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An Evolutionary Approach for Structure-based Design of Natural and Non-
natural Peptidic Ligands

Nicolas Budin, Shaheen Ahmed, Nicolas Majeux and Amedeo Caflisch*

Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Abstract: A new computational approach (PEP) is presented for the structure-based design of linear polymeric
ligands consisting of any type of amino acid. Ligands are grown from a seed by iteratively adding amino acids
to the growing construct. The search in chemical space is performed by a build-up approach which employs all
of the residues of a user-defined library. At every growing step, a genetic algorithm is used for conformational
optimization of the last added monomer inside the binding site of a rigid target protein. The binding energy
with electrostatic solvation is evaluated to select sequences for further growing. PEP is tested on the peptide
substrate binding site of the insulin receptor tyrosine kinase and farnesyltransferase. In both test cases, the
peptides designed by PEP correspond to the sequence motifs of known substrates. For tyrosine kinase,
tyrosine residues are suggested at position P and P+2. While the tyrosine at P is in agreement with the
experimental data, the one at P+2 is a prediction which awaits experimental validation. For farnesyltransferase,
it is shown that electrostatic solvation is necessary for the correct design of peptidic inhibitors.

1 INTRODUCTION and the ligand is grown starting from the seed [15]. Both
approaches should not be considered as mutually exclusive,
but rather as complementary since they are useful to generate
candidate ligands with different physico- chemical
characteristics and structural properties.

The knowledge of gene product sequences generated by
the genome projects [1, 2, 3] and the significant advances in
experimental protein structure determination and high-
throughput homology modelling [4] are providing a large
amount of targets for structure-based drug design.
Computational approaches that exploit the knowledge of the
three-dimensional structure of a protein target have been
developed and are used for de novo design [5, 6],
improvements of lead compounds, and to help in the
selection of monomers to focus combinatorial libraries [7].
Prioritization is done by empirical and knowledge-based
scoring functions or force field energy functions [8]. Ligands
are built by connecting small molecular fragments or
functional groups, often rigid, or even atoms. Atom-based
methods usually generate compounds that span a large
amount of chemical space [9, 10, 11]. The main
disadvantage of compounds generated by atom-based
approaches is that they often have complicated structures and
are in most cases very difficult to synthesize. Hence,
methods that build new compounds by combining
predefined fragments are more popular. The number of newly
created bonds is small and therefore it is less difficult to
control the chemistry, i.e., the synthesizability and the
chemical stability of the designed molecules.

The methods based on the connection of docked
fragments have the advantage that the functional groups
occupy optimal positions and are oriented such that their
interaction with the protein is favorable. On the other hand,
the geometry of the bonds connecting the fragments to each
other or to a central template is not optimal and has to be
accepted initially with a certain tolerance. The mapping of a
binding site and fragment assembly into complete ligands
can be performed by separated programs [13, 14] or
integrated in a single computational tool [16].

The approaches based on the progressive build-up of
ligands (called also growing procedures) usually start with a
seed fragment placed in an appropriate region of the binding
site. New ligands are then grown by sequentially appending
building blocks (fragments or atoms). To avoid
combinatorial explosion, a large fraction of all building
blocks is discarded at every step according to some heuristic
scoring. This method has the advantage that the newly
formed chemical bonds have a correct geometry and that the
intraligand interactions can be taken into account during the
design. On the other hand, build-up approaches have
difficulties to generate ligands that bind to different pockets if
these are separated by gap regions that do not allow specific
interactions. Moreover, the success of the growing procedure
and therefore the quality of the designed molecules depends
dramatically on the position of the seed, since the latter is
usually kept fixed. The seed position(s) can be determined
from X-ray or NMR structures of ligand-protein complexes.
If no structure is available, seeds must be obtained by
manual or computer-aided docking. Several programs that
implement an automatic build-up strategy have been

Fragment-based ligand design may be achieved in two
ways. In the first one, small fragments are docked in the
active site [12, 13]. The best positions of each fragment type
are retained and connected to generate candidate ligands [14].
Alternatively, a seed fragment is docked in the binding site
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described in the literature. The approach was pioneered by
Moon and Howe with the program GROW [15], and later
used in PRO_LIGAND [17]. In these programs, the library
of fragments is however restricted to amino acids and amino
acid derivatives. This has the disadvantage that the explored
chemical space is relatively small but the designed ligands
are synthetically accessible. An important advantage is that
the energetics of peptidic ligands can be studied by well
parameterized force fields. The conformational flexibility is
taken into account by using multiple conformers for each
amino acid. The main differences between these programs lie
in the scoring functions used to rank the ligands, and in the
way the conformation libraries for the amino acids are
generated. The scoring function in GROW is based on the
AMBER force field [18] supplemented by a solvent
accessible surface approximation of solvation [19].
PRO_LIGAND and LUDI [20] use empirical scoring
functions combined with a rule based interaction site
approach [21, 22]. The GROW and PRO_LIGAND libraries
contain low energy conformations whereas LUDI [20] uses
amino acid conformations extracted from high-resolution
protein structures.

success of any growing step depends largely on the previous
step(s). The orientation selected for the last added amino
acid may not correspond to the orientation of the same
residue when it is part of a longer sequence, and might
therefore not allow further correct growing. In PEP, this
problem is partially solved since sequences are ranked
according to their ability to allow an additional step of
growing besides favorable binding energy in solution.

