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Protein folding is governed by a complex free energy surface

whose entropic contributions are relevant because of the large

number of degrees of freedom involved. Such complexity, in

particular the conformational heterogeneity of the denatured

state, is hidden in projections onto one or two order parameters

(e.g. fraction of native contacts and/or radius of gyration),

which usually results in relatively smooth surfaces. Recent

approaches borrowed from network and graph theory have

yielded quantitative unprojected representations of the free

energy surfaces of a b-hairpin and a three-stranded b-sheet

peptide using equilibrium folding-unfolding molecular

dynamics simulations. Interestingly, the network and graph

analyses of these structured peptides have revealed a very

heterogeneous denatured state ensemble. It includes high-

enthalpy, high-entropy conformations with fluctuating

non-native secondary structure, as well as low-enthalpy,

low-entropy traps.
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Introduction
From the almost concomitant formation of native-like

interactions observed using different experimental tech-

niques, the folding of many small single-domain proteins

appears to be an effectively two-state reaction [1], that is

to say, only the native and denatured states are populated

at equilibrium. Yet, protein folding is a complex process

driven by non-covalent (van der Waals and electrostatic)

interactions involving the atoms of the protein, the sur-

rounding water molecules and ions. During folding, the

loss of entropy in the protein chain is counterbalanced by

favorable interactions between protein atoms; the former

is thought to be mainly responsible for the activation

barrier. The major role played by the entropic contribu-

tions indicates that analysis of the free energy surface of

proteins is more important than analysis of the potential
www.sciencedirect.com
energy surface, in particular for investigating the folding

process [2–5]. The potential energy surfaces of several

molecular systems, ranging from peptides [6] to a virus

capsid [7], have been characterized, but analysis of the

free energy surface is much more difficult.

One common way to investigate and display the folding

free energy landscape is to study it as a function of one or

more order parameters, that is, suitably chosen macro-

scopic quantities that should discriminate the different

states of the protein. In this context, it is useful to distin-

guish between an ‘order parameter’ and a ‘reaction coor-

dinate’. The former is any observable that identifies

configurations in different stable states. A reaction coordi-

nate describes the complete process or reaction, that is, it

must correlate closely with the location of every state and

identify the transition state(s) along the folding path-

way(s). Hence, a reaction coordinate is a good order para-

meter, but the inverse is not necessarily true. For example,

it is common in the study of protein folding to use the

fraction of native contacts (Q) [8]. Q is a satisfactory

reaction coordinate for Go-model proteins [9], in which

favorable interactions occur only between residues that are

in contact in the folded state [10]. On the other hand, for

transferable potentials (e.g. those based on physico-che-

mical principles, such as AMBER, CHARMM and OPLS),

Q describes well only the fully folded (Q = 1) and unfolded

(Q = 0) states. In fact, for a structured peptide simulated by

a transferable force-field, some conformations with Q �0.7

were found to belong to the denatured state ensemble and

conformations with Q �0.3 to the folded state [11]. Similar

conclusions on the inadequacy of Q were drawn on the

basis of lattice model simulation results [12].

Free energy projections onto (often naively chosen) order

parameters have been used to analyze many aspects of

protein folding. Stable states are usually associated with

local free energy minima on the projected landscape. The

depth of the minima is considered proportional to the

stability of the states and the barriers between different

minima indicate activation energies between states. In

many cases, this approach reveals a surprisingly simple

two-state picture of protein folding, which, although

deceptively similar to the interpretation of the experi-

mental observations, is in striking contrast to the com-

plexity of the actual free energy surface. Hence, using

free energy projections for the study of the kinetics of

protein folding requires knowledge of an appropriate

reaction coordinate. Such a reaction coordinate is not

easily accessible and/or identifiable [12]. Given the com-

plexity of protein folding, which, as mentioned at the

beginning, originates from the large number of degrees of
Current Opinion in Structural Biology 2006, 16:71–78
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Figure 1

Conformational space network of the designed three-stranded

antiparallel b-sheet peptide b3s. Nodes represent conformations and

links represent transitions between them, as sampled during 10 ms

implicit solvent molecular dynamics simulations at the melting

temperature of 330 K. The size and color of the nodes reflect the

statistical weight and average neighbor connectivity, respectively [22].

