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Abstract: An improved version of the fragment-based flexible ligand docking approach SEED–FFLD is tested on
inhibitors of human immunodeficiency virus type 1 protease, human �-thrombin and the estrogen receptor �. The
docking results indicate that it is possible to correctly reproduce the binding mode of inhibitors with more than ten
rotatable bonds if the strain in their covalent geometry upon binding is not large. A high degree of convergence towards
a unique binding mode in multiple runs of the genetic algorithm is proposed as a necessary condition for successful
docking.
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Introduction

Computer-aided approaches for docking small molecules into pro-
teins of known structure are useful tools for drug design.1–4 The
importance of automatic docking procedures keeps growing be-
cause of the ever increasing number of 3D structures of pharma-
cologically relevant enzymes and receptors. Further, combinatorial
and parallel synthesis techniques have generated a significant
number of libraries of compounds with good pharmacological
properties5 and in certain cases tailored for specific targets.6,7

Automatic approaches are available for docking flexible ligands of
up to about 10 rotatable bonds into rigid8–10 and partially flexible
targets,11–17 and several review articles have been pub-
lished.2,18–20 Ligands with a larger amount of rotatable bonds are
much more difficult to dock,13,14 even using a rigid protein.21,22

In this article we present the improvements with respect to the
original version of SEED–FFLD10,23 and evaluate the new version
on difficult test cases. The SEED–FFLD approach is based on the
decomposition of ligands into mainly rigid fragments. First, the
most favorable fragment positions and orientations in the receptor
binding site are determined by the program SEED according to an
accurate binding energy that includes electrostatic solvation ef-
fects.24 The optimal binding modes of the fragments are then used
in FFLD as binding site descriptors to guide the placement of
ligand conformations generated by a genetic algorithm (GA). The
SEED–FFLD approach was tested by docking known nanomolar
inhibitors with about 10 rotatable bonds in the active site of the
uncomplexed and complexed conformations of thrombin and the
human immunodeficiency virus type 1 protease (HIV-1 PR).10

The present work was motivated by two main questions: Is it
possible to dock ligands with more than 10 rotatable bonds into
HIV-1 PR? Are the predicted binding modes affected by the
protein conformation (choice of the crystal structure)? The dock-
ing results show that redocking is almost always successful
whereas cross-docking is problematic mainly because of strain in
the covalent geometry of the ligand. Large and flexible ligands
might be of limited relevance in the context of drug design. Yet,
we think that testing docking programs in cases where the confor-
mational space is very large is useful to find weaknesses and
suggest improvements that will be in any case beneficial also for
smaller and/or more rigid ligands.

Materials and Methods

The docking approach is a three-step strategy based on the decom-
position of a flexible ligand into rigid fragments. First, the program
SEED is used to dock the fragments into the binding site of the
receptor.23,25 Second, the ligand is docked by a genetic algorithm
(FFLD) that uses a fast scoring function.10 The genetic algorithm
perturbations affect only the conformation of the ligand; its place-
ment in the binding site is determined by the SEED anchors and a
least-square fitting method.26 In this way the position and orien-
tation of the ligand in the binding site are determined by the best
binding modes of its fragments previously docked using an accu-
rate energy function with electrostatic solvation.24 The scoring
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function used in FFLD is based on van der Waals and hydrogen
bond terms and does not explicitly include solvation for efficiency
reasons. Solvation effects are implicitly accounted for as the bind-
ing modes of the fragments are determined with continuum elec-
trostatics.

Third, the FFLD results are postprocessed by CHARMM min-
imization. The ligand decomposition into fragments, the choice of
functional groups (preferable large aromatic rings) as anchors, the
identification of rotatable bonds, and the definition of the binding
site have recently been automated (P. Kolb et al., unpublished
results). The other modifications of the SEED–FFLD approach
with respect to the original procedure10 are listed in the next
subsections.

