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ABSTRACT
Atomistic simulations of biological processes offer insights at a high level of spatial and temporal resolution, but accelerated sampling is
often required for probing timescales of biologically relevant processes. The resulting data need to be statistically reweighted and condensed
in a concise yet faithful manner to facilitate interpretation. Here, we provide evidence that a recently proposed approach for the unsuper-
vised determination of optimized reaction coordinate (RC) can be used for both analysis and reweighting of such data. We first show that
for a peptide interconverting between helical and collapsed configurations, the optimal RC permits efficient reconstruction of equilibrium
properties from enhanced sampling trajectories. Upon RC-reweighting, kinetic rate constants and free energy profiles are in good agree-
ment with values obtained from equilibrium simulations. In a more challenging test, we apply the method to enhanced sampling simulations
of the unbinding of an acetylated lysine-containing tripeptide from the bromodomain of ATAD2. The complexity of this system allows us
to investigate the strengths and limitations of these RCs. Overall, the findings presented here underline the potential of the unsupervised
determination of reaction coordinates and the synergy with orthogonal analysis methods, such as Markov state models and SAPPHIRE
analysis.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0149207

I. INTRODUCTION

In the pursuit of mechanistic explanation and prediction,
molecular dynamics (MD) simulations can provide valuable infor-
mation by virtue of their high spatial and temporal resolution.1
Biological systems cover a broad spectrum in terms of length and
time scales due to the size of biopolymers, e.g., proteins. With
modern hardware and algorithms, it is possible to reliably sample
processes that occur on short timescales for small systems. However,
slower processes are frequently of particular interest, such as pro-
tein folding or molecular binding, for which the available computing
resources are insufficient.

Enhanced sampling techniques are frequently applied as a
remedy for this issue and exist in many different flavors.2,3 Gen-
erally speaking, accelerating the sampling comes at the cost of
introducing additional challenges during analysis. Thermodynam-
ically and kinetically unbiased distributions are the sought-after
quantities but are not directly available from enhanced sampling

trajectories. Therefore, analyses should incorporate means for
removing biases from datasets created by enhanced sampling
schemes. Additionally and irrespective of the sampling methodol-
ogy, the large amount of data—tens of thousands of atomic coor-
dinates at millions of time points—must inevitably be reduced in
size to become tractable (reviewed in Ref. 4). One of the dominant
aspects of this reduction in dimensionality is to discard degrees of
freedom, which are at most weakly coupled to the processes of inter-
est. For example, in MD simulations of biomolecules, the solvent
(water) almost always falls into this category. This is mirrored in
many experimental observations of processes, such as binding or
folding, which rely on probes that are specific to the biopolymer mat-
ter (such as a circular dichroism signal) or even just parts of it (such
as the intrinsic fluorescence of tryptophan side chains). In addition,
experimental signals are usually of low complexity and allow for
the fitting of models with at best relatively few parameters, which
must be reflected in analyses of simulation data if a comparison to
experiment is desired.

J. Chem. Phys. 159, 015101 (2023); doi: 10.1063/5.0149207 159, 015101-1

© Author(s) 2023

 12 July 2023 10:54:26



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Most commonly, one attempts to characterize a biomolecu-
lar system in terms of its metastable and transition states.5 The
interconversion between such states can be quantitatively described
by rate constants, some of which might be experimentally deter-
minable. Markov state models (MSMs) have emerged as a tool
for integrating information from many short trajectories produced
by a variety of enhanced sampling methods to yield such simpli-
fied descriptions.6 In this popular approach, a number of model-
ing choices are imposed that pre-process and thereby reduce the
information in the trajectories. Various clustering algorithms on a
user-defined feature space lead to implicit criteria for the definition
of states.7,8 To achieve high accuracy, clustering should be very
fine,9,10 which complicates the statistical estimation of the transition
matrix11 and may additionally be detrimental to the interpretability
of states, in particular in relation to experiment.

In an alternative approach, reaction coordinates (RCs) can cap-
ture information of the underlying system in just a few, or even
one, dimension(s). While such an RC can be used for guiding explo-
ration in MD,12,13 we focus on RCs as a means for the analysis of
existing trajectories. The difficulty in both cases lies in their con-
struction, which should ensure that all the desired information from
the system’s constituents is captured to a maximal extent. This is, by
definition, an insufficient condition for finding the best possible (so-
called optimal) RC. It is insufficient because “desired information”
has not been specified. One criterion, which is cited often but is
weak in practice,11 is to preserve the kinetics of the slowest process
or processes in the system.14 How does one diagnose sub-optimality
of RCs in this context? For some classes of dynamical systems,14 pro-
jections onto inappropriately chosen RCs will suggest spuriously fast
dynamics in terms of the total squared displacement (TSD) on these
RCs,15 marking them as sub-optimal. In contrast, an “optimal RC”
refers to an RC reproducing the slowest possible dynamics, given
the reference system. Recently, a variational approach for the con-
struction of such RCs has been proposed.16,17 It requires minimal
user intervention and thus provides a potential benefit relative to
the system-specific expertise that is generally required for the con-
struction of appropriate MSMs; see, e.g., Ref. 11. For determining an
“optimal” RC according to this approach, the main user input con-
sists in assigning subsets of snapshots to one of two boundary states,
A and B.

We next describe the aforementioned way to determine projec-
tions on such RCs following Krivov.14,16–18 The primary scheme is
iterative starting from an initial guess, which is largely information-
free. At each iteration, a random internal degree of freedom from
a relevant space (usually, an interatomic distance) is selected and
calculated for all time points in the trajectory (ensemble). The num-
ber of degrees of freedom considered can be much larger than what
enters the construction of MSMs through clustering. Parameters for
a flexible functional form (e.g., a polynomial) incorporate the time
series of the internal degree of freedom into the current estimate of
the RC such that the conditional TSD along the RC is minimal.18

Due to the iterative reduction of the TSD, updating the RC in this
manner is referred to as optimization in the sense discussed above,14

and we adopt the same convention here. The associated optimiza-
tion problem along with its solution is stated in Eqs. (9)–(12) in
Ref. 17. The progressive nature of these updates can be understood
as a complex composite function that increments the RC gradually
in order to include information on slow, collective motions of the

system while preserving the self-similarity of RC values for states
that are geometrically self-similar. The snapshots making up the
boundaries remain unchanged in this procedure; only the transi-
tion region is continuously updated such that the free-energy barrier
along the RC is increased. The resulting RC can coincide with
the committor function for the chosen boundary states,14 i.e., cap-
ture the kinetics of the underlying transition in one dimension
exactly.16,19–22 In other words, for a system where only two states of
interest have been chosen, an optimal RC defined on the unit interval
with boundaries 0 and 1 should naturally be numerically equivalent
to the committor function. This offers a stringent test that we exploit
in this work.

More so than in MSMs, summarizing a MD trajectory by a
1D coordinate introduces assumptions and limitations to the pro-
cesses that can still be described. Naturally, parallel pathways of
a particular transition cannot be resolved. Conceptually, in the
present approach, it is presumed that two boundary states can be
defined meaningfully a priori. For ligand binding, for example,
it is often natural to use a known crystal structure for defin-
ing one of the boundaries. This holds often but not always. If
the definition of a boundary is not given directly by the specific
problem, it can sometimes be supplied by intuition, orthogonal
information on the system, prior analyses, or relevant experimen-
tal measurements. One problem with processes that are described as
two-state models experimentally is that the “other” (e.g., unfolded,
unbound) state is often conformationally heterogeneous. Therefore,
it becomes more difficult and subjective to set the criteria defin-
ing it. A further conceptual limitation of the original method16,18

is that the conditional minimization of �r2 applies if the dynam-
ics of the original system are Markovian. When dealing with long,
complex trajectories, these assumptions can lead to a “hen-egg-
problem,” where a model is required to comprehend the data,
but comprehension of the data (e.g., meaningful state definitions,
Markovian time step) is required to construct an accurate model in
the first place.

In this contribution, we aim to put Krivov’s approach to opti-
mized RCs to a challenging test as follows. We elucidate how this
easy-to-construct and largely unsupervised scheme performs in the
analysis of challenging, realistic MD datasets (Fig. 1) and how the
prerequisites and assumptions outlined above manifest in practice.
Specifically, we are interested in what information can be extracted
reliably and how sensitive quantitative readouts are to the fact that
some assumptions are likely to be met only approximately. We
test the compatibility of the unsupervised RC with two enhanced
sampling techniques: progress-index guided sampling (PIGS)23 and
replica-exchange molecular dynamics (REX).24,25 To do so, we assess
the consistency of its results with those from established strategies
for the analysis of MD trajectories. We also test, where possible, the
interpretation of the resulting RC values as committor probabilities
explicitly.

Biological processes of interest (e.g., folding or ligand unbind-
ing) are often rare events on the microsecond timescales typically
accessible by canonical sampling (CS) and hence call for enhanced
sampling techniques. Many methods have been proposed for this
task (see Refs. 2 and 3 for a general review and Refs. 26–28 for
applications to ligand binding kinetics), which can be loosely clas-
sified into two groups: methods that bias the force or energy of the
system and adaptive sampling methods. The latter, which include
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FIG. 1. Schematic of unsupervised RC optimization introduced in Ref. 17 applied to ensembles of enhanced sampling trajectories. Initially, two boundary states are supplied.
Then, an RC capturing the exact kinetics is determined iteratively that incorporates information on the underlying system by selecting internal degrees of freedom at random.
Using a reweighting scheme permits the extraction of the RC for the equilibrium process. The iterative parts are marked by turquoise arrows. In this work, weights are
calculated using the weighted ensemble strategy11,36 based on a preliminary RC determined using the same procedure, but they can also be calculated independently of the
RC, for example, from the stationary distribution of an MSM.

