have identical
structures in the AF-M model, only the first peptide in the file of the
predicted coordinates was used, and similarly for the CF model.
Concerning the μs-MD, the coordinates of the individual chains of the
homodimer were extracted, and the trajectory was concatenated. The
resulting single-chain trajectory, consisting of a total sampling of 12
μs, was then analyzed using SAPPHIRE-based clustering.38 Distances
between Cα atoms of the peptide were chosen to build the progress
index. Per-frame locally adapted weighted distances were used.54

The dynamic stability of the obtained models was checked by
molecular dynamics simulations. For each predicted structure, eight
independent 50-ns MD simulations were started. We call these ns-
MD simulations. All ns-MD simulations were performed with
GROMACS 2021.5 using the CHARMM36m July 2021 force field.
The models were solvated and equilibrated with Na+ and Cl- ions to a
concentration of 150 mM. Energy minimization was applied, and a
canonical equilibration under positional restraints was performed for
5 ns to reach 300 K. Each system was simulated for 50 ns to study the
behavior of the homodimer. The stability of the predicted structure
was evaluated by common metrics, namely, the Cα RMSD to the
initial frame after equilibration using residues 6−42 of each chain, and
the heavy-atom RMSF against a sliding-average structure calculated
every 5 ns. Furthermore, the RMSF was correlated (Pearson
correlation coe!cient) to the reverse normalized (renormalized)
pLDDT confidence metric generated with the prediction, by
subtracting the maximum value and dividing by the range, as has
been previously reported.25 We predicted circular dichroism (CD)
spectra for the AF-M ns-MD frames and some μs-MD frames using
PDBMD2CD.39 The spectra calculated by using as input the MD
snapshots were compared to the experimental CD spectra.

A second SAPPHIRE analysis was then performed on the dimeric
ensemble (Figure 3). A subsampling of 200 ps was used for the ns-
MD trajectories, as it is the time step of the μs-MD trajectories.
Interchain Cα distances were calculated for the 30,000 μs-MD frames
and the 2000 ns-MD frames individually and then concatenated to
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avoid errors due to di"erences in simulation box sizes and shape. The
time series of distances was given as input features to CAMPARI’s
NetCDF miner. A sigmoidal distance transformation was applied to
reduce the influence of high euclidean distances between the frames,
centered on 40 with a slope of 20. Principal Component Analysis was
then applied, and the two main principal components were kept for
the construction of the progress index. All SAPPHIRE analyses were
performed using CAMPARI (V4).55 A secondary structure prediction
(dssp) was used as geometric annotation for both SAPPHIRE plots.
The RMSD of the AF-M and CF structures against the trajectories
was calculated, considering Cα atoms only, to find to which basin of
the SAPPHIRE plot the predicted structure would belong. Centroid
structures were calculated, defined as the structure of the frame with
the lowest euclidean distance to the mean of each basin.
4.3. E!ects of Electric Field on Aβ42
4.3.1. Simulation Setup. Multiple MD runs under the influence

of an external oscillating electric field (EF-MD) were started from the
top-scoring model of the Aβ42 dimer obtained with the AlphaFold-
Multimer (AF-M). All simulations were performed with GROMACS
2021.556 using the CHARMM36m force field.19 The two chains were
shortened by removing the initial five residues, therefore starting on
His6. This is due to the high flexibility of these residues as shown from
the initial validation (Figure 2). The model was solvated in an 8.1 nm
cubic box of water molecules, and Na+ and Cl− ions at a concentration
of 150 mM. Afterward, the system was subjected to energy
minimization. A 5 ns NVT equilibration was performed, in which
the system was kept under positional restraints, to reach 300 K. For
the production MD, four conditions were evaluated, with the aim to
test the e"ect of an oscillating electric field on the secondary structure
of the dimer. The behavior with no electric field was compared to that
after subjecting the system to oscillating fields of 10, 100, and 200
mV/nm. All fields were applied with a frequency of 1 GHz, i.e., the
direction of the field was rotated by 180° every ns. The field was
applied from one of three directions, on the x, y, or z plane. The field
was applied by setting the respective electric field-(x/y/z) field in the
GROMACS input file. Sixteen independent simulations were started
for each of the systems applying the electric field in one plane. The
direction of the field was assigned to each copy of the system in a
sequential manner. The simulations were run initially for 100 ns. The
systems subject to 100 mV/nm electric field were extended to 200 ns,
while the 0 and 10 mV/nm were extended to 300 ns. The same setup
was used to test the stability of the leucine zipper α-helical
homodimer of the HY5 transcription factor of A. thaliana. The
peptide monomer has a length of 42 residues. The crystal structure of
the leucine zipper homodimer has a resolution of 2.0 Å (PDB code:
2OQQ) and was used as starting structure for the MD simulations.
Production runs were carried out for 200 ns and electric fields of 100
and 200 mV/nm were employed at the same frequency as for the
Aβ42 homodimer (1 GHz).
4.3.2. Analysis. The e"ect of the electric field was studied by

monitoring the presence of the β-strand secondary structure elements
in the dimer. For each EF-MD trajectory, the β-strand content was
predicted using the mdtraj package’s dssp function.57,58 The time
series of the strand content was calculated for each trajectory and
averaged per system. A two-exponential model was used to fit the
time-dependent decay of the mean β-strand content across the eight
simulations for each potential. The extremely rapid decay at 200 mV/
nm can be fitted by a single exponential. For the leucine zipper, the α-
helical content was monitored and a single-exponential function was
fitted to the time series of the average number of helical residues.
Hydrogen bond content was quantified using the Wernet−Nilsson
algorithm implemented in mdtraj.58,59
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