SEED

Fragment Docking

The SEED input parameters used for this application are identical
to those in Table I of the original SEED article23 except for the
following three: (1) The interior dielectric constant is set to 2.0 to
partially account for the electronic polarizability and dipolar re-
orientation effects of the solute. (2) The number of apolar points on
the receptor is increased from 100 to 300 because of the very large
buried binding site of HIV-1 PR. For human �-thrombin and the
estrogen receptor � 300 and 150 apolar points were used, respec-
tively. (3) To discard polar and apolar receptor vectors that point
outside of the binding site, a selection using an angle criterion is
performed. Initially, the minimal and maximal distances between
the end points of the vectors and a set of points in the binding site
(e.g., the positions of the heavy atoms of the ligand) are evaluated.
A vector is discarded if the angle it spans with the closest point is
larger than a cutoff. This selection uses a permissive cutoff of 100°
for vectors close to the binding site points and a stricter one (70°)
for distant vectors. Using the atoms of a ligand from a known
complex to define the binding site does not introduce a bias in
cross-docking and corresponds to the situation in an advanced drug
design program, where one or more crystal structures of protein–
ligand complexes have already been solved.

Postprocessing of the Optimal Binding Modes of the
Fragments

The fragment binding modes are sorted by binding energy and
clustered in SEED according to their position and orientation in the
binding site using a conservative criterion based on distances
between similar atom types.23,27,28 Cluster representatives are
subsequently grouped according to the coordinates of the geomet-
ric centers using a threshold of 1 Å. The geometric centers of the
first five cluster representatives are removed from the clustering
procedure described in the following and directly used for docking.
For each cluster an average geometric center (rAGC) is calculated
with the following procedure. First, all the positions with a binding
energy greater than 3 kcal/mol with respect to the cluster repre-
sentative are discarded. Then, the rAGC of a given cluster is
evaluated as an energy-weighted mean

rAGC � �
i�1

N

�iri,

�i � �Ei��
i

Ei if Emax � 0

�Ei � �Emin � Emax����
i

�Ei � �Emin � Emax�� if Emin � 0

(1)

where Emin and Emax are the minimum and maximum energy
within a cluster, respectively, and the sum runs over the N geo-
metric centers ri of the fragments in the cluster. In the sporadic
case of Emin � 0, by subtracting (Emin � Emax) from the fragment
binding energies Ei it is possible to give more weight to positions
with small absolute energy values. For Emin 	 0 	 Emax, average
centers for the subsets of favorable (Ei � 0) and unfavorable
(Ei � 0) binding modes in a cluster (r� and r�, respectively) are
computed by eq. (1) and the rAGC is evaluated as

rAGC � 0.8r� � 0.2r� (2)

where the multiplicative factors 0.8 and 0.2 are somewhat arbitrary
and were not optimized. The first 15 rAGC are kept for FFLD.
Therefore, the binding site maps used for docking are defined by
20 points, 5 corresponding to geometric centers of fragments
optimally docked by SEED and 15 average geometric centers. In
this way, the final list of geometric centers used for docking is a
compromise between the accuracy of the SEED binding energy
and the diversity derived from the clustering procedure. The post-
processing of the optimal binding modes of the fragments leads to
more heterogeneous binding site maps than using only the most
favorable ones. To store this information for efficient placement of
the ligand in the binding site three hash tables are generated as
described in ref. 10.

FFLD

The following subsections contain the improvements with respect
to the original version of FFLD.10 The FFLD scoring function
consists of an intraligand van der Waals energy, a ligand–protein
soft core van der Waals, and an intermolecular polar energy
term.10 The two latter terms were modified as described below.