2 METHODS

The ligand design approach implemented in the program
PEP uses a build-up strategy to search for optimal amino
acid sequences as well as favorable positions and
conformations of the corresponding peptides in the binding
site of an enzyme or receptor. At every growing step and for
each member of the amino acid library, a genetic algorithm
(GA) is used for conformational optimization of the added
residue. The implementation of PEP is based on the
Molecular Design Classes (MDC), a set of in house modules
(written in C++) developed to act as basic layer for structure-
based drug design softwares (Fig. (1)). The MDC are
presented first. Then the growing procedure is described.
Finally, the GA and the estimation of the energy are
explained.

In this paper, we present a new growing procedure (PEP)
for docking and design of peptidic ligands consisting of
natural and/or non-natural amino acids. PEP uses a genetic
algorithm (GA) for conformational optimization of the ligand
in a rigid protein. In ligand design the search space is huge
because the optimization is performed simultaneously in two
different spaces, namely conformational and sequence space.
Growing programs usually restrict the search in
conformational space to a relatively small number of minima
compared to the overall conformational space [15, 20, 17],
and therefore may fail to find the correct conformation,
especially for amino acids that contain many rotatable bonds
[15]. Moreover, since small deviations propagate in the
growing procedure, it is necessary to find amino acid
conformations which fit nicely to the binding site pocket.
This might require a deviation from the minimum
conformation of the isolated residue. The GA based
conformational optimization used in PEP does not suffer
from the limitations due to a finite number of residue
conformations. It is unrestricted in conformational space and
is able in principle to find the most favorable bound
conformation. Although the growing method allows
unrestricted chemical space search at each step, further
growing must be restricted to a relatively small number of
sequences to avoid combinatorial explosion. It is therefore
very important to be able to rank correctly the sequences in
order to restrict the search to the most favorable ones. The
correct ranking of different chemical entities having multiple
internal degrees of freedom is not a trivial task. PEP uses an
accurate implicit solvation model [23] to effectively rank the
designed peptides according to their binding energy in
solution. For a large number of protein-small ligand
complexes, it was shown that the energies in solution
calculated with this implicit solvation model correlate well
with the values obtained by finite difference Poisson
calculations [13], and in this study it is shown that the
model is also appropriate for the ranking of different peptide
sequences. The main disadvantage of every growing method
is inherent to its sequential approach. The current growing
step has no knowledge of the step(s) that will follow and the

Fig. (1). Layer representation of PEP on top of the MDC.
Modules are represented by rectangles. Common rectangle edges
symbolize module intercommunication. Laye61ark and light
gray, respectively.

2.1 Molecular Design Classes (MDC)

The MDC are an implementation of the basic code
needed to combine a set of compounds to generate candidate
ligands in a receptor active site (Fig. (1)). The MDC define
two types of molecular descriptors. The first one is used to
store both the receptor and the library of molecular fragments
that serve as building blocks to create new ligands. The
molecule coordinates can be read from files in the pdb or
mol2 formats while the parameters are read from a file in the
CHARMM parameter format [24]. The second type of
molecular descriptor contains the ligand information.
Ligands are generated by making chemical bonds between
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fragments. The ligand descriptor stores a population of
positions and conformations which have rigid body
(translation, rotation) and internal (rotatable bonds) degrees
of freedom. The position and orientation of the ligands are
minimized using a minimizer and an energy function. The
MDC define interfaces for the energy function and the
minimizer with the advantage that any implementation that
respects the appropriate interface can be added directly to the
existing code. So far, the minimizer and energy interfaces are
implemented by a GA and a force field function, respectively.
The different energy contributions of the force field can be
selected by the programmer in a modular way. In PEP, the
MDC are used to perform an exhaustive search in the
chemical space defined by the library of amino acids. The
MDC can also be used for structure-based design of
combinatorial libraries (Tenette-Souaille et al., in
preparation).

dead-ends, i.e., if there is no space for further growing, or
growing from them will lead only to poor interactions with
the receptor. The latter case usually happens when the
peptide grows away from the receptor surface. To test this,
an alanine is attached to the peptide candidate and GA
minimized. The corresponding sequence is kept if the vacuo
binding energy of the alanine minimum conformation is
better than a given energy cutoff (a cutoff value of -10
kcal/mol is used in the applications presented here). The
vacuo binding energy is a good indicator of the quality of the
interactions between the last added amino acid and the
protein: an amino acid conformation has an unfavorable van
der Waals energy contribution when it bumps into the
protein while its binding energy is very small in absolute
value when it grows away from the binding site. This
procedure is then repeated on the second growth level; each
amino acid in the library is attached to each of the dipeptide
sequences retained from the first step, minimized, and then
scored. Successive growth levels therefore generate peptides
that are lengthened by one residue. The procedure terminates
when the user-defined peptide length is reached. The output
data provided by PEP include residue sequences, energies,
and atomic coordinates of the peptide in the pdb format.