Representative conformations are shown by a pipe colored according to

secondary structure: white for coil, red for a-helix, orange for turn or

bend, cyan for b-strand and blue for the N-terminus. The variable radius

of the pipe reflects the structural variability of the snapshots within a

node. The yellow diamonds are folding transition state conformations.

HH, TR, TSE and FS are the helical, trap, transition state ensemble and

folded states, respectively. Reproduced with permission from [22].
freedom and pairs of interacting atoms, a simplified

description is needed (e.g. to compare with experimental

data), even though it might miss essential aspects of the

process [8].

The focus of this review is on recent approaches to inves-

tigate the free energy surface governing the folding of

structured peptides and small proteins. The emphasis is on

methods that do not use projections onto arbitrarily chosen

order parameters. Such methods have provided interesting

insights into the elusive folding transition state and the

denatured state ensemble. Most of these approaches and

their applications were published in 2004–2005, and are

still the subject of intense investigations.

Conformational space networks
Many complex systems, such as social interactions, the

Internet, metabolic pathways [13,14] and protein struc-

tures [15–17], have been modeled as networks. Intrigu-

ingly, common topological properties have emerged from

their organization [18]. Scala et al. [19] have mapped the

conformational space of a short two-dimensional lattice

polymer chain onto a network in which a link between

two nodes indicates their interconversion in a single

Monte Carlo move of the chain. Doye [20,21] has inves-

tigated the potential energy landscape of a Lennard–

Jones cluster of atoms by dividing the surface into basins

of attraction surrounding minima and linking those basins

that are directly connected by a saddle point.

We have used complex network analysis [22] to study the

conformational space and folding of a designed 20-residue

peptide (b3s), whose solution conformation had been

previously investigated by NMR spectroscopy [23] and

implicit solvent molecular dynamics simulations [24,25].

In the latter, b3s was shown to reversibly fold, irrespec-

tive of the starting conformation, to the NMR solution

conformation, a three-stranded antiparallel b-sheet. The

short sequence of the peptide and the implicit treatment

of the solvent allow the sampling of several folding-

unfolding events at the melting temperature of 330 K

along a 1 ms trajectory in about 10 days on a single

processor of a personal computer. To build the network,

the b3s conformations and transitions sampled by mole-

cular dynamics were considered as nodes and links,

respectively [22]. In this way, free energy minima and

their connectivity emerge without requiring projections

onto arbitrarily chosen reaction coordinates (Figure 1). As

previously observed for a variety of networks as diverse as

the Internet and the protein interactions within a cell, the

conformational space network of polypeptide chains is a

scale-free network, that is, the distribution of the number

of possible connections of a conformation follows a power

law. The reasons for the power law distribution are not

clear. Interestingly, a correlation was found between the

statistical weight (size of the node) and connectivity

(number of links to a node) — the most connected nodes
Current Opinion in Structural Biology 2006, 16:71–78
are also low-lying minima on the free energy landscape.

Another observation was that the native basin of the

structured peptide shows a hierarchical organization of

conformations. Such an organization was not observed for

a random heteropolymer that lacks a native state (i.e. a

predominant free energy minimum) [22].

One of the most interesting findings of the network

analysis was that the denatured state ensemble of b3s

is very heterogeneous [22] (see below). The complexity

of the denatured state is hidden in the projection of the

free energy onto Q (Figure 2) or onto two order para-

meters describing the N- and C-terminal hairpins (see

Figure 5 of [25]). Both projections yield a smooth profile.