Intermolecular Soft Core van der Waals

A soft core van der Waals is used to generate a smooth energy
landscape by reducing the frustration originating from the steep
repulsive part.29 In the present work, the linearization of the
Lennard–Jones potential used to smooth the energy surface was
slightly modified with respect to ref. 10. Originally, upon ligand
placement, for every atom located in the binding site (including a
1-Å layer below the protein surface) a van der Waals energy with
the closest protein atom was evaluated at first. The interaction
energy was linearized if its value was higher than a cutoff; other-
wise, a grid-based interpolated interaction energy including all
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contributions of the receptor atoms was considered. In the original
procedure small atomic interpenetrations with the protein surface
were overpenalized without taking into account the favorable
contributions of the neighboring atoms. In the version used in the
present study, the van der Waals interaction with the closest
protein atom is compared to the grid-based interpolated interaction
energy. If the latter is more favorable, the attractive contributions
of the receptor atoms dominate the interaction and the grid-based
energy is more appropriate. Otherwise, the atomic interpenetration
is significant and the repulsive contribution dominates the interac-
tion. In this case, the linearized interaction with the closest protein
atom is used.

Polar Interactions

The polar term approximates electrostatic interactions between
ligand and protein:

Epolar
inter � �

i�1

NHB

Ei
HB � �

i�1

NUP

Ei
UP (3)

where NHB and NUP are the number of hydrogen bonds (HBs) and
unfavorable polar contacts (UPs), respectively. A significant im-
provement with respect to the original version10 is the replacement
of step functions, which allow different binding modes with the
same energy value with smooth functions. Smooth functions allow
the optimization of the hydrogen bonding pattern, avoiding dis-
continuities on the energy surface. A dependence on the distance
and the angle in the polar term of the scoring function was
introduced to reduce the noise arising from the energy degenera-
tion and improve the convergence of the docking runs. The criteria
used for the definition of unfavorable polar contacts and hydrogen
bonds and the smooth functions implemented are described below.

Unfavorable Polar Contacts. An interaction between two H-bond
donors or two H-bond acceptors is an unfavorable polar contact
whose energy is a function of the distance between the interacting
heavy atoms. A sigmoidal function is used

EUP�r� � �Ebad r � ron

Ebad�1 � e��r�����1 ron 	 r 	 roff

0 r � roff

(4)

where r is the distance between the heavy atoms, Ebad is the
maximal penalty for an unfavorable polar contact, � is the inter-
atomic distance corresponding to the inflection point of the func-
tion, and � is related to the steepness of the sigmoidal. The value
of Ebad � 3.0 kcal/mol is the same as used previously.10 The
values of ron and roff depend on the choice of � and �, which were
fixed at 2.8 Å and 15.5 Å�1, respectively. The value of ron is
defined as the point where the sigmoidal reaches a value of 0.99
Ebad. For symmetry reasons, roff is fixed by the choice of ron.
Hence, roff,on � � � 4.65/�.

Hydrogen Bonds. The hydrogen bonding model of the MAB force
field30

EHB�r, 
� � WHBR�r�	D�
� (5)

was implemented, where r is the distance between the donor (D)
and the acceptor (A) atoms, 
 is the angle at the H atom (DOH . . .

A), and WH is an atom-type dependent parameter that defines the
strength of the bond. The energy is determined by the parameter
WH, while the distance dependence and the directionality of the
hydrogen bonds follow bathtub-shaped functions:

BR�r� � ��1 � �r � req

wr
�n�m

(6)

	D�
 � � �1 � �
 � 
eq

w

�n�m

(7)

Equations (6) and (7) apply whenever the expression in the outer
brackets is positive; otherwise, BR and 	D vanish. The exponents
n and m determine the curvature of the bathtub-shaped functions
and were chosen as n � 2 and m � 4. Compared to ref. 30, the
implemented model, while preserving an all-atom description,
does not take into account the angle at the acceptor atom in the
hydrogen bond energy evaluation. Although this could lead to a
loss in accuracy, it avoids the need for additional parameters for
describing the valence state of the atoms involved in the hydrogen
bond. The following parameters were used: the well depth WH and
the optimal distances req were chosen according to the atom types
of the donor and acceptor atoms involved;23,30 
eq was set to �
because of the linearity of optimal hydrogen bonds; wr was 5.0 Å
when r 	 req or 1.25 Å when r � req and w
 was 1.5 radian to
mimic the original stepwise functions.