PIGS, usually evolve multiple copies of the same system in paral-
lel while periodically stopping or respawning some replicas based
on information collected on the fly. REX is a parallel but not adap-
tive method that flattens the potential energy landscape through the
use of higher-temperature replicas. It generates a multi-canonical
ensemble, i.e., it simulates copies of the system at different tem-
peratures and attempts to swap compatible conformations between
neighboring temperatures by a well-defined protocol that generally
preserves Boltzmann statistics. The sampling enhancement results
from free-energy barriers being easier to overcome at higher temper-
atures. However, if the final analysis concerns a single temperature,
the usable data are (effectively) much smaller than the actual sam-
pling. Moreover, the trajectory continuity is broken for a specific
condition whenever a swap occurs.

In PIGS, on the other hand, all independent replicas evolve
at the same condition for a fixed stretch. The snapshots gathered
from all the replicas for a single stretch are reordered accord-
ing to the progress index (PI),29 which groups them by geomet-
ric similarity. Based on the PI position of the final snapshot of
each replica, a heuristic leads to the termination of copies deemed
redundant and their replacement with more unique configura-
tions conjectured to promote exploration. PIGS is unsupervised
but relies on a user-selected set of features needed to calculate
the PI. These features serve to focus the sampling enhancement
on regions of the system that are relevant for the process under
investigation.30

In the first set of results, we focus on data obtained for
the FS-peptide (acetyl-A5(AAARA)3A-N-methylamide), which is
predominantly α-helical at equilibrium at low enough tempera-
ture. It serves as a useful test because an estimate of the ground
truth is available from CS. In the original work,23 we obtained
comparable amounts of sampling for CS, PIGS, and REX, and
compared their abilities to drive the exploration of additional

states. We also identified the initial state bias present in the
PIGS data, which we later analyzed in detail.11 The availabil-
ity of CS trajectories capturing the reversible helix–coil transition
allows us to assess how well RCs determined from enhanced sam-
pling trajectories allow for inferences on the system’s equilibrium
properties.

In a second part, the RC is applied to a PIGS dataset of MD sim-
ulations of the bromodomain of ATAD2 in complex with a tripep-
tide containing an acetylated lysine residue (Kac). Bromodomains
are epigenetic readers that recognize lysine acetylation marks on
histone tails.31 Their fold is well conserved and constituted by a left-
handed bundle of four α helices (αZ, αA, αB, αC) connected by two
major loops (ZA and BC loop) enclosing the largely hydrophobic
Kac-binding pocket (see also Fig. S1).32–34 Both of the aforemen-
tioned loops are involved in peptide binding, and the enhancement
of their sampling leads to an accelerated unbinding rate of the pep-
tide, which is the process of interest chosen here. The peptide and
protein are both flexible enough to make the unbinding challenging
to describe using simple geometric RCs; for reference, the prop-
erties of the bromodomain in complex with a longer peptide (16
residues) are discussed in Ref. 35. A carefully constructed MSM is
used as reference for the analysis of unbinding simulations and,
thus, to gauge the potential of the optimized RC on this challeng-
ing dataset, which lacks a computational ground truth. Geometric
progress variables are used to establish that the process captured by
the RC corresponds to an intuitive mechanism for the unbinding of
the Kac-containing peptide. We further demonstrate the consistency
of the two “orthogonal” models while highlighting inherent proper-
ties, advantages, and limitations of the RC applied to simulations of
protein complexes.

For additional information on the methodologies we rely on
in this work, we refer the reader to the original publications (see
also Table I), which are too extensive to recapitulate in detail here.
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TABLE I. Overview over the methodologies referred to in this study.

Acronym Full name Type Summary

CS Canonical sampling Sampling Brute-force MD
REX25 Replica exchange Sampling Use elevated temperature to flatten poten-

tial energy surface
PI29 Progress index Analysis Re-index snapshots by mutual, geometric

similarity
PIGS23 Progress-index guided sampling Sampling Duplicate unique replicas according to PI

to promote exploration
WE36 Weighted ensemble Analysis Recover equilibrium weights from biased

trajectory ensembles
SAPPHIRE37 States and pathways projected

with HIgh REsolution
Analysis PI visualized with various annotations.

Relevant methods not yet touched upon are the weighted ensem-
ble approach to statistical reweighting,11,36 see Sec. IV B, and the
SAPPHIRE analysis,37 see Sec. IV D 2. In the Introduction, we
have provided brief, qualitative descriptions of enhanced sampling
techniques REX25 and PIGS,23 as well as Krivov’s approach to the
optimization of reaction coordinates.16,18

II. RESULTS
A. Conformational transition of the FS-peptide

The 21-residue FS-peptide undergoes a well-defined helix-coil
transition as a function of temperature.38 The ABSINTH implicit
solvent model and force field paradigm39 have been shown not only
to reproduce this transition comparatively well but also to sample a
diverse ensemble of partially helical and non-helical but collapsed
states at low sampling temperature.23,40 This ensemble reflects an
underlying free energy landscape that is complex but possesses rel-
atively low barriers. The latter property enabled the sampling of
transitions in and out of the dominant state, the straight α-helix,
with high fidelity with and without the use of advanced sampling
methods. PIGS allowed us to identify a particular, low-likelihood,
metastable, and non-helical state that we showed to be metastable in
canonical sampling (CS) as well. The similarity of results obtained
in simulations from two diametrically opposed states gave us the
confidence to assert that, in the chosen model, the sampler achieved
equilibrium.

Here, we first recognize that this dataset gives us access to
robust references for comparison. In particular, direct estimates
from CS are considered reliable. Since all three samplers we
employed in the study (PIGS, REX, and CS) cover transitions from
the fully helical configurations into helix-free, collapsed states, it,
furthermore, appeared reasonable to define reference states that
approximately describe these two limits. We were able to utilize
the coordinate RMSD from the straight helix for this purpose since
this conformation is relatively unique in shape and size within
the ensemble. It is, however, a caveat that using a high RMSD
threshold to define a boundary state as done here (see Sec. IV A)
will simply map to a degenerate ensemble of possible candidate
structures.

B. The RC achieves efficient kinetic sorting
In the following analysis, we rely on all of the CS and

the PIGS sampling carried out at 250 K. For REX, only the
trajectories at the relevant temperature of 250 K were considered
for the construction of the RC. First, we seek to establish whether
an optimized RC meaningfully describes the transition of the FS-
peptide that we meant to analyze. If so, the RC should unveil the
same underlying process for each of the three samplers, CS, REX,
and PIGS, when supplied with identical definitions for boundary
states. Furthermore, this process should offer a reasonable succes-
sion of states by RC value, even though it must be kept in mind
that the RC-sorted snapshots are not a pathway. The residue-wise
helicity and the RMSD from the straight helix will serve as anno-
tations by virtue of being imperfect approximations to progress
coordinates. Despite their sub-optimality,14 these geometric descrip-
tors can be expected to capture some key aspects of the underlying
process.

Obtaining a reasonably converged RC is computationally fea-
sible. The 3000 iterations detailed in Fig. S2 took about 2 h to run
on a modern desktop with a 6-core, Intel i7-8700 CPU while pro-
cessing >6M snapshots. It is a downside, discussed later, that the
numerical optimization procedure does not permit an a priori stop-
ping criterion but requires manual intervention. Nonetheless, the
results in Fig. 2 highlight that the optimized RC largely meets the
expectations posed to it for PIGS and CS: for low values of the RC,
the RMSD to boundary state A (the straight helix) is low, while the
helix content of residues is high. The helix content of C-terminal
residues is lost gradually along the RC until an intermediate state
is reached: Near r = 0.85, the two termini each form a helix with
a bend in the middle. The alanine side chains form a hydrophobic
core, while the arginine side chains remain solvent-exposed. Subse-
quently, helicity is lost entirely, although with low sampling weight,
in favor of collapsed configurations near and within boundary state
B. As shown in Fig. S3, the mapping of RC value to structure is gener-
ally well-defined although many of the non-helical residues in Fig. 2
are transiently helical, indicating the presence of kinetically but not
structurally fully homogeneous states. This is expected for the rela-
tively short FS-peptide since helical stretches can easily fluctuate in
length.40

J. Chem. Phys. 159, 015101 (2023); doi: 10.1063/5.0149207 159, 015101-4

© Author(s) 2023

 12 July 2023 10:54:26



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 2. Kinetic progress according to the optimized RC for FS-peptide. Trajectories from CS and PIGS are binned (binsize: 0.002) along the RC. The bin-averaged RMSD
from the straight α-helix (top of each sub-panel) and the residue-wise helicity (bottom) are depicted in color (legends on the right). Color-coded measures for the heterogeneity
within bins are given in Fig. S3.