Using the root mean square deviation (rmsd) from the

folded structure or the radius of gyration as reaction

coordinates is even less selective [26]. The usefulness
www.sciencedirect.com
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Figure 2

Projection of the free energy of b3s onto the fraction of native contacts (Q). The profile of the projected free energy is smooth, in striking contrast

to the network representation of Fig. 1; both figures are based on the same 10 ms sampling. For values of Q < 0.8, the projection masks the

complexity of the non-native states, that is to say, it groups together structurally different conformations, for example, in the transition state

(orange boxes) and denatured state ensemble (yellow boxes). Moreover, kinetically different conformations, such as the two transition state

representatives (pfold �0.5, top two orange boxes) and the curl-like trap (pfold �0, bottom orange box), are not separated by Q (i.e. both have Q �0.5).
of the network analysis was also shown by employing

some of the network properties to identify transition state

conformations and two main average folding pathways

[22]. To date, network analysis has mainly focused on the
www.sciencedirect.com
study of network topology (i.e. the connectivity between

different conformations and the overall shape of the free

energy surface) and has not yet been used to determine

transition rates and kinetics.
Current Opinion in Structural Biology 2006, 16:71–78
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Recently, Andrec et al. [27] have combined replica

exchange molecular dynamics simulations and a network

model to investigate the kinetics of peptide folding. Pairs

of snapshots saved along 20 parallel trajectories (at tem-

peratures between 270 K and 690 K) were connected if

they had similar Ca–Ca distance matrices and were

sampled in runs at the same or nearest temperature values.

With this combined approach, they observed that the coil-

to-hairpin transition of a 16-residue peptide (the C-term-

inal segment from the B1 domain of protein G) often

proceeds through metastable helical conformations [27].

An unanswered question concerns the use of the replica

exchange technique for kinetic analysis, which is not

justified because the peptide replicas are periodically

swapped through different thermodynamic states (i.e.

from a high-temperature replica to a low-temperature

replica).

Transition disconnectivity graphs
Because of the high complexity of the potential energy

surface of molecular systems, Becker and Karplus [6]

introduced a pictorial, but quantitative, description that

is based on the disconnectivity graph (DG). A DG

provides a visualization based on a dendrogram of all

of the minimum-saddle-minimum triads. Such tree-like
Figure 3

Transition disconnectivity graph of a b-hairpin (the C-terminal segment from

molecular dynamics simulations at 360 K were sampled to obtain a sufficien

of the deepest free energy minima are shown and labeled 1–4. The left vert

The right vertical axis shows the free energy of the minima and barriers. Re
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graphs have been already applied to a variety of mole-

cular systems [7].

Because the equilibrium and dynamic properties of pep-

tides and proteins depend on the free energy, rather than

the potential energy, the DG approach has been recently

extended by Krivov and Karplus [28] to analyze the free

energy surface. They have developed the transition DG

(TRDG) approach, which exploits an isomorphism

between the total rate connecting two free energy minima

(considering all possible pathways) and the maximum flow

through a network with capacitated edges (i.e. edges

directly or indirectly connecting two nodes and having a

certain flow capacity). The TRDG was determined first for

the alanine hexapeptide and the Arg-Gly-Asp-Ser peptide

[28], and more recently for the 16-residue b-hairpin pep-

tide from the B1 domain of protein G [29]. A very inter-

esting finding of the TRDG analysis of the b-hairpin

peptide is that the denatured basin is not funnel like

(Figure 3) and, in spite of the traps, which equilibrate

rapidly (see below), exponential folding behavior is

observed. In this context, it is important to underline that

the original funnel diagram [30] plots along the vertical axis

the effective energy, which is the sum of the intrapeptide

energy and solvation free energy [31]. However, it is the
the B1 domain of protein G). A total of 4 ms implicit solvent

t number of folding-unfolding events [29]. Representative structures

ical axis shows the partition function of the minima and barriers.

produced with permission from [29].

www.sciencedirect.com
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total free energy — the effective energy plus conforma-

tional entropy (the latter being the horizontal width of the

funnel) — that determines the folding process [2,3]. As

found for b3s, projections of the b-hairpin free energy

surface onto two dimensions (e.g. rmsd from the folded

structure and radius of gyration, or the two most important

principal components; Figure 4 of [29]) are smooth and

hide the complexity of the denatured state.