2.2 Growing Procedure

The aim of PEP is to construct peptides from one or
many user-selected starting positions (seeds) by iteratively
adding amino acids in conformations which interact most
favorably with the functional groups of the receptor binding
site. The default number of sequences kept at each growing
step is ten. Within the approximation that chemical entity
and orientation of a monomer are not affected by the
successive monomers, the search is exhaustive, because at
every step of growing every amino acid in the library is
attached to the actual construct (Fig. (2)). Furthermore, the
vacuo total energy (intermolecular plus intramolecular) of the
last added monomer is optimized by the GA, while most of
the already grown ligand is kept rigid. It is computationally
prohibitive to compute protein and ligand desolvations
during the GA optimization. After all the amino acids have
been minimized, the binding energy in solution is calculated
and only the highest scoring sequences are retained for the
next level of growth. The program then tests if the latter are

2.3 Template Library and Bond Formation

PEP uses amino acid templates in which the amide can
be either primary or secondary (Fig. (2A)). This includes L-
and D-residues, as well as non-standard amino acids and
peptoids (N-alkylated peptides).  The purpose of the acetyl
and amide end groups is twofold: to provide the polar
groups for intermolecular hydrogen bonds and to take into
account some of the conformational restriction experienced
by individual amino acids when they are connected in a
polypeptide chain [15]. The side chain and backbone rotat-
able bonds of the last added residue are flexible during the
conformational optimization. Moreover, the backbone
rotatable bond of the previous residue, which is the closest

Fig. (2). (A) Amino acid template used by PEP. G2 indicates the substituent position on the template amino group. G1 can be of any
type, without size limitation (e.g. -CH2-, standard amino acid side chain, ring etc). (B) Illustration of the flexibility in PEP during the
growing. Rotatable bonds are marked with circles. A fully flexible valine is bound to an alanine. Alanine can be either the seed, or a
residue positioned during the previous growing cycle. In addition to the valine internal flexibility, the alanine ψ dihedral (dashed
circle) is also flexible during the valine conformational optimization.



664    Combinatorial Chemistry & High Throughput Screening, 2001, Vol. 4, No. 8 Budin et al.

to the currently minimized amino acid, is also flexible (Fig.
(2B)). This increases the amount of explored conformational
space and prevents the growing direction from being
restricted to the optimal orientation of the terminal N-methyl
amide group at the previous growing step. This dihedral
corresponds to ψ and φ  for α-amino acids, when growing in
the N to C and C to N direction, respectively.

sequences after every GA optimization). The different energy
contributions are presented first. Then, the three energies
used in PEP are explained.

2.5.1  Energy Terms

The energy contributions can be divided in the following
categories. First, the terms which represent the intraligand
energy (2.5.2). These terms are calculated explicitly for each
appropriate set of ligand atoms. Second, the intermolecular
energy terms which approximate the interaction energy
between the ligand and the protein (2.5.3). Since the receptor
is rigid, its van der Waals (vdW) and Coulombic potentials
are mapped on look- up tables to improve the efficiency. In
these two categories the direct solvation effects, i.e., protein
and ligand desolvations, are neglected. The terms that deal
with solvation are grouped in the third category (2.5.4).
They use a continuum dielectric approximation for the
computation of the receptor and ligand desolvations, and the
screened ligand- receptor interaction in solution. All of the
energy parameters used in the applications presented here are
taken from CHARMm22 (MSI Inc.) but any other force field
with explicit dihedral, Coulombic, and van der Waals terms
could be used.

2.4 Genetic Algorithm

A GA is a stochastic optimization method that mimics
the process of natural evolution by manipulating a
population of data structures called chromosomes [25, 26].
Amino acids can have many rotatable bonds. It therefore
takes too long to perform an exhaustive conformational
search, unless a large increment angle is used. This however
leads usually to poor results because of the ruggedness of the
energy landscape due to the van der Waals term. In the GA
used in PEP, each chromosome contains so called genes that
encode the values of the angles of rotation around the
rotatable bonds of the last added amino acid and, as
mentioned above, the ψ or φ  dihedral of the residue closest
to the last. A chromosome of N genes therefore encodes the
conformation of a molecule with N rotatable bonds. The
genes are binary encoded in a string of one byte which gives
an integer value between 0 and 255. This integer value is
linearly rescaled to a real number between 0 and 2π, which
is used as a dihedral angle value for the appropriate rotatable
bond. This leads to a theoretical resolution of 1.4 degrees.
Starting from an initial randomly generated population of
chromosomes, the GA repeatedly applies two mutually
exclusive genetic operators, one-point crossover and
mutation, which yield new chromosomes (children) that
replace appropriate members of the population. The details of
the GA and the operators will be given elsewhere (Budin et
al., in preparation). For each GA conformational
optimization, a population of 100 chromosomes was used
and 1000 cycles were performed. At each GA cycle, 100 new
chromosomes were generated for a total of 105 conformations
tested during the overall GA optimization. Using the 20
standard amino acids, the growing of a tetrapeptide requires
620 GA runs and 6.2 x 107 energy evaluations ([20 + (3 x
200)] x 105 where the number in brackets is the sum of the
GA optimizations performed at the first and three subsequent
growing steps, and the 200 originates from 10 kept
sequences times 20 residues). Of the 6.2 x 107 energy
evaluations for the design of tetrapeptides, 620 include full
electrostatic solvation while the remaining ones use the
distance dependent dielectric function (see below).