This process, as characterized by the overall helicity and the
RMSD is shared between CS, PIGS (Fig. 2), and also REX (Fig. S4).
We note that the absolute RC values appear distorted for REX, for
which there is no unequivocal explanation. REX data are challeng-
ing for the optimization since the continuous trajectory segments are
very short if the swap probability is reasonably high (here, the aver-
age is only about 42 snapshots compared to PIGS with nearly 8000
snapshots), and the coverage of relevant conformational transitions
by the data is unclear. This segment length is also clearly at odds with
the autocorrelation lengths of the geometric features that are used to
construct the RC (see Fig. S5, top).

The geometric properties suggest that the automatically deter-
mined RCs smoothly reflect the transition of the FS-peptide from a
straight α-helical configuration to collapsed, non-helical configura-
tions. This is true and consistent for all three samplers despite the

fact that the RCs share only the definitions of the boundary states as
inputs.

Next, we demonstrate how the optimized RC can be employed
in reweighting ensembles obtained from adaptive sampling, which
suffer from initial state bias. We proposed previously that the idea
of statistical resampling and its implementation as the weighted
ensemble (WE) scheme is the most promising strategy for this
reweighting task.11 In short, the goal is to recover equilibrium
sampling weights from PIGS trajectories in post-processing. The
method’s performance is contingent on a reasonable guess of kinetic
distance between replicas. Because the statistical weight of a termi-
nated replica is lumped into that of one or more other replicas, errors
will be accumulate if not at least one replica that can be consid-
ered nearby is available. Specifically, this idea of “kinetic proximity”
implies that interconversion between their respective configurations
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at the point of termination is rapid. Normally, geometric similar-
ity is used as a proxy, but we suggest here that the optimized RC
offers an alternative sorting principle to find replicas correspond-
ing to such kinetically nearby conformations. In Fig. 3 [(b) and
(d)], the extracted, snapshot-wise weights are used to reweight the
distribution of the radius of gyration, Rg , and the α-content. We
observed intuitive correspondence between the RMSD from the
straight helix and the α-content of snapshots sorted by the RC in
Fig. 2. At a more quantitative level, the Kullback–Leibler divergence
(KLD) reported in Fig. 3 measures the information lost when distri-
butions are calculated from reweighting PIGS trajectories compared
to CS. The low values indicate good agreement and suggest that the
RC efficiently selects kinetically close replicas, more so than geo-
metric descriptors can [(a) and (c) of Fig. 3]. The two samplers, CS
and PIGS, propagated copies of the system entirely independently,
and some minor differences in sampling are therefore unavoid-
able. For systems sampling perfectly parallel reaction channels, the
RC alone would not be sufficient for ranking replicas according to
kinetic distance. It is straightforward to include further descriptors

of the system that are able to discern those channels for ranking the
replicas. The distance between replicas is then calculated on a fea-
ture space with more than one dimension. In addition to introducing
the RC as a sorting principle, we also amend here the original strat-
egy by allowing the weight of a terminated trajectory to be lumped
into multiple target trajectories, weighted by distances (see Sec. IV B
and Fig. S6). Thus, we conclude that the RC in combination with
the WE strategy allows for an accurate reconstitution of equilibrium
distributions from PIGS sampling, which, as shown previously, is an
exceptionally challenging task for other methods, most prominently
Markov state models.11

C. The RC as an estimator for the committor
As touched upon in Sec. I, optimized RCs of this type are

proposed to approximate a Markov chain’s committor function,16

which preserves the kinetics of a potentially high-dimensional sys-
tem as a one-dimensional coordinate.22 We, therefore, consider here
the RC as a statistical estimator for the committor. This allows for

FIG. 3. Reweighting of PIGS data to remove initial state bias. The distributions for Rg and the α-content of FS-peptide are compared between CS and PIGS. The inset lists
KLD values that quantify the distance of the reweighted PIGS distribution to the canonical reference. The KLDs between unweighted PIGS and CS are 11.3 for the Rg and
81.3 for the α-content. The left column [(a) and (c)] uses (Rg × α) as a proxy for kinetic distance as in Ref. 11, while the right column [(b) and (d)] shows results for using
the RC to encode kinetic distance. The α-content was computed as in Ref. 23.
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comparisons to two references. First, direct counting yields the max-
imum likelihood estimate (MLE) of the same quantity: We simply
enumerate and normalize the fraction of transition paths initiated in
a small range around an RC value that reach state B before state A
for CS.41 Figure 4 reveals that the optimized RC is perfectly rank-
correlated with the MLE but that it overestimates the MLE over a
large range of intermediate RC values. Agreement is best near both
boundaries.

Since both quantities (MLE and RC) derive from the same data,
we attempted to further assess the generalizability of the RC. To
this end, the RCs for the CS and PIGS ensembles (cf. Fig. 2) were
binned in the range [0.025, 0.975]. New trajectories were computed
by launching independent simulations from 1024 unique starting
structures for each bin. The MLE was computed by tracking the frac-
tion of the 1024 that committed to state B before A. The number
of trajectories that did not commit to either state over the simula-
tion length of 30 ns was below 1%. Following the training paradigm
in machine learning, these trajectories are test data. For the RC
describing CS, MLEs of the committor for the training trajectories
are close to MLEs for unseen trajectories for RC values smaller than
0.7. Indeed, various non-helical configurations (i.e., configurations
in the vicinity of boundary B of this study) are not visited by CS in
the training simulations.23

The MLE for PIGS follows a similar trend as the MLE for
CS trajectories. The deviations from the MLE become more pro-
nounced at higher values of the RC while, with one exception,
preserving the ranking. This might indicate an incomplete reweight-
ing, similar to what was generally observed for this system in prior
work,11 but the definite reasons remain elusive.

In summary, the near-perfect rank-correlation with the MLE
on the training set trajectories corroborates the finding that the
optimized RC is a reliable tool for ranking intermediate snapshots
by their kinetic proximity to the chosen boundary states. In contrast,
RC values are unreliable for the estimation of absolute commitment
probabilities. As the relaunched trajectories exceed the sampling
time of the training set roughly 30-fold (∼600 �s instead of 20 �s),
some discrepancy is expected, in particular for the restarts. How-
ever, not only do the training data show similar deviations but, more
importantly, most of the deviations are systematic: they are stronger
in sparsely populated (transition) regions of the RC (see also Fig. 5),
and the RC values indicate that snapshots are further away from
folded state A than they actually are (RC values exceed q̂MLE for the
test set consistently). We suspect that this is due to the algorithmic
minimization of the TSD, which implies a focus on high-population
regions on the RC.18 Sampling quality in the original data is less of
a concern, which is evident from the fact that the MLEs for train-
ing and test sets for CS agree much more with each other than
with the RC.

D. The reweighted RC accurately estimates kinetics
from PIGS-trajectories

While geometric descriptors indicate that the optimized RCs
sort snapshots kinetically in a mutually consistent manner, the
underlying state probabilities are not consistent between CS and
PIGS if the weights are not taken into account (Figs. 3 and 5).
By virtue of penalizing the redundancy of sampling self-similar,

FIG. 4. The maximum likelihood estimate (MLE) of the committor plotted against the RC. In all cases, the y axis indicates MLE values, q̂MLE , estimated as binomial
probabilities by direct counting (see the text). The “training set” denotes the set of CS trajectories analyzed in Fig. 2. From 19 intervals along the RC (binsize: 0.05), 1024
unique configurations each were extracted to start a new set of 30 ns-simulations, which are labeled “restarts.” Trajectories that did not commit are too few to matter. The
errors in the estimation of the binomial probabilities would be negligible for the restarts if we considered the trajectories as independent samples (which they are not since
the 1024 configurations are partially time-correlated). The restarts from PIGS snapshots were redistributed according to their reweighted RC values (Fig. 2, bottom), which
still left at least 500 committing trajectories per bin. The gray dashed line of slope 1 is added as a visual reference.
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FIG. 5. Free-energy-profile for the RC describing the transition between the straight α-helix and the collapsed state for FS-peptide. Top: The reaction coordinate values were
binned, and the histogram-based free energy profile is shown for CS, PIGS, and PIGS after including the WE correction. The weights were first derived from a preliminary
RC and subsequently used during optimization, with the final RC providing the basis for the weights applied to the histogram (see Sec. IV B for details). Bottom: Pictorial
representation of the process captured by the RC for FS-peptide trajectories. From the numbered circles marked on the top panel, one structure each for PIGS and CS is
shown jointly after alignment (red: PIGS, blue: CS).

helix-rich states, PIGS effectively promotes the visitation of the non-
helical boundary state. This results in an overpopulation of such
conformations in the RC derived from PIGS trajectories compared
to CS and, by extension, an overestimation of the rate from A to B
and, possibly, and underestimation of the rate from B to A. Apply-
ing the WE-weights to weight �r2 during optimization17 controls
the absolute value of the RC for a given snapshot. Applying weights
in the calculation of the histogram-based free-energy profile (FEP)
serves to recover the equilibrium population in essentially the same
way as in Fig. 3. We find that, when both strategies are applied to
PIGS of the FS-peptide (Fig. 5), not only the relative population of
boundaries and intermediates is recovered but also the main bar-
rier height of ∼5 kBT is reconstituted to very good agreement. The
main discrepancy between the CS and PIGS data is a state around
r = 0.7 where the N-terminal half of the peptide is helical and the C-
terminus is more variable. We did not investigate the origin of this
disagreement further, but the presence of additional states that are
metastable in PIGS but are not or only transiently seen in CS is not
per se surprising.