To obtain a simplified description of the folding process,

the complex form of the TRDG of the b-hairpin was

‘reduced’ to a network of only five nodes (i.e. free energy

basins) by preserving the barriers between basins [29]. It

is clear from the simplified network that most folding

transitions go through the ‘entropic’ basin [29]. (The term

‘entropic’ originates from the observation that the free

energy of this basin has a significant contribution from the

peptide conformational entropy. In other words, the

entropic basin consists of many shallow sub-basins that

could not be separated because all partitions are closely

connected by small equilibration times, i.e. 1 ns or less.)

As a consequence, the three non-native basins that do not

belong to the entropic basin appear to be off-pathway.

Although the choice of the number of nodes for building

the simplified network was not difficult in the case of the

b-hairpin, which has four pronounced basins and the

entropic basin (Figure 3), it might not always be simple

and might involve the choice of an arbitrary threshold for

more complicated TRDGs.

The essential element of both the conformational space

network [22] and TRDG [29] approaches is the descrip-

tion of free energy minima and basins, not according to

geometrical characteristics (such as Q or rmsd from the

folded structure), but rather according to the transitions at

equilibrium. In other words, given an equilibrium fold-

ing-unfolding trajectory, the population of the states

provides the relative free energies. Moreover, in the case

of the TRDG, the rate of transitions between states yields

the free energy barriers, which are illustrated by the

TRDG dendrogram. It is important to underline that

both the network and TRDG approaches require a clus-

terization to group snapshots saved along equilibrium

trajectories into states (i.e. the nodes of the network

[22] or vertices of the TRDG dendrogram [29]). Some

evidence of the robustness upon changing clusterization

algorithm (based on rmsd or secondary structure string)

has been provided [22,29], but this issue has to be

analyzed in more detail. Several investigations of the

effects of clustering (i.e. grouping snapshots into macro-

states) have been published recently [32,33].

Heterogeneity of the denatured state
ensemble
The most surprising result obtained from the network

analysis of b3s and the graph analysis of the protein G b-

hairpin is the heterogeneity of the denatured state ensem-
www.sciencedirect.com
ble. In fact, it includes a variety of high-enthalpy, high-

entropy conformations, for example, the partially helical

conformations of b3s (denoted HH in Figure 1), as well as

low-enthalpy, low-entropy structures, for example, the

curl-like trap (TR) [22]. The former are loosely linked

clusters of conformations with non-native secondary

structure (see Table 1 in [22]), and are characterized

by an unfavorable effective energy (the sum of peptide

potential energy and solvation energy) and fluctuating

unstructured residues (e.g. the terminus of the helix

shown at the top left of Figure 1). In contrast, low-

enthalpy, low-entropy traps form tightly linked clusters

with almost identical secondary and tertiary structure, and

have a favorable effective energy (similar to or even

slightly more favorable than that of the native structure)

and no fluctuating residues (e.g. Figure 1, top right).

Taken together, these results indicate that the folded

state of these two b-structured peptides is entropically

favored over low-enthalpy non-native conformations,

such as the curl-like trap, that is to say, the folded state

has more flexibility than the curl-like trap. It is not

possible to generalize the entropic stability of the native

state, which could originate from approximations inherent

to the implicit solvent model, in particular the treatment

of charged groups [24]. A possible explanation for the

observation that the model favors a misfolded conforma-

tion of b3s is that the C-terminal carboxy is involved in

four hydrogen bonds in the trap (with the backbone NHs

of residues 4–7), whereas both termini undergo relatively

large fluctuations in the folded state [22].