2.5.2  Intraligand Energy

The internal energy contributions consist of the
electrostatic E ligand

elec t , van der Waals E ligand
vdw , and the strain

energy E ligand
stra in  of the ligand. The bond lengths and angles

are kept constant and have therefore no energy contributions.
E

liga nd
vdw  and E liga nd

e lect  are sums over the vdW and electrostatic
contributions, respectively, calculated explicitly for each pair
of ligand atoms ij, separated by at least three bonds. A
scaling factor of 0.5 is applied to the 1-4 electrostatic
interactions (atoms pairs separated by three bonds). The
vdW intraligand energy is described as the sum of a steep
repulsion and an attractive dispersion term with the 12-6
Lennard-Jones model:

√Σ R R R RE ligand
vdw =

i ,j
nonbonding

εiε j

vdw
i

rij

+ vdw
j

12

−2
vdw
i

rij
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j

6

(1)

where Rvdw
i  is the van der Waals radius of atom i and εi is

the minimum of the vdW potential between two atoms of
type i at optimal distance of 2Rvdw

i . The intraligand
electrostatic energy is given by

ΣE liga nd
e lect =  332.0

i,j
nonbonding

qiqj

εri j
n

(2)

2.5 Energy
where qi and qj are partial charges (in electronic unit), and
rij  is the distance in Å between two atoms i and j. For n = 1
and n = 2 equation (2) corresponds to the Coulomb law and
the distance dependent dielectric model E liga nd

e lect ,rdiel ,
respectively. There is no sound physical justification in favor
of the linear distance-dependent dielectric function even if its
agreement with more sophisticated models is remarkable
[23, 27]. Nevertheless, it is a simple and useful
approximation, since it yields a shorter range interaction
than the Coulomb law. Recently, distance-dependent

The energy terms are implemented in the MDC by
modules, each of which calculates a specific energy
contribution. The appropriate modules are then combined by
the programmer to compute a given energy. In PEP, the
modules are combined in three different ways which allow to
calculate the binding energy in vacuo (used to check for
dead-ends), the total energy in vacuo (used as scoring
function for the GA conformational optimization), and the
binding energy in solution (used to rank the different
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dielectric models have been used for docking and ligand
design [28, 29, 30], as well as in molecular dynamics
simulations of peptides [31], protein folding [32] and
unfolding [33]. The strain energy is a four-atom term based
on the dihedral angle about the axis defined by the middle
pair of atoms. E liga nd

strain  is the sum of the contribution of all
rotatable dihedrals X

2.5.4  Continuum Electrostatic Energy in Solution

The electrostatic energy in solution of a ligand-receptor
complex is evaluated within the continuum electrostatic
approximation [23, 27, 38, 39, 40, 41, 42, 43, 44, 45, 46].
The system is partitioned into solvent and solute regions
and different dielectric constants are assigned to each region.
In this approximation only the intra-solute electrostatic in-
teractions need to be evaluated. This strongly reduces the
number of interactions with respect to an explicit treatment
of the solvent. Moreover it makes feasible the inclusion of
solvent effects in structure-based ligand design where the
equilibration of explicit water molecules would be a major
difficulty. The electrostatic effects of the solvent are relevant
and it has been shown that the continuum dielectric model
provides an accurate description of molecules in solution
[27, 47]. The difference in electrostatic energy in solution
upon binding of a ligand to a receptor can be calculated as
the sum of the desolvation of the receptor, screened
intermolecular interaction, and desolvation of the ligand [14,
39]. The desolvation of the receptor is the electrostatic
energy difference upon binding of an uncharged ligand to a
charged receptor in solution. It is calculated according to

ΣE ligand
strain =

θ
kθ[1 + cos(nθ − δ)] (3)

where θ is the dihedral angle, kθ is the force constant, n is
the periodicity, and δ the angle value corresponding to the
maximal strain.

2.5.3 Interaction Energy

The electrostatic receptor-ligand interaction energy is
calculated by the factorization of the electrostatic potential of
the receptor which is kept rigid:

Σ Σ ΣE int
e lect iεligand

= qiΦi
iεl igand

= qi 332.0
jεreceptor

qj

εrij
n

(4)

τ Σ∆Eele ct,desolv
re ce ptor = 8π kεVl igand

D2 (xk)∆Vk
→ →

(7)The Coulombic potential of the receptor is computed
once over a grid containing the binding site plus a boundary,
and stored in a look-up table [13]. The contribution of each
ligand atom is computed by multiplying its partial charge qi
with the potential of the receptor interpolated from the
surrounding eight points of the grid by the trilinear
interpolation method [34].

where τ = 1
εp

− 1
εw

 (εp and εw are the interior and solvent
dielectric constants, respectively), Vligand is the volume
occupied by the ligand as defined by its molecular surface,
and D (x)

→ →  is the receptor electric displacement. The electric
displacement of every partial charge of the receptor is
approximated by the Coulomb field and is evaluated over a
3D grid [13].

The vdW interaction between a ligand and the receptor is
described with the 12-6 Lennard-Jones model:

The screened ligand-receptor interaction is the
intermolecular electrostatic energy in solution (Eelec t,sol).

int
 It

is calculated, via the GB approximation [23, 27, 42], as the
sum of the interaction energies between each ligand atom i
and its corresponding list of receptor atoms j [13]:

Σ ΣE int
vdw iεligand jεreceptor

=
Aij Bij

rij
12 rij

6
− (5)

where rij  is the distance between atoms i and j, Aij  and Bij
are van der Waals repulsion and attraction parameters. The
geometric mean approximation [35, 36, 37, 28] is used to
make the ligand and receptor terms factorizable in equation
(5): √AiA jAij  =  and √BiBjBij = , with Ai = εi(2Rvdw)12

i
and Bi = 2ε i(2Rvdw)6. Rvdw

i i  is the van der Waals radius of
atom i and εi is the minimum of the van der Waals potential
between two atoms of type i at optimal distance of 2Rvdw

i .
When the program starts, for every grid point p the two
following "receptor potentials" are calculated and stored in
look-up tables which span over the binding site plus a
boundary:

ΣEele ct,sol
int

iεligand
jεlisti

=
qiqj

εprij
−

qiqjτ
Rij

G B
(8)

where

Rij
GB = rij + Ref f Reff expi j

rij
_ 2

4Re ff Reff
i j

2 (9)

qi is the value of the partial charge on atom i, while rij  is
the distance between atoms i and j. Re ff

i  is the effective
radius of atom i and it is evaluated numerically on a 3D grid
covering the solute as described in [23]. It is a quantity
depending only on the solute geometry and represents an
estimate of the average distance of a charge from the solvent.
For a given ligand atom i, listi contains all the atoms of the
receptor residues whose geometrical center lies within a
distance of 10 Å from atom i. Additionally, listi is
supplemented with a monopole approximation of the distant

√ √Σ ΣφA(p) =
jεreceptor

Aj and φB(p) =
jεreceptor

Bj

rpj
12 6rpj

(6)

where the sums run over the receptor atoms which are within
a 10 Å cutoff distance of the grid point. The contribution of
ligand atom i is evaluated by multiplying its van der Waals
parameters √ √BiAi( and )  with the "receptor potentials"
(φA and φB, respectively) interpolated from the surrounding
eight points of the grid by the trilinear interpolation method.
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charged residues (charge center outside of the 10 Å sphere),
whose treatment reduces the error originating from the use of
a cutoff.

where it is assumed that the ligand-receptor vdW interaction
energy accounts for all the nonelectrostatic contributions to
the binding energy [48]. The difference in intraligand energy
is neglected because it is difficult to define the energy of an
isolated amino acid. Among the non dead-end sequences, the
ten with the most favorable ∆Ebinding are selected for further
growing.

The desolvation of the ligand is the electrostatic energy
difference upon binding of a charged ligand to an uncharged
receptor in solution. The ligand intramolecular energy in
solution is calculated by the GB formula as described in
[23]:

2.6 System Setup

Σ
iεl igand

qi qi τ2

2Re ff
i2Rvdw  εpi

2
_ Σ

i>j
i,jεligand

+
qiqj

εprij
−

qiqjτ
Rij

G B (10) The library of twenty standard L-amino acids was built
with the molecular modelling program WITNOTP (A.
Widmer, unpublished). Partial charges were assigned with
the MPEOE method [49, 50, 51] implemented in
WITNOTP which reproduces the all-hydrogen MSI
CHARMm22 parameter set [52]. All residues underwent a
CHARMM [24] conjugate gradient minimization to a RMS
of the energy gradient of 0.02 kcal/mol Å, using the
CHARMm22 force field (Molecular Simulations Inc.). This
is required for obtaining optimal bond lengths and bond
angles values, since these are not modified by the GA.

where Rvdw
i is the van der Waals radius of atom i. The first

sum is the self-energy term which represents the interaction
between the ligand and the solvent. The second term is the
screened ligand-ligand interaction. The desolvation energy of
a ligand upon binding to an uncharged receptor in solution
∆Ee lect,de solv

ligand  is equal to the difference of the intramolecular
energy of the bound and unbound ligand. Both values are
calculated using equation (10). For the unbound ligand, the
effective radii are calculated as described in [23] and
considering as solute the volume enclosed by the molecular
surface of the ligand. For the bound ligand, the low dielectric
constant (εp) is assigned to the volume enclosed by the
molecular surface of the receptor-ligand complex.

The 1.9 Å resolution x-ray structure of a 306-residue
fragment of the β-chain of the human insulin receptor
tyrosine kinase, complexed with a 6-residue peptide
substrate and a non-hydrolysable ATP analog [53], was
taken from the the Brookhaven PDB database [54] (access
code 1IR3). The water molecules, the 6-residue peptide, and
the ATP analog were removed. Hydrogen atoms were added
with WITNOTP. Partial charges were assigned with the
MPEOE method, and hydrogens were minimized with the
CHARMM program. The following thirty residues were
chosen to define the binding site: His1184, Arg1164,
Lys1182, Phe1186, Lys1165, Leu1171, Met1176, Leu1170,
Pro1172, Ser1180, Leu1181, Asp1183, Gly1169, Ala1168,
Gly1167, Gly1166, Val1185, Val1173, Asn1215, Leu1219,
Glu1216, Met1223, Lys1085, Gln1208, Arg1136, Trp1175,
Arg1174, Ser1006, Arg1039, Lys1220. Asp(P-1) of the
peptidic substrate was used as seed for the growing procedure
and its atomic coordinates were supplemented by a methyl
amino group connected to the CO by the program
WITNOTP.

2.5.5  Total Energy In vacuo and Binding Energy in
Solution

During the conformational optimization by the GA, the
sum of the intraligand and intermolecular energies is
calculated for each new conformation of the flexible amino
acid. The total energy consists of the following
contributions:

∆Etotal = Evdw  + Eelec t,rdie l + Eli ga nd + Eele ct,rdi el + Eligandint int
vdw

liga nd
stra in (11)

The last three terms approximate the intraligand energy of
the flexible amino acid (Eqs. 1, 2, and 3) while the
intermolecular energy is described by the first two terms
(Eqs. 4 and 5). The solvent screening effect is approximated
by the distance dependent dielectric model. The ligand and
receptor desolvation energies are not taken into account in
the GA scoring function because their computation would be
too CPU intensive since it requires between 5 and 10
seconds CPU time for a single-point calculation.
Furthermore, to prevent the sampling of solvent exposed
ligand side chains, it is useful to neglect the desolvation
penalty during conformational optimization by the GA. The
vacuo binding energy used to test dead-ends consists of the
first two terms in equation (11).