In principle, it is achievable that the RC contains accurate
kinetic information of the underlying system, given the selected
boundary states. The optimization can result in the RC coinciding
with the committor function q, which has been referred to as the
optimal RC.18 As can be gleaned from Fig. 2 and Fig. S2, the values
of the RC can be subject to continuous change over the course of

optimization. Consequently, the absolute values of the RC are not
generally stable. Since the committor function has to, by definition,
associate fixed values with specific configurations of the system, the
interpretation of the RC as the committor cannot hold universally
but only incidentally (compare Fig. 4). Therefore, we wondered to
what extent the reweighting gives access to quantitatively accurate
estimates of mean first-passage times (MFPTs). If we do assume that
the optimized r is a reasonable approximation to q, then the MFPT
τ and the mean transition-path time τTPT can be calculated for both
directions as42

τAB = �1 − r��Jeq
AB(r), (1a)

τBA = �r��Jeq
AB(r), (1b)

τTPT = �r(1 − r)��Jeq
AB(r). (1c)

The equilibrium flux Jeq
AB between boundaries is estimated by

numerically integrating the cut function, ZC,1(r), introduced in
Ref. 43. CS trajectories are considered the ground truth, which allows
kinetic quantities to be estimated by direct counting. This is again
contingent upon choosing boundary states via simple geometric
descriptors, which is a limitation, but does not depend either on the-
oretical arguments or on any reaction coordinate. MFPT estimates
based on the optimized RCs are compared to this reference in Fig. 6.
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FIG. 6. Kinetic quantities for the transition between the straight helix (state A) and the collapsed state (state B) for FS-peptide. Mean first-passage times and mean transition
path times are estimated based on the RC using Eqs. (1). Direct counting on the ensemble of canonical trajectories was used to derive the reference (ground truth) values
shown.

Applying Eqs. (1) to the RC for CS, the model underestimates the
reference values. One possible explanation suggested by Krivov18

is insufficient optimization of the RC. The disagreement between
MFPTs for CS and PIGS stems from a differing estimate for the flux
Jeq

AB (direct counting: 0.037 ns−1; CS: 0.061 ns−1; PIGS: 0.019 ns−1).
Indeed, when setting the flux to the same value, model predic-
tions are within 1% of one another. It appears that the equilibrium
flux for PIGS is, despite applying weights during the optimization,
underestimated, which compensates for the sub-optimality of the
RCs.14

It must be noted that the RC does not carry explicit infor-
mation about transition paths for (un-)folding; it merely encodes
kinetic distance to the boundaries in one dimension. If the source
data contain (continuous) reactive trajectories, as is the case espe-
cially for CS, such transition paths can be isolated and labeled with
both the RC and geometric properties. Similarly, it is not straight-
forward to study faster processes with the same RC or to obtain an
interpretable RC for a process that is clearly not the slowest mode in
the system. The scenario posed by the FS-peptide given our choice
of boundary states is amenable to the method: the largest barrier
is not substantially affected by the many faster transitions in and
out of intermediate, metastable states. If we forcefully violate these
conditions, for example, by choosing the two boundary states to be
more or less the same kinetically, the RC will too no longer describe
any meaningful process (Fig. S7). This is consistent with the logic
of finding the slowest path between the two states, which is now
spurious.

We thus stipulate that in a favorable scenario on a realistic,
complex system, the unsupervised determination of RCs can (i)
achieve efficient kinetic sorting for enhanced sampling trajectories,
(ii) gives access to an RC for the equilibrium process (free of initial
state bias) when combined with reweighting, and (iii) allows for the

estimation of MFPTs to within an order-of-magnitude or better for
both PIGS and CS trajectories.

E. The RC captures the unbinding process
of a Kac -containing peptide from ATAD2

The complex of capped GKacG with the ATAD2 bromod-
omain was sampled using PIGS with no ground truth reference
available. 24 968 short trajectories were generated according to two
diversification schemes focused on either the ZA loop or the BC
loop of the bromodomain (see Sec. IV D and Ref. 30). We shall
refer to these two subsets as BC PIGS and ZA PIGS, respectively.
This system constitutes a challenging test for unsupervised RC
optimization.

Due to the large amount of encounter complex-like configu-
rations, the RMSD is not reliable for defining a clearly delineated
bound state. When choosing an RMSD-based cutoff tightly, many
configurations that are visually very close to the initial state are not
contained, which is hard to justify. A more loose cutoff leads to the
inclusion of partially detached structures. We note that such prob-
lematic boundary definitions do not necessarily interfere with the
construction of an RC; instead, they lead to an RC for a process with
poorly defined meaning. As shown for FS-peptide (Fig. S7), in the
extreme case of boundary states chosen deliberately to derive from
the same kinetic basin, virtually all intermediate points collapse at
r = 0.5. To prevent issues of this type, we defined the bound state for
the unbinding problem with a more sophisticated criterion based on
an independent analysis. Specifically, we selected continuous snap-
shots from a part of a SAPPHIRE (States And Pathways Projected
with HIgh REsolution) plot,37 which relies on the progress index
(PI).29 In short, geometrically similar snapshots are adjacent to one
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another on the PI (see Sec. IV D 2 for details), which was exploited
for the definition of the bound state (Fig. 7, vertical dashed lines).
State B is defined in terms of the ligand RMSD (>25 Å). While simi-
lar definitions, e.g., in terms of specific interatomic distances, proved
to have little impact on the resulting RC, we acknowledge that
problems might arise from this issue and further explore the topic
below.

With the boundary states in place, the optimization for this
complex PIGS dataset proceeded similarly to the one for FS-peptide
by convergence indicators; see Fig. S8. From 2000 distances between
randomly chosen heavy atom pairs (which are combinatorially
predominantly intra-protein distances), distances between the lig-
and and the protein were most informative on the RC resulting
from this optimization as measured by their mutual information
(MI) (Fig. 8). In addition, the RMSD of the peptide from the ini-
tial pose suggests that the RC represents the progression between
boundary states in a largely systematic and anticipated manner
(Fig. 9).

The observable intermediate states on the FEP in Fig. 9 are
almost exclusively found in either BC PIGS (around r = 0.25, orange

shading) or ZA PIGS (r between 0.42 and 0.75, green and red shad-
ing) data but not both. This suggests that the different diversification
schemes of PIGS lead to the sampling of (partially) unique states
(as was already observed in Ref. 30 for the bromodomains alone),
which hint at the presence of multiple unbinding pathways explored
by PIGS.

It has been noted that the ZA loop is prone to assuming dis-
ordered states enabling a plethora of possible binding poses.35,44–46

Indeed, this is also apparent in unbinding simulations. The RC
in Fig. 9 suggests that basin 1 (orange) is kinetically closer to the
bound state with a closed ZA loop (basin 0, blue shading) than
to the unbound state (basin 5). The ligand, on the other hand, is
already subject to more variability as the hydrogen bond between
inserted, modified Lys, and the conserved Asn85 is broken, which
may be a result of the diversified BC loop. Basins 2 and 3, com-
posed of fuzzy encounter complexes,47 can be interpreted to be the
main intermediates that permit recognition of acetylated histone
tails. The flexibility of the ZA loop allows for a wide range of poses
for the peptide, in many of which the contact between Kac and
Asn85 is intact or close to intact, especially in basin 2. Basins 1, 2,

FIG. 7. SAPPHIRE plot of PIGS data on ATAD2 in complex with capped GKacG. Various data values are sorted by the progress index, which groups snapshots according
to mutual conformational similarity. Bottom: Kinetic annotation of the PI based on the number of transitions between snapshots to the left and snapshots to the right of a
given progress index. This annotation is the equivalent of a (qualitative) FEP, and peaks tend to delineate geometrically homogeneous regions, given the featurization (see
Sec. IV D 2 for details). The bound state A, which was used for RC optimization, is emphasized by vertical dashed lines. Top: The RMSD of the ligand to the initial structure
in Å is color-coded (legend on top). Directly below are three comparable annotations: the committor estimated from an MSM (see Sec. IV D 3), qMSM ; the RC computed
for two boundary states, RCq; and the RC computed with only one boundary state (the bound form) imposed, RCτ . The RCτ is given in units of 1000 time steps of 1.5 ps
each. In each case, snapshots declared as bound (state A, r = 0) are colored orange, while snapshots declared as unbound (state B, r = 1) are colored red. Finally, the “BC”
annotation indicates in black that snapshots originate from BC PIGS and in white that snapshots originate from ZA PIGS.

J. Chem. Phys. 159, 015101 (2023); doi: 10.1063/5.0149207 159, 015101-10

© Author(s) 2023

 12 July 2023 10:54:26



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 8. Correlation of individual features with the RC for the GKacG-ATAD2 system. The bar plot shows the 15 interatomic distances possessing the highest mutual information
content with the RC for the unbinding of the peptide from ATAD2. These distances are from a set of 2000 randomly selected trial distances between heavy atoms that were
drawn independently of the distances used in the construction of the RC.

and 3 are distinguished by barriers of ∼2kBT each; in both basins 2
and 3, the peptide is typically no longer close to the crystal bind-
ing pose, but the latter basin features a higher degree of opening
of the ZA loop. Basin 4 around r = 0.9 (violet shading) consists of
encounter complexes with a closed ZA loop that precludes con-
tact of Kac with the hydrophobic contact area lining the binding
pocket; the peptide instead typically associates with the outside of the
pocket. Finally, basin 5 collects structures, where the peptide ligand
is (kinetically) very close to the fully unbound state and (geometri-
cally) distant to the binding site. In this overall picture, it is tempting
to associate basin 1 with largely unproductive, partial unbind-
ing events (rebinding necessary for unbinding) and basin 4 with
largely unproductive encounters (unbinding necessary for bind-
ing), but the RC itself unfortunately does not provide such pathway
information.