The TRDG analysis of the b-hairpin also revealed the

hidden complexity of its denatured state ensemble. In

fact, besides the aforementioned entropic basin, several

deep sub-basins with low enthalpy and low entropy were

observed in the TRDG, although they are not evident on

projected surfaces [29]. Some of these sub-basins (e.g. b-

hairpin with shifted turn, see conformation 3 in Figure 3)

were shown to have a more favorable effective energy

than the folded state, which is stabilized by its higher

conformational entropy. More recently, Chekmarev et al.
[34] have used the TRDG method to investigate a 27-

residue lattice heteropolymer subject to Monte Carlo

dynamics on a cubic lattice [34]. The authors report that

the denatured basin of the 27-residue heteropolymer

consists of several deep sub-basins (with low enthalpy

and low entropy) that are separated by high barriers; no

entropic basin was mentioned.

The heterogeneity of the denatured state ensembles of

b3s and the b-hairpin, in particular the statistically sig-

nificant weight of non-native (i.e. helical) conformations

of b3s, is in contrast to the observation of native-like

mean structure in the denatured state ensembles of a

small helical protein and two structured peptides, as

found by distributed computing [35]. It is likely that

the denatured state ensemble is not correctly sampled
Current Opinion in Structural Biology 2006, 16:71–78
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in the distributed computing approach, in which simula-

tions are usually started from a fully extended conforma-

tion that rapidly collapses without allowing proper

equilibration within the unfolded state. Moreover, the

fastest pathways are not necessarily the most probable

ones, as has been suggested by Fersht [36] and confirmed

by molecular dynamics simulations [37,38].

Reaction coordinates for the identification
of the transition state
Given the lack of discriminatory ability of simple order

parameters (e.g. Q, the fraction of native contacts, as

mentioned above), more sophisticated approaches have

been developed to investigate the folding transition state.

The folding probability ( pfold) of a protein snapshot saved

along a Monte Carlo or molecular dynamics trajectory is

the probability to fold before unfolding [12]. It is a useful

measure of kinetic distance from the folded state and can

be used to validate transition state ensemble structures,

which should have pfold = 0.5. Such validation consists of

starting a large number of trajectories from putative

transition state structures with different initial atomic

velocities and counting the number of those that fold

within a ‘commitment’ time; this time has to be much

longer than the shortest timescales of conformational

fluctuations and much shorter than the average folding

time. The concept of the pfold calculation originates from

a method for determining transmission coefficients, start-

ing from a known transition state [39] and the identifica-

tion of simpler transition states in protein dynamics (e.g.

tyrosine ring flips) [40]. The approach has been used to

identify the otherwise very elusive folding transition state

ensemble by means of atomistic Monte Carlo off-lattice

simulations of small proteins with a native-centric Go

potential [41–43], as well as implicit solvent molecular

dynamics [22,44] and Monte Carlo [45] simulations with a

physico-chemical-based potential. The number of trial

simulations needed for the reliable evaluation of pfold

makes the estimation of the folding probability compu-

tationally very expensive. For this reason, we have intro-

duced a method to estimate the folding probabilities of all

structures visited along an equilibrium folding-unfolding

trajectory without any additional simulation [46]. The

method requires structural clustering and, for each clus-

ter, counting the fraction of snapshots that proceed to the

folded state before unfolding. This method has been

applied to the b3s peptide and to a set of 32 single-point

mutants thereof to successfully extract F-values [47] from

equilibrium folding-unfolding simulations [11]. It was

found that F-values calculated from folding and unfold-

ing rates measured along the trajectories are reliable if the

stability loss upon mutation is larger than about 0.6 kcal/

mol, in agreement with a suggestion based on experi-

mental data [48]. Moreover, the molecular dynamics and

pfold analyses of b3s and its mutants revealed the presence

of specific non-native interactions at the transition state

for most of the peptides [11].
Current Opinion in Structural Biology 2006, 16:71–78
Recently, Best and Hummer [9] have proposed a varia-

tional procedure to optimize reaction coordinates using

snapshots from transition path sampling or equilibrium

folding-unfolding trajectories. For a Go-like Ca model of

a three-helix bundle protein, a Monte Carlo procedure

was used to optimize the weights of a projection onto the

matrix of all (native and non-native) contacts, such that

transition state structures were condensed into a single

peak of the probability of being on a transition path.