The 2.5 Å resolution x-ray structure of rat
Farnesyltransferase (FTase) complexed with an FPP analog,
α-hydroxyfarnesylphosphonic-acid (αHFP), and the peptide
CVIM [55] was downloaded from the PDB database (access
code 1QBQ). The water molecules and the peptide (CVIM)
were removed, whereas αHFP was left inside the FPP
binding site. Hydrogen atoms were built with the HBUILD
[56] option of the CHARMM program [24]. Partial charges
were assigned with the MPEOE method implemented in
WITNOTP, and hydrogens were minimized with the
CHARMM program. The Zn2+ and the following twenty-
six residues were chosen to define the binding site:
Ala129α, Tyr131α, Lys164α, Asn165α, Tyr166α,
Gln167α, His201α, Ala98β, Ser99β, Trp102β, Trp106β,
Gly142β, His149β, Ala151β, Pro152β, Met193β, Glu198β,
Arg202β, Asp297β, Cys299β, Tyr300β, Trp303β,
Asp352β, Tyr361β, His362β, Tyr365β. The first residue of
the substrate (Cys) was used as seed and it was prepared for

At each growing step, the best binding modes obtained
by the conformational optimization process (usually 200,
i.e., 10 actual constructs times 20 residues in the library) are
ranked according to the binding energy in solution which
includes the following contributions:

∆Ebindi ng = Evdw + Ee lec t,sol + ∆Ee lect,de solv + ∆Eele ct,desolv
int int liga ndrece ptor (12)
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growing as described above for the Asp(P-1) in the tyrosine
kinase.

the hydrogen bond between the CO of Met(P+3) and the NH
of Gly1169. For this hydrogen bond, the distance between
the heavy atoms ranges from 3.4 Å to 4 Å in the nineteen
conformations docked by PEP, while it is 3.0 Å in the x-ray
structure.2.7 Computation Times

For the applications to the insulin receptor tyrosine kinase
and farnesyltransferase, one PEP run required 18 and 9 hours
on a 550Mhz PentiumIII processor, respectively. Farne-
syltransferase required only about half of the time because
only three growing steps were performed, while four growing
steps were carried out for tyrosine kinase. Multiple PEP runs
for each protein were performed in parallel on a cluster of
PCs running Linux.

The hydroxyl group of Tyr(P) is hydrogen bonded both
as donor and acceptor to the side chain of Asp1132 and
Arg1136, respectively (Fig. (3A)). Finally the methionine
side chains of the peptide fit into two adjacent hydrophobic
pockets (Fig.  (3B)). Most of the binding interactions are still
present in the conformation with the worst energy and
different binding mode. The hydrogen-bonding of the Tyr(P)
side chain and Met(P+1) backbone are conserved. However,
the methionine side chains are not placed in the hydrophobic
pockets and the Met(P+3) backbone hydrogen bond is lost.
The average backbone RMSD of the twenty peptides
compared to the x-ray structure is 0.67 Å. It is remarkable
that the structure with the incorrect binding mode and the
one with the misplaced Met(P+1) side chain have the worst
and the second worst energy values, respectively. Moreover,
the incorrect structure is separated by an energy gap of about
4 kcal/mol from the nineteen best conformations. These
results show that the GA approach is very reproducible (95%
in this case), and that the binding energy in solution is able
to rank correctly different binding modes of the same peptide
generated by different GA runs.

3 RESULTS AND DISCUSSION

3.1 Tyrosine Kinase

Most kinase inhibitor projects aim at blocking the
binding of ATP [57]. This approach is however difficult
because the intracellular ATP concentration is high, and the
ATP binding sites are very similar among different kinases,
which leads to selectivity problems [58]. Inhibitors directed
at the substrate binding site do not suffer of these
limitations, but they usually have low binding affinities due
to the shallowness of the substrate site. The insulin receptor
is an α2β2 transmembrane glycoprotein with intrinsic kinase
activity [59] that mediates the physiological effect of insulin
[60]. It has been shown that tyrosine residues in the YMXM
motif, where X can be any standard amino acid, are efficient
substrates of the insulin receptor in vitro and in vivo [61].
The eighteen residues peptide KKKLPATGDYMNMSPVGD is
an insulin receptor substrate with a reported Km of 24 µM
[61]. Its x-ray structure in complex with the activated insulin
receptor kinase is available (code 1IR3) [53]. Of the eighteen
residues, supporting electron density is seen for only six,
from the P-2 to the P+3 residue (GDYMNM, P-residue is
the acceptor tyrosine). The shallow substrate binding site of
tyrosine kinase represents a challenging test case for PEP and
the solvation model.