Taken together with the MI analysis in Fig. 8, Fig. 9 sug-
gests that unsupervised RC optimization achieves a meaningful
kinetic ranking for a complex system sampled using a sophisticated
enhanced sampling scheme. The imperfect match with the RMSD of
the ligand highlights that simple geometric descriptors, such as the
RMSD, are, in many cases, deficient in capturing kinetic distance,
which is known and expected.14 Somewhat surprisingly and differ-
ently from FS-peptide (Fig. 5), efforts to reweight the FEP toward
equilibrium produced only minor changes; see Fig. S9. This hints
either at a lack of flux imbalance in the PIGS datasets or a break-
down of the reweighting procedure, e.g., because “nearby” replicas
for absorbing the weight are generally all too distant. Since there is

no ground truth available, we did not investigate this phenomenon
further.

F. The RC is consistent with the committor
from an MSM

MSMs are an established tool for analyzing ensembles of short
trajectories but require many (hyper)parameter choices in construc-
tion. Given two boundary states, the committor for the transition
between the two is one of the most useful properties that can be
estimated from an MSM. In contrast, the RC aims to approximate
a conceptually identical committor with minimal user intervention.
It is therefore appropriate to compare findings derived from the
(unsupervised) RC with those from a carefully constructed MSM.
No meta-information is shared between the two analyses such that
they can be considered independent beyond using the same source
data.

Figure 7 shows the RC and the estimate of the committor from
the MSM, qMSM , sorted by the PI. Visually, close correspondence
between the two independently determined coordinates, qMSM and
RCq, can be established. In addition, geometrically homogeneous
sections on the PI tend to have self-similar values in both coor-
dinates, i.e., they are considered kinetically homogeneous by both
approaches as expected. For example, the geometric basin around
the bound state collects a large number of snapshots, mainly from
BC PIGS. This basin has local structure that is, however, only weakly
resolved by the kinetic annotation of the PI. This structure is more
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FIG. 9. Reaction coordinate for the unbinding of capped GKacG from ATAD2 with annotations. The top bar color-codes the RMSD of the peptide to the initial structure with
the value of the RC shown below. The second bar indicates the fraction of snapshots originating from BC PIGS in each bin (the remainder coming from ZA PIGS). The main
subpanel contains a histogram-based free energy profile on the RC describing the dissociation process. Below, the numbered cartoons depict hand-picked, representative
structures from the basins marked by numbers and colors on the FEP. The Kac-containing ligand is shown in orange, and the ATAD2 bromodomain is in green. The conserved
residues Tyr42 and Asn85 of ATAD2 are shown in stick representation in lighter green. The protein is oriented such that the ZA loop (containing Tyr42) is on the left and the
BC loop (containing Asn85) is on the right.

evident from the RCq values within the basin, which highlight that
a large fraction of snapshots is kinetically quite distant from the
actual bound state, an observation mirrored largely in the RMSD
values. On the other hand, this collection of states is clearly closer
to the bound form than the non-specific, encounter complex-like
configurations collected primarily from ZA PIGS at PI > 900 000
and PI between 420 000 and 440 000. These states feature similar
RMSD values but are distinguished from the crystal-like basin by
both committor values and the PI.

To further corroborate the interpretability of RCq, an RC
inspired by the MFPT [Ref. 17, SI, Eqs. (26) and (27)], RCτ , for
which only the ligand-bound form is used as a boundary state, was
constructed. This quantity is strongly correlated with RCq (Pear-
son: 0.98; Spearman: 0.93), supporting the notion that the choice
of boundary states and the constructed RCq capture the process of
interest. While this supports the idea that the unbound state defined

via its RMSD is kinetically most distant from the complex, we were
curious what impact the choice of boundary states has. First, to
permit a maximally meaningful comparison between methods, cor-
relations of RCq with qMSM were calculated for snapshots that are not
part of a boundary in either model. This resulted in a Pearson cor-
relation of 0.93 and a Spearman correlation of 0.91, which reveals
a high degree of consistency in both linear relationship and rank-
ing of the two orthogonal methods for estimating the committor.
Next, we repeated the analysis of Fig. 7 by imposing the boundary
states utilized by the MSM onto the RC construction. As shown in
Fig. S10, this preserves the qualitative interpretations from above
while improving the quantitative agreement specifically with qMSM
while leading to larger disagreements with RCτ . The correlation
coefficients between RCq and qMSM are 0.972 (Pearson) and 0.967
(Spearman) in this case, and, on average, they differ by 0.082 per
snapshot. This is the expected behavior with one important caveat:
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in this case, the optimization had to be stopped earlier (after 750
iterations), an issue we return to below.

A key difference between the RC and the MSM is that the for-
mer assigns a snapshot-wise RC value, while the latter relies on
discretized states. Naturally, this lends the RC higher resolution. If
the two methods offer consistent estimates, the RC-values for mem-
bers of a cluster are expected to be distributed tightly around its
qMSM-value. Figure 10 suggests that this is generally the case for the
present analyses, but the value around which the RC is scattered
tends to be shifted toward higher values compared to qMSM , which
is visually evident from Fig. 7 as well.

While extensive optimization of the RC can be responsible for
such shifts due to the lack of a well-defined stopping criterion, which
we discussed above, this does not seem causative for the discrep-
ancy. First, the progress of the optimization suggests a relatively
stable plateau (Fig. S8); second, even after relatively few iterations,
RC-values are offset with respect to qMSM (Fig. S11). Given the
improved agreement in Fig. S10 when enforcing the MSM-derived
definitions of boundary states, we conclude that an exact match of
states might be required for qMSM and RCq to approximate each
other semi-quantitatively. When using 750 iterations to construct
this RC, the agreement is improved between the RC and the MSM
not only in Fig. S10 but also when looking more in detail at indi-
vidual clusters (Fig. S12, top panel). Matching the boundary states
also leads to improved agreement of MFPTs derived from the MSM
and the RC. For the latter, τAB is estimated to be on the order
of 75 ns, whereas τBA is estimated to be threefold slower. When
using the MSM-states, the RC gives MFPTs of 158 ns for unbinding
and 171 ns for the reverse process. This is in very good agree-
ment with MFPTs obtained by solving the system of equations using

the MSM’s underlying transition matrix where τAB = 123 ns and
τBA = 137 ns.

When continuing the optimization of the RC using the MSM’s
boundary states beyond 750 iterations, at which point qMSM and
RCq exhibit strong correspondence, up to 3000 iterations, inter-
mediate points collapse into the boundary states in terms of their
committor values (Fig. S12, bottom panel). This does not affect
the sorting of snapshots (up to floating point precision) but unfor-
tunately renders the numerical values meaningless. Consequently,
rate constants cannot be estimated accurately based on this RC.
When choosing the MSM boundaries for the RC, the bound state
contains 2.12 as many snapshots compared to the unbound state
(15 650 snapshots bound, 7366 unbound). Conversely, in the origi-
nal, RMSD-based definition, there are 12 000 bound configurations,
but 398 344 snapshots in the unbound reference state, which is a
dramatically different ratio of 0.03. We can see at least three fac-
tors contributing to this sensitivity, which are all linked. First, in
any rate analysis, the boundary states must be defined carefully. The
very large unbound state used for RCq might be kinetically homo-
geneous but certainly does not consist of geometrically self-similar
members. Second, the sampling must allow for a reasonable infer-
ence of the kinetics between those two states. In absurd scenarios,
such as Fig. S7, the profile cannot be expected to be insightful. Simi-
larly, if the two end states are connected by very few transitions, the
RC might optimize toward lumping almost everything into one of
the two states. Hints of this problem are evident in both Figs. S12
and S13. Third, the RC construction might lack an appropriate the-
oretical framework to compensate for imbalanced states in terms of
flux, population, or congruity. In other words, the method relies on
hidden assumptions that have yet to be formalized. At the moment,

FIG. 10. Comparison of the committor calculated from the MSM and the RC encoding the unbinding of capped GKacG from ATAD2. The 25 clusters containing the most
snapshots that are not part of the boundary states are shown. They are sorted by their qMSM -value in increasing order and collectively account for roughly one third of
non-boundary snapshots. The orange horizontal bars indicate the estimate of the committor from the MSM. The snapshot-wise values of the RC after 3000 iterations for the
constituents of the respective cluster are represented by the boxplots. The boxes extend from the first to the third quartile with the median shown as a blue line. The whiskers
extend at most 1.5 times the inter-quartile range. Individual data points beyond this range are shown as circles.
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it appears likely that all three factors are in play. Comparing Figs.
S13 and S8 allows for the relatively straightforward diagnosis that,
with the MSM boundary states imposed, the optimization does not
proceed as expected after 500–1000 iterations. It therefore appears
indispensable to monitor the convergence behavior and discard RCs
that fail this visual inspection.