Starting from an initial matrix with uniform weights, they

obtained a projection that accurately located the transi-

tion state ensemble, as verified by traditional pfold ana-

lysis. In their model, helices 2 and 3 are fully folded at the

transition state, whereas helix 1 is only partially structured

and is not properly docked against the scaffold consisting

of helices 2 and 3. Despite the successful application to

the Go-like Ca model, Best and Hummer [9] conclude

their article with the cautionary note that an appropriate

basis set for the variational optimization of reaction coor-

dinates might be difficult to guess and might require the

inclusion of solvent coordinates.

To identify reaction coordinates for complex systems that

include water degrees of freedom, Ma and Dinner [49]

have employed an automatic procedure that requires a set

of structures distributed uniformly with respect to pfold.

Given such a database of structures and their pfold values,

neural networks are used to determine the functional

dependence of pfold on sets of coordinates, such as back-

bone dihedral angles and interatomic distances. A genetic

algorithm selects the combination of coordinates that are

given as input to the neural network to yield the best fit.

The hybrid genetic algorithm-neural network approach

had been developed for quantitative structure/activity

relationship studies [50] and also employed to investigate

the folding ability of lattice models of proteins [51]. The

approach of Ma and Dinner uses pfold, a reaction coordi-

nate that provides a quantitative description of the

dynamic behavior of every state along a trajectory, to

guide a rather complex optimization procedure through

the space of physically meaningful variables. These vari-

ables yield mechanistic insights into the process under

study because they relate directly to quantities that can

be measured and varied computationally, whereas pfold

per se is not informative. Application to the C7eq ! aR

conformational isomerization of the alanine dipeptide in

the presence of explicit water molecules successfully

identified a set of variables that specify the transition

state [49]. It will be interesting to verify if the optimiza-

tion procedure of Ma and Dinner will find useful applica-

tions in the study of small protein folding, for which the

number of degrees of freedom of the solute is much larger

than that of the alanine dipeptide.

Conclusions
Recently, approaches borrowed from topological [22] and

flow [29] analyses of networks (whereby the nodes and
www.sciencedirect.com
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links represent conformations and transitions between

them, respectively) have been adapted to obtain unpro-

jected graphical representations of and quantitative

insights into the free energy surfaces of structured pep-

tides. The striking contrast between the complexity of

the free energy surface and its projection onto one or two

order parameters provides a cautionary note for the inter-

pretation of the latter. In particular, the heterogeneity of

the denatured state ensemble of structured peptides

(with fluctuating, i.e. entropically stabilized, non-native

secondary structure), which has emerged from the net-

work [22] (Figure 1) and TRDG [29] (Figure 3) analyses,

is hidden in projections of the free energy surface onto

order parameters, such as Q (Figure 2), or geometrical

progress variables, such as rmsd and/or radius of gyration.

The relevance of such heterogeneity is related to its

possible experimental manifestations, which is a chal-

lenge for experimentalists.

Efficient methods have also been developed recently to

determine the probability of folding ( pfold) [46] or opti-

mize a reaction coordinate [9,49] to identify conformations

in the transition state ensemble. All of these methods

require the availability of several folding-unfolding transi-

tions, which can be sampled by implicit solvent models for

structured peptides and Go models for small proteins. The

former have allowed the investigation of the importance of

non-native interactions in the transition state [11] and

denatured state ensemble [22,29], a type of analysis for

which native-centric Go models are not appropriate.

Finally, it remains to be determined whether the entropic

stabilization of the folded state, with respect to non-

native traps with very favorable intraprotein interactions,

is a peculiarity of some structured peptides (e.g. the b-

sheet and b-hairpin discussed in this review) or could play

a role also in (small) proteins, for example, those with

flexible terminal segments and/or loops (such as chymo-

trypsin inhibitor 2).
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