A more stringent test of PEP is the design of tetrapeptide
sequences. Starting from the same amino acid seed as for the
docking test (Asp (P-1)), fifteen PEP runs unrestricted in
sequence space were performed with different initial random
number values for the GA. A library containing the twenty
naturally occurring amino acids was used at each growing
step. Since the grown sequence is part of a longer peptide,
the dead-end selection procedure was performed even for the
fourth growing step in order to discard sequences that would
not allow further growing. To analyze the results one has to
consider that the GA performs a stochastic search; hence, the
most favorable sequences are those which are generated in
many runs and with a good binding energy in solution. A
given sequence can be generated by PEP n times (with up to
n different conformations) out of m growing runs with n < m.
The sequences generated by PEP are first sorted according to
the highest occurrence and then by the binding energy in
solution averaged over the n conformations. Table 1 contains
sequences that were generated most often in the GA runs,
and only the five with the most favorable average binding
energy in solution are listed for each set of sequences having
the same occurrence value. The backbones are oriented
correctly with the four aforementioned hydrogen bonds
formed, and the largest backbone RMS deviation is 0.54 Å.
The most frequent peptides contain Tyr at P and P+2 (Fig.
(3B-D)). The former is in agreement with experimental data,
while the Tyr at P+2 is a prediction. It would be interesting
to test this prediction by the synthesis and test of the
YMYM or a longer peptide. Ala and Met are found at P+1
and hydrophobic residues are clearly favored at P+3. Tyr and
Phe fit very well in the hydrophobic pocket occupied by
Met(P+3) in the x-ray structure, and the hydroxyl group of
the Tyr donates a hydrogen bond to the CO of Leu1181.
The sequence with the best binding energy (YMYM)
corresponds to the YMXM motif.

As a first test, a single sequence was docked into the
substrate binding site. Starting from the Asp(P-1) residue,
twenty growing runs restricted to the sequence YMYM were
carried out, each one with a different initial random number
value for the GA. The aim was twofold: to check that the
program was able to find the right binding mode of the
peptide, and verify that the results were independent of the
seed values used. Since in the x-ray structure the side chain
of Asn(P+2) does not interact with the receptor, a tyrosine at
P+2 was used for the docking test. Out of the twenty
conformations of YMYM generated by PEP, nineteen have
the correct backbone and side chain orientations (apart from
one conformation with a different rotamer for the χ2 of Met at
P+1) (Fig. (3A)). The remaining one has the worst energy
and a different binding mode. All the binding features
previously described [53] are reproduced in the nineteen
correctly placed structures. The four backbone hydrogen
bonds are reproduced: two between the backbone polar
groups of Met(P+1) and Leu1171, and two between
Met(P+3) and Gly1169. The largest deviation is found in
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Fig. (3). (A) Nineteen YMYM tetrapeptide conformations docked by PEP in the active site of the insulin receptor tyrosine kinase. The
substrate x-ray structure (YMNM) is shown in yellow, and hydrogen bonds are indicated by green dotted lines. (B) The molecular
surface of the tyrosine kinase active site is displayed together with the YMYM tetrapeptide grown by PEP. The side chain of Tyr(P)
is not visible because it is buried in a deep pocket. Hydrophobic regions are displayed in green and hydrophilic in blue [48]. Figure
made with GRASP [73]. (C) Same as (B), with the YMYY tetrapeptide designed by PEP. (D) Same as (B), with the YAYM
tetrapeptide designed by PEP.

3.2 Farnesyltransferase [65, 66, 67]. This, among other fast posttranslational
modifications, is required for their attachment to the plasma
membrane, which is essential for their biological activity
[68, 69, 70]. Ras processing and membrane association are
signaled by a carboxyterminal tetrapeptide sequence present
on all Ras proteins. This sequence is normally referred to as
the CaaX motif where 'C' stands for a cysteine, 'a' is
generally an aliphatic amino acid, and 'X' typically is a
methionine and less frequently a Ser, Ala, Phe or Leu [71].

Ras proteins play a critical role in signal transduction
pathways that control cell growth and differentiation.
Mutants of three human Ras proteins (Ha-Ras, Ki-Ras and
N-Ras) are found in 20-30% of all human cancers [62, 63,
64], which makes them an attractive target for antitumoral
drug design. A promising approach for interfering in the Ras
function involves inhibition of the enzyme farnesyltransferase
(FTase). This enzyme covalently links the isoprenoid
moiety of farnesyl pyrophosphate (FPP) to the C-terminal
part of Ras as well as to other membrane associated proteins

Starting from the Cys residue that coordinates the zinc
atom, fifteen unrestricted growing were performed, with
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Table 1. Insulin Receptor Tyrosine Kinase Inhibitors Generated by PEP

Sequence Occurrencesa Relative binding energyb Backbone RMS deviationc

P P+1 P+2 P+3 [%] [kcal/mol] [Å]

Y A Y Md 87 1.4 0.37

Y A Y Y 87 1.9 0.35

Y A Y A 87 2.5 0.36

Y A Y G 87 2.7 0.38

Y A Y I 87 2.7 0.37

Y M Y Me 73 0.0 0.54

Y M Y Yf 73 1.2 0.46

Y M Y F 73 1.6 0.47

Y M Y A 73 1.7 0.47

Y M Y V 73 1.9 0.48

The sequence in bold corresponds to the YMXM motif; aPercentage of PEP runs (out of 15) that generated a given sequence; bBinding energy averaged over all
conformations of a given sequence. The average binding energy values are relative to the one of the most favorable sequence; cBackbone RMS deviation from the x-ray
structure. For each sequence, the conformation with the best energy was used to calculate the RMS deviation; dPeptide shown in Figure 3D; ePeptide shown in Figure 3B.
fPeptide shown in Figure 3C.