In summary, in favorable circumstances, the RC can exhibit a
high degree of consistency with the MSM and good correspondence
with independent geometric descriptors of unbinding. Information
from enhanced sampling trajectories is condensed into a single
kinetic coordinate, which permits the estimation of rate constants.
The good quantitative agreement supports the idea of the RC being
an adequate alternative to MSMs for modeling the kinetics of the
unbinding of Kac from ATAD2 and, by extension, for problems
of similar complexity. However, the necessity to explore different
definitions for boundary states and different levels of optimization
revealed in this example poses a challenge. Somewhat similar to
MSMs,11 it appears that the selection of an appropriate RC is not
automatic and that their conceptual “optimality” must be ques-
tioned. This is especially related to the theoretical underpinnings and
the convergence properties of the optimization, which evidently can
lead to largely meaningless RCs. Additional research on modifica-
tions and extensions that formalize and control this behavior would
be highly desirable. Despite the caveats, our findings underline the
potential of optimized RCs in the analysis of challenging trajectory
ensembles.

III. CONCLUDING DISCUSSION
We have tested the performance of a recently proposed algo-

rithm17 to determine RCs on trajectory ensembles generated by dif-
ferent sampling paradigms, including advanced sampling method-
ologies that carry biases. We investigated two different processes:
the (un)folding of an α-helical peptide and the unbinding of a short
peptide ligand from its cognate protein domain. We established that
such RCs are able to summarize information from thousands of dis-
connected enhanced-sampling trajectories in order to describe the
transition of a system between two appropriate boundary states.
They allow us to estimate quantitatively the rates for equilibrium
folding (FS-peptide) and ligand (un-)binding (ATAD2 and capped
GKacG) from these complex datasets. The principal input required
from the user is nothing more than the definition of the two bound-
ary states based on a priori criteria, which constitutes the method’s
foremost advantage. In principle, the definition of boundary states is
arbitrary and depends on the research question; the RC is restricted
to describing a process conditional on that definition. While such
a two-state model is mirrored as a common approximation in ana-
lyzing many experiments, it may be prohibitively difficult to define
both states for a given system. For example, in binding processes,
the unbound state can be delineated in many ways. To address this
at least in part, we briefly discussed an RC analogous to a MFPT
rather than a committor, which requires the definition of only a sin-
gle boundary. This allowed us to assess the impact of the ambiguity
in the definition of the unbound state for the peptide–protein system
on the resulting RC.

When distilling information from ensembles of trajectories into
a single dimension, the challenge is to limit the loss in accuracy
that offsets gains in interpretability. In recent years, reduction, or

at least the clear recognition, of the impact of subjective choices
has been an important focus in the field of MD simulations.37,48–52

Low-dimensional RCs find application in both analyzing simula-
tions and in guiding enhanced sampling; we only explore the former
aspect here even though unsupervised RCs of this type have been
proposed for the latter.17 Naturally, sampling biases of this gen-
eral type have been developed and used in many guises,13,53–55 the
most similar being free-energy guided sampling.56 Recent years have
seen the application of deep-learning methods to omit feature pre-
processing or selection and to achieve modeling accuracy by choice
of a suitable objective function.13,57–59 The determination of RCs
scrutinized here can be regarded as similar in spirit. Many com-
peting methods address the problem through maximizing the time
autocorrelation of collective variables rather than by condition-
ally minimizing the total squared displacement.57,58,60–63 The two
objectives need not be formally equivalent, making a comparison
of the optimized RCs we study here to such alternative estima-
tors difficult a priori. Furthermore, while low-dimensional model
systems are indispensable for establishing the formal correctness
of a method, we were interested here in assessing performance in
scenarios resembling real use cases: we generally deal with non-
ideal, complex systems that produce noisy data of low statistical
quality. Viewing the RC as an estimator per snapshot, we are specif-
ically interested in its bias and variance under such suboptimal
conditions.

How can the method be characterized in terms of machine
learning (ML)? The optimization proceeds iteratively and constructs
a guess that at each step becomes a weighted outer product of its
own powers with those of a randomly selected input feature (dis-
tance between biopolymer atoms, normalized to its maximum). This
is not equivalent to how polynomial kernels are used in ML, most
often support vector machines,64,65 and there is no simple analogy
for the workflow in common neural network architectures. If we
assume that the features we draw from are sufficient to describe
arbitrary processes, the method is unsupervised beyond imposing
one or two boundary states. Cross-validation would theoretically
be possible with the sliding window logic of MSMs,66 but practi-
cally we found that using lag times other than the sampling time
step proved problematic for ensembles of short trajectories gener-
ated by PIGS and REX. It would also require storing the functional
form of the RC, which is not implemented at the moment. Since
the method fits new parameters at each iteration, it is inherently
prone to overfitting. Normally, ML approaches protect themselves
from a lack of robustness by regularizing the solution space in
a controlled manner.67,68 This does not happen here, which we
consider the primary culprit for the lack of stability during opti-
mization (see Figs. S12 and S13). Instead, the properties of the
features control the solution space, which leads to the conditional
optimization under some homogeneity of RC and geometry, which
is desirable. Unfortunately, it is unclear to us how well this con-
ditional optimization protects from limits where the RC values
are essentially flat (e.g., 0.5 as in Fig. S7 or 0/1 as in Fig. S12,
bottom panel), especially if the number of transitions in the data
is low. Flat RC values are a largely albeit trivially homogeneous
limit.

In this context, it is important to highlight that the multiplica-
tive construction during iterations, which hinders interpretability,69

does not allow the RC to remain rigorously unchanged. It does, on
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the other hand, correctly limit the impact of distances with low vari-
ance such as those between covalently bound atoms. In fact, the
inhomogeneity of iterations caused by the reliance on randomly
selected features challenges the notion of convergence conceptu-
ally, for example, when studying a slow but localized process in
a large system, which only a vanishing fraction of distances car-
ries information on. The choice of iterations also causes numerical
difficulties: artificial clipping is needed to prevent RC values <0
or >1. Overall, it might be preferable to characterize the method
as an unusual, stochastic, and conditional optimization procedure
where the choice of an individual distance at each step to solve
a step-wise optimization problem is akin to an extreme form of
stochastic learning on a minimal random subspace. That said, no
ensemble learning70,71 is explored here, which could compensate
for the global stochasticity at finite numbers of iterations, and no
systematic analysis of the numerical procedure as such has been
undertaken.

These caveats aside, we demonstrated above that the integra-
tion of the relevant information from randomly selected distances
(if any) can be integrated into an RC that faithfully describes the
system’s slow, collective interconversion between the two selected
boundary states. This property was leveraged to recover equilibrium
populations from PIGS simulations using the WE strategy,36 which
requires a heuristic to distribute the statistical weight of terminated
trajectories onto nearby states. We proposed and tested here the use
of the RC to serve as this heuristic. For algorithms that do not change
the potential energy surface, such as PIGS, equilibrium reweight-
ing is commonly attempted by constructing a MSM.72,73 However,
Bacci et al. demonstrated that this approach can lead to incomplete
reweighting and have suggested a WE to be superior in this regard,
at least for PIGS and similar data.11 This result is corroborated here
for FS-peptide where the computational ground truth is known
(Figs. 3 and 5).

When testing a methodology operating on simulation data,
it is important to distinguish the computational ground truth
from the experimental one. The rates we estimate here are
noisy quantities and carry a sampling error. Beyond that, their
accuracy relative to experiment is conditional upon the chosen
model, which is not relevant in assessing the performance of the
RC methodology. Known force field limitations74,75 or difficulties
in predicting experimental signals can make quantitatively correct
rate predictions impossible.76 To give an example, rate constant
estimates for the recognition of benzamidine by trypsin vary over
several orders of magnitude in absolute value, with the main con-
sensus being that koff is estimated to be orders of magnitudes
faster compared to kon (summarized in Ref. 27). Even within the
same force field, estimates are determined by an interplay between
the sampler, the extent of sampling, and the estimator itself. We
are interested here in the properties of the sampler and, first and
foremost, the estimator and thus chose to compare results for
the same model/data using reference estimators: for FS-peptide,
we compared to estimates from direct counting from CS (Figs. 6
and 4), while for the unbinding problem, we compared to esti-
mates from a carefully constructed MSM (Figs. 7 and 10). From
these comparisons, we conclude that the RC can preserve the
kinetics from the available sampling in a way that is quantita-
tively similar to reference methods. We reemphasize that its main
advantage over an MSM lies in the simplicity of its construction,

for which little prior knowledge in terms of data or system was
necessary.

A one-dimensional progress variable cannot fully inform
about pathways unless there is no variance in path space. Even
though one-dimensional projections can contain pathway informa-
tion indirectly,29,37 the RC-based FEPs are, in their intended limit,
histograms of committor values. Similar to cut-based FEPs on either
committor or MFPT,77 they sort states by kinetic distance, which
means that different states can overlap and off-pathway events are
difficult to grasp.77 While an extension of RCs to faster modes has
been proposed,78 the current method can always be exploited syner-
gistically as part of a toolbox that also contains orthogonal analyses,
which potentially involve more modeling choices but summarize
other properties of the system or the same properties at higher
resolution. In addition to being an independent tool, our findings
highlight the RC’s potential as a possible means for model validation.
For estimation of the committor, discretization as a major source
of modeling error10,79 is largely eliminated, the explicitly defined
boundary states notwithstanding. Thus, committors obtained from
MSMs can be directly compared, especially if the boundary states
are matched exactly (Fig. S10). Such comparisons should focus on
measuring rank correlations rather than absolute values, which is a
caveat (Fig. 4).