Local Search

Following a comparative study of several search engines for
AutoDock,31 a hybrid search procedure was implemented in
FFLD. The hybrid search combines a global optimization proce-
dure based on a genetic algorithm to overcome energy barriers
with a local minimization algorithm to explore regions within
energy basins. Local optimization has been shown to dramatically
improve the success rate of the genetic algorithm search without
any loss in efficiency.31 The use of a local optimizer increases the
fitness of the individuals and accelerates convergence. In the
hybrid search, a loop over generations is performed until the
maximum number of generations or the maximum number of
energy evaluations is reached. In a generation, five different stages
follow one another: evolution, mapping, fitness evaluation, local
search, and similarity test. At the beginning of each cycle, the old
population is evolved by means of the genetic operators, one-point
crossing over and mutation, and a new population is generated.
The new genetic material is decoded and the binding energy is
evaluated. For the best 10% of the individuals, the local search is
performed to improve the ligand fitness. Finally, the individuals of
the old population are replaced by new chromosomes, taking into
account both the energy difference and the conformational simi-
larity.32 The latter dramatically improves the efficiency of the
hybrid search because the local search can easily cause the system
to get trapped in local minima. In fact, to avoid premature con-
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vergence it is important to keep structural diversity during the
evolution. As a local optimizer, the Solis and Wets algorithm33

was used with the following parameters: The maximum number of
iterations per search was set to 300; the local search stepsize (�)
was 0.1 radian; the maximum number of consecutive successes
before increasing � was 5, while the maximum number of consec-
utive failures before decreasing � was 3; the lower bound on �, i.e.,
the termination criterion for the local search, was 0.01.

Postprocessing by CHARMM Minimization

For every docking experiment, 10 genetic algorithm runs were
performed. For each run, the binding mode with the lowest FFLD
energy was postprocessed by CHARMM minimization34 using the
CHARMm22 force field (Accelrys, Inc.). The structure of the
protein, including the critical bridging water, was held fixed. A
distance-dependent dielectric function [
(r) � r] was used and
the conjugate gradient minimization was stopped when the root
mean square of the energy gradient reached a value of 0.01 kcal
mol�1 Å�1. The CHARMM-minimized ligand conformations
were sorted according to their binding energy and the lowest-
energy solution was compared to the reference ligand (see Prepa-
ration of the Ligands section below). The heavy atom root mean
square deviation (RMSD) from the reference was determined as a
quantitative measure of the docking reliability. No least-square
superposition is used in calculating the RMSD because the rigid
protein establishes a fixed frame of reference.

System Setup

Test Cases

To evaluate the performance of the improved version of the
SEED–FFLD procedure, five HIV-1 PR protein–ligand complexes
were considered. Inhibitors of HIV-1 PR are peptidomimetic mol-
ecules with a dozen or more rotatable bonds and, as such, they
present a challenging target for automated docking techniques.
Moreover, a large number of crystallographic structures of HIV-1
PR protein–ligand complexes are available from the Protein Data
Bank (PDB) database.35 The crystal structures used in this study
were 1hvr, 1hbv, 1htg, 1hvs, and 5hvp.36–40 The corresponding set
of ligands is characterized by a wide range of torsional degrees of
freedom (between 10 and 22 rotatable bonds) and contains a
certain amount of diversity due to the different functional groups
(Fig. 1). The ligand 1hvr has the lowest number of rotatable bonds
(10) and is the only nonpeptidic inhibitor of the set. It includes
aromatic fragments suitable as anchors and contains a large central
scaffold, the cyclic urea, which significantly reduces the complex-
ity of its conformational space by decoupling most of the torsional
degrees of freedom. Moreover, the cyclic urea itself strongly
interacts with the protein, forming on one side hydrogen bonds
with the flaps and on the other side hydrogen bonds