different initial random number values for the GA. PEP
generated tripeptides that belong to the consensus motif of
FTase peptidic inhibitors (Table 2). It is striking that the
most frequent tripeptides contain Val and Ile at a1 and a2,
respectively. Furthermore, among the sequences with the
highest occurrence (12 of 15 runs) the one with the second
best energy (VIM) corresponds to the tripeptide sequence in
the x-ray structure [55]. The conformation of the PEP hits
overlap the x-ray structure (Fig. (4A)). In particular, the
backbone RMS deviation of the first five sequences in their
minimum energy conformation is smaller than 1.0 Å. The
deviations of the backbone are larger than for tyrosine kinase
because only two intermolecular hydrogen bonds are formed
between the peptide substrate and FTase. The heavy atom
RMSD between the VIM tripeptide generated by PEP and
the x-ray structure is 1.23 Å. The two hydrogen bonds
between the backbone of the CVIM peptide and FTase are
reproduced. These are the hydrogen bonds between the CO
of a2 and the guanidinium of Arg202β and between the C-

terminal carboxy group and the NH2 of Gln167α (Fig.
(4A)). The second most frequent set of sequences contain a
isoleucine and glutamine at positions a1 and a2,
respectively. Glutamine at position a2 was found recently by
combinatorial tetrapeptide libraries in very efficient substrates
[72].

Another series of fifteen PEP runs were carried out using
the binding energy in vacuo at the selection step. The aim
was to determine if solvation is required to get the correct
peptide sequence. Although the peptides generated by PEP
still have the right backbone conformation (Fig. (4B)), large
polar/charged side chains are now clearly favored (Table 3).
The most frequent tripeptides contain glutamine and lysine
at position a1 and a2, respectively. Polar residues are also
predominant for the C-terminal residue. These results
indicate that the desolvation penalty of the ligand can not be
neglected. Moreover, the percentage of occurrence is much
lower compared to the results obtained with solvation

Table 2. Farnesyltransferase Inhibitors Generated by PEP

Occurrencesa Relative binding energyb Backbone RMS deviationc

Sequence [%] [kcal/mol] [Å]

V I L 80 2.5 0.59

V I Md 80 3.3 0.60

V I H 80 3.6 0.59

V I T 80 3.6 0.54

V I G 80 3.9 0.91

I Q M 60 0.0 1.06

I Q Q 60 1.2 1.28

I Q L 60 1.5 0.72

I Q H 60 2.3 1.03

I Q S 60 2.6 1.19

The sequence in bold corresponds to the peptide in the x-ray structure; aPercentage of PEP runs (out of 15) that generated a given sequence; bBinding energy averaged
over all conformations of a given sequence. The average binding energy values are relative to the one of the most favorable sequence; cBackbone RMS deviation from the
x-ray structure. For each sequence, the conformation with the best energy was used to calculate the RMS deviation; dPeptide shown in Figure 4A.
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Fig. (4). Stereo-view of PEP results on FTase. (A) The x-ray structure of the CVIM substrate is shown with thick black lines and the
CVIM sequence grown by PEP in thin grey lines. Conserved hydrogen bonds with two FTase side chains are indicated by dashed
lines. (B) Same as (A), with the CQKK sequence (thin lines) grown by PEP using the vacuo binding energy.

(compare second column of tables 2 and 3). Hence,
neglecting solvation it is more difficult to obtain
convergence in chemical space.

kind of organic fragment with an amino and carboxy group.
The main advantage of this type of compounds is that they
can be synthesized by combinatorial or parallel approaches
provided that the monomers are available. PEP uses an
accurate evaluation of binding energy in solution to drive the
search in chemical space. For the two test cases presented in
this study, the peptidic ligands designed by PEP have both
sequence and binding mode in agreement with experimental
results.

4 CONCLUSIONS

PEP is a ligand build-up approach that uses at each
growing step a GA for conformational optimization of the
last added monomer. The ligands are linear combinations of
monomers connected by amide bonds and can consist of
peptides, peptoids (N-substituted amino acids), and/or every

The main limitation of PEP is the requirement of a
correctly oriented seed fragment. The placement of the seed

A

B
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Table 3. Farnesyltransferase Inhibitors Generated Using the Vacuo Binding Energy

Occurrencesa Relative binding energyb Backbone RMS deviationc

Sequence [%] [kcal/mol] [Å]

Q K Kd 34 0.0 0.61

Q K R 34 2.8 0.58

Q K T 34 13 0.66

Q K Y 34 13.1 0.76

Q K Q 34 14.4 0.71

aPercentage of PEP runs (out of 15) that generated a given sequence; bVacuo binding energy averaged over all conformations of a given sequence. The average binding
energy values are relative to the one of the most favorable sequence; cBackbone RMS deviation from the x-ray structure. For each sequence, the conformation with the best
vacuo energy was used to calculate the RMS deviation; dPeptide shown in Figure 4B.

fragment, although separated from the growing method itself,
has a great influence on the outcome of the procedure. A
poorly positioned seed can prevent ligands from reaching
important interaction sites in the receptor. We are currently
implementing in PEP some limited flexibility in the
orientation of the seed fragment (Budin et al. in preparation).
A number of methods are available for choosing reasonable
seed positions. If an x-ray structure with a bound peptidic
ligand is available, one amino acid of the ligand can be used
as seed position. Otherwise, it is possible with most
modelling systems to manually dock a seed fragment into
the receptor site. However, identifying the optimal placement
of the seed is not always a trivial problem. Another option is
to use an automatic fragment docking program like SEED,
an in house developed program for exhaustive docking of
small ligands with electrostatic solvation [13].

program PEP (for SGI or PC running the Linux operating
system) as well as the library of amino acids are available for
not-for-profit institutions from the last author (email:
caflisch@bioc.unizh.ch).
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