In order to make the method available as a routine tool for
learning from data or for providing a reference for independent
methodologies, some problems will have to be addressed. First, the
semantic meaning of the RC strongly depends on the employed def-
initions of states, and care must be taken in choosing appropriate
boundary states independently of RC-based analyses. For imperfect
sampling, which is the general case, only heuristic stopping criteria
for the iterative RC construction are available, and continuing the
optimization can cause RC values for most intermediate snapshots
to collapse to the closer boundary,17 which is a type of overfitting
as discussed above. The missing overall regularization of solutions
and the feature-dependent impact of individual iterations in the
method are major concerns. Overfitting will usually cause the RC
to deviate from the actual committor and will consequently make
the interpretation of RC-values as probabilities80 questionable. The
dependence on optimization progress (Fig. S12) seems to be exacer-
bated in cases where the raw data violate detailed balance as evident
for PIGS for ATAD2 or where their connectivity might be compro-
mised as for the case of the REX data for the FS-peptide (Fig. S4).
Here, intermediate snapshots tended to collapse onto the more pop-
ulated boundary (helix). While it was shown for this system that
REX alters the way and extent by which conformational transitions
are sampled,23 the impact of this should ideally be small, given that
REX data appear to be at thermodynamic equilibrium when com-
pared to CS. Assumptions about equilibrium enter the procedure
because the objective function is generally constructed as a linear
sum, which we attempted to correct for FS-peptide PIGS data using
weights (see Sec. IV B). Furthermore, the Markovianity of input fea-
tures is an approximation or assumption that is not generally met
(Fig. S5), which similarly challenges the definition of the objective
function.

While adjustments of the boundary conditions and exploiting
adaptive sampling time steps have been proposed to address this,18

finite sampling is an unavoidable source of error in the estimation
of the exact committor in practice. Thus, we think that it would be
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better to develop the method in the direction of preserving quali-
tative insights similar to Ref. 29 that contain quantitative insights
whenever the data and the method allow it. This will require revisit-
ing both the optimization logic and the objective function while not
touching the main strength of the method: its largely intervention-
free construction. The qualitative insights are contained more in the
RC’s capability of ordering snapshots according to kinetic proxim-
ity, and this is what we have predominantly focused on in this work.
Conceptually, the objective function is written based on Marko-
vian dynamics and, to correct for errors in this, RC-dependent
diffusion, which arises naturally from projection to a single
dimension,43,81 and memory terms82 should be taken into account
explicitly.

We conclude that RC optimization constitutes a valuable tool
for summarizing complex ensembles of MD trajectories. This is
particularly remarkable for ensembles from advanced sampling
methodologies, which are a focus of current research,58,83–85 as they
afford reaching timescales of biological relevance.

IV. METHODS
A. RC optimization

The definition of boundary states is a crucial choice for RC opti-
mization. For FS-peptide, state A was defined as the ensemble of
structures possessing a heavy-atom RMSD of <1.5 Å from the fully
extended helix. Snapshots with an RMSD of >9.1 Å instead make up
boundary B. For further settings of the optimization procedure, we
loosely followed recommendations from Ref. 17. Specifically, the RC
was initialized to 0.5 for all intermediate snapshots and updated with
3000 random interatomic distances at a sampling time step of 1.5 ps.
The initial guess does not influence the RC beyond the very early
stages of optimization, as changes to the RC are drastic in this regime
(Figs. S2, S8, and S13). Empirically, uniform (0.5) and random ini-
tializations work equally well. To minimize user intervention, all
atoms, including hydrogen atoms, were considered.

Conceptually, at each iteration, the RC evolves trying to incor-
porate information on the slow dynamics of the system by decreas-
ing the objective function �r2 = ∑k[r(k�t + �t) − r(k�t)]2 over all
k snapshots of the trajectory. A basis function f (ri, di; αi) updates
the RC at iteration i, ri, in a multiplicative manner and conditional
upon the randomly chosen interatomic distance di. The parameter
αi is chosen to minimize �r2

i+1 by solving a least-squares problem
such that ri+1 = ri + f (ri, di; α∗i ), where α∗i minimizes �r2

i+1 while
keeping the RC values at the boundaries fixed.16 By using only geo-
metric features (distances), an implicit precondition of homogeneity
of the RC for geometrically similar structures is built in but the exact
mechanism is hard to spell out. We point out that, clearly, linearly
interpolating the RC between boundary states as necessary will gen-
erally be vastly superior in terms of objective function but will violate
this principle.

Note that we record only the numerical values of the RC but
not the function itself such that unseen configurations cannot eas-
ily be mapped to an RC value. Because the method is iterative and
changes at early stages of the optimization are more drastic, it is not
straightforward to interpret coefficients as importance measures for
specific features. Specifically, the RC was updated in three steps: first,
the new interatomic distance and the previous RC were combined
using a fourth-degree polynomial. Second, the region on r with the

highest density in �r2 was updated using an eighth-degree polyno-
mial by applying a Laplacian envelope with a scale parameter drawn
randomly from a uniform distribution on the interval [0, 1] at each
iteration. This strategy was proposed in Ref. 18 and was devised for
providing greater emphasis on the region on r where the represen-
tation by the RC is least accurate. This region was (re)determined
every 400 iterations. Third, r itself was updated with an eighth-
degree polynomial. The parameters for the basis function used in
the second and third steps were chosen analogously to the pro-
cedure described above but for a function g(ri; βi), which takes
as input only the RC itself. Due to the assumptions inherent to
the construction, only snapshots pairs that are actually neighboring
in time must contribute to �r2. This information has to be sup-
plied by the user. We did not attempt to analyze the properties of
this numerical procedure analytically or by systematic, numerical
exploration.

For REX, only the trajectories at the relevant temperature of
250 K that match CS and PIGS were considered for constructing the
RC. Compared to PIGS and CS, this is a substantially smaller amount
of sampling (32 × 208 000 = 6 656 000 snapshots each for PIGS and
CS compared to 4 × 208 000 frames for REX).

For ATAD2, PIGS was run to diversify the configuration of
the ZA loop and the BC loop, both of which are in contact with
the bound peptide in the crystal structure (see Sec. IV D for details
and Fig. S1). We determined an RC to capture the unbinding of the
acetylated lysine-containing peptide for both sets of 64 replicas com-
bined (Fig. S8) at a sampling time step of 20 ps. State A was defined to
be at PI values 869 000–881 000 (see Fig. 7 and Sec. IV D 2), whereas
state B was chosen via RMSD relative to the initial, bound state: the
value across all ligand heavy atoms had to exceed 25 Å. This RMSD
was calculated using Gromacs 2020.386 after aligning the system to
the set of protein heavy atoms that are part of neither the ZA nor
the BC loop. The RC was updated as described above for 3000 iter-
ations but with a polynomial of degree 16 (instead of 8) to update
suboptimal regions and r itself.

Calculations for determining the RCs were performed running
Python 3.8.6 and libraries NumPy87 (version 1.21.0) and Tensor-
Flow88 (2.4.3, CPU only) on a desktop machine. Functions for
determining optimal parameters were adapted from the code pre-
sented in Ref. 17 (available at https://github.com/krivovsv/NPNE).
Trajectory files were read, and distances were calculated using the
MDtraj package (version 1.9.6).89

B. Weighted ensemble for FS-peptide
PIGS trajectories

The goal of the weighted ensemble strategy11,36 is to track the
weight changes incurred by the splitting and termination of trajec-
tories, which happens frequently in PIGS (but never in REX or CS).
In detail, at the start of PIGS, each of the 32 replicas is assigned
a uniform weight of 1/32. At each reseeding event, the weight of
every terminated trajectory is distributed to the n kinetically closest
copies of the system. As the RC encodes kinetic distance between
snapshots, we hypothesized that the application of a kernel esti-
mate to differences in RC constitutes an effective way to devise a
splitting rule that represents kinetic proximity. Among the three ker-
nels tested, an exponential kernel performed best (Fig. S6) while
also offering better numerical stability compared to a radial basis
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function (RBF) kernel. In the end, we chose to distribute the weight
of a terminated replica to the n = 16 surviving copies closest to it at
the time of reseeding, with the fractional contributions determined
by the probability density of the kernel function at their individ-
ual RC difference values. The choice of n is a free parameter but
of limited impact for localized kernels (see Fig. S6), and we chose
it in accordance with the number of protected replicas during PIGS,
which means that there were always at least 16 copies available to
absorb the weight.

The RC optimization employed here conditionally minimizes
the total, squared displacement, which, for a Markov chain, can be
written as

�r2 =�
i, j

P( j�i)πi(ri − r j)2, (2)

where πi denotes the Boltzmann-weight of state i.
PIGS trajectories use a geometric distance between snapshots

to promote exploration while not altering the conditional probabil-
ities P( j�i). Therefore, the only reason that the sampling weights
are not equivalent to equilibrium weights is due to the repeated
splitting/terminating of trajectories in a manner that creates a non-
Boltzmann distribution of starting configurations for each short tra-
jectory. To correct this initial state bias, we exploit the WE strategy
described above to calculate snapshot-wise equilibrium weights πi.
These are then applied to provide a weight for contributions to �r2

during optimization. Specifically, we apply the weight at time k�t
for reweighting the transition r(k�t)→ r(k�t + �t). This choice is
expected to have no relevant impact as the weights for most neighbor
pairs are identical since changes can only occur at reseeding points.
Similarly, we use the weighted ensemble weights to remove initial
state bias from histogram-based FEPs, in which case we ensured
that the total weight integrates to 1. The helicity of the FS-peptide
was determined by the DSSP-algorithm90 as implemented in CAM-
PARI v4 (http://campari.sourceforge.net). To capture the variability
of the binary helicity within each bin of Fig. 2, a balance measure
was calculated according to 1 − (�n1 − n0�)�(n1 + n0), where n0 and
n1 denote the number of non-α-helical and α-helical snapshots in a
bin, respectively. Values close to 1 indicate perfect balance between
helical and non-helical configurations, whereas perfectly homoge-
neous bins result in 0. Cartoons of representative protein structures
were generated by PyMOL 2.4.1.91

C. Simulation restarts for generating
test data for FS-peptide

The data labeled “restarts” in Fig. S4 were generated identi-
cally to the CS settings in the original work:23 they were indepen-
dent, canonical Langevin dynamics simulations at 250 K with the
ABSINTH implicit solvation model.39 The only differences were
their starting structures (1024 per RC bin, extracted by systemat-
ically subsampling available snapshots) and the short simulation
length of 30 ns.

D. PIGS simulation of ATAD2
The bromodomain of ATAD2 was simulated in complex with

a tri-peptide with sequence GKacG; this little motif can be found
at multiple positions along the histone sequence, e.g., in the origi-
nal construct H4K12ac of PDB structure 4QUT,92 from which the

initial coordinates of the system are taken. The N- and C-termini
of the peptide and of the protein were capped with acetyl and N-
methylamide groups, respectively. Asp and Glu side chains were
negatively charged, Arg and Lys were positively charged, and his-
tidines were kept neutral in the Nε tautomer. The system was
solvated in a cubic box of 85 Å side length, and K+ and CL− ions
were added to neutralize the complex and approximate an ionic
strength of 150 mM. Parameters for the system were taken from the
CHARMM3693 force field with modified TIP3P water94 and a cus-
tom patch for the non-standard residue Kac. In simulations, all cova-
lent bonds were constrained by the LINCS algorithm;95 non-bonded
interactions (both electrostatic and van der Waals) were cut off at 12
Å, and long-range electrostatic interactions were calculated by the
generalized reaction field method.96 A first equilibration in the NPT
ensemble at 1 bar and 310 K (using Berendsen pressure coupling97

and the velocity rescaling thermostat98) was run for 1 ns in order to
allow the volume of the box to adjust. The box side was then fixed
to its average value obtained during the first relaxation (84.305 Å),
and the system was further equilibrated in the NVT ensemble at
310 K (with velocity rescaling coupling) for additional 0.5 ns. The
following production simulations kept the same settings used in the
NVT equilibration. Each PIGS run consisted of 64 replicas, attempt-
ing reseeding every 100 ps, each time protecting the 32 top-ranked
replicas from being terminated. Trajectory coordinates were saved
every 0.2 ps for the calculation of the PIGS heuristic and every
20 ps for analysis (PI and MSM construction). The simulations were
run with GROMACS 2016,86 whereas the reseeding heuristic was
calculated with CAMPARI v3b, and the two softwares were inter-
faced by a custom Python script. Two disjoint sets of dihedral angles
were chosen to separately target the ZA and BC loop for diversifica-
tion, giving rise to the ZA PIGS and BC PIGS sets of simulations.
Additional details on the simulation protocol and the full list of
degrees of freedom for PIGS enhancement are given in Ref. 30,
which introduced equivalent runs for the ATAD2 bromodomain in
its apo form. The total sampling amount is 157.6 ns/copy (10.1 �s
cumulative sampling) for ZA PIGS and 160.3 ns/copy (10.3 �s)
for BC PIGS.

1. Featurization of the system
To be able to construct the progress index or an MSM from the

data, we need to design a featurization of the system, which should
be representative of the process under study, i.e., ligand unbinding.
The use of inter-residue distances (possibly intra-receptor, intra-
ligand, and between receptor and ligand) is a reasonable choice.
In order to identify the most relevant of such distances, we made
use of contact maps, which keep track of the frequency of contacts
between each pair of residues; a contact is considered formed when-
ever any atoms of the two residues are closer than 5 Å. For each
set of simulations separately (ZA PIGS and BC PIGS), we compared
two contact maps: the first was calculated on the 1000 snapshots
closest to the crystal pose, in terms of the RMSD of all Cα atoms
of the bromodomain and ligand upon alignment on the Cα atoms
of the bromodomain alone; the second contact map considered all
the remaining snapshots. We then selected the inter-residue con-
tacts whose difference in frequency between the two contact maps
was greater than or equal to 0.15. The initially identified contact
pairs were further reduced by intersecting the set of pairs from ZA
PIGS and BC PIGS and by manual selection. Out of the final 43

J. Chem. Phys. 159, 015101 (2023); doi: 10.1063/5.0149207 159, 015101-17

© Author(s) 2023

 12 July 2023 10:54:26



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

pairs, 27 correspond to intra-bromodomain and 16 correspond to
peptide-bromodomain contacts. The selected contacts are listed in
Table S1 and annotated in the structure of the complex in Fig. S1.
Each residue pair (i, j) was further expanded into four inter-residue
distances, considering the minimum distance between the follow-
ing pairs of atom sets: backbonei–backbonej, backbonei–sidechainj,
sidechaini–backbonej, and sidechaini–sidechainj. The resulting 172
distances were smoothed with a sigmoid of the form

f (x) = 1 − 1
1 + exp −(x−5.0)

0.75

(3)

in order to mimic a continuous approximation of a binary contact
metric. The application of a sigmoid provides the additional advan-
tage that when the ligand is unbound, the variance and thereby
impact of large, noisy peptide-bromodomain distances on confor-
mational distance are squashed to 0. As the set of 172 distances
is somewhat redundant due to covalent geometry constraints, its
dimensionality was reduced to 30 components by principal com-
ponent analysis (PCA).99 The featurization (contact distance calcu-
lation and PCA) was carried out with CAMPARI v4. Cartoons of
representative protein structures were generated using an in-house
tool and PyMOL 2.4.1.91

2. Progress index calculation
A qualitative overview of the system’s thermodynamics and

kinetics can be visually rendered by means of a SAPPHIRE plot37 as
in Fig. 7 where each snapshot is reordered along the x axis accord-
ing to the progress index.29 Briefly, given a set of features and a
geometric similarity criterion, starting from an arbitrary snapshot,
the next one to be added to the progress index is the closest to any
of the snapshots already added. The creation of the progress index
relies on nearest-neighbor distances and can be solved exactly by
determining a minimum spanning tree. For scalability, an approx-
imate version of the algorithm is available that relies on a heuris-
tic search of the closest snapshots guided by a multi-resolution
clustering of the conformations into a tree-based structure.100 A
parallel version of this algorithm is implemented in CAMPARI
since v3.101 The PI, by grouping together snapshots from dense
regions of the conformational space, creates a 1D ordering of the
sampled regions and can be used to plot a pseudo-free energy pro-
file. Additional snapshot-based, geometric annotations can highlight
properties of the different free energy basins. For our specific sys-
tem, the geometric distance between snapshots was calculated using
the Euclidean distance of the set of 30 features defined above. Our
own tree-based clustering algorithm100 was used to organize the
conformations from all trajectories (ZA PIGS and BC PIGS) at 16
resolution levels; the finest level, with a cluster radius of 0.25 Å,
contained 36 562 clusters, whereas an intermediate resolution (clus-
ter radius 0.47 Å, 1255 clusters) was used for network-related
analyses.

3. MSM construction and related analyses
The transition counts along the trajectories were used to

determine the MSM transition matrix by maximum a posteriori
estimation (MAP) using a Dirichlet prior with flat concentration
parameters equal to 1 + 1�N, where N is the number of states

(corresponding to the maximum likelihood estimate if one assumes
an additional pseudo-count of 1�N for every transition).11,102 The
resulting network is fully connected but detailed balance is not
imposed. Transitions are counted using a sliding window with a lag
time of 100 ps, and they take into consideration the PIGS reseed-
ing history. To reduce the bias related to the sampling enhancement,
clusters were reweighted using the steady-state distribution from the
MSM.

For MSMs, boundary states A and B are defined at the level of
clusters. The definition should be stringent rather than too gener-
ous to exclude kinetic shortcuts. Therefore, we defined the bound
state A (qMSM = 0) as the clusters containing the initial snapshots
of the ZA PIGS replicas (four clusters, 15 650 snapshots) and the
unbound state B (qMSM = 1) as the largest cluster whose centroid has
a bromodomain–peptide distance of >25 Å (one cluster, 7366 snap-
shots). This distance was defined as the minimum distance between
residues from the ZA and BC loop regions and residues from the
peptide. The MFPTs from the MSM were calculated by solving
the linear system for Markov chains103 using PyEMMA v2.5.104

The committor values were calculated using transition path theory
(TPT)105–107 as implemented in CAMPARI.

SUPPLEMENTARY MATERIAL

Figures S1 along with Table S1 (related to Fig. 9), S2–S4 (related
to Fig. 2), S5 and S7 (related to Fig. 1), S6 (related to Fig. 3), S8 and
S9 (related to Fig. 9), S10 (related to Fig. 7), and S11–S13 (related to
Fig. 10) are included in a single file as the supplementary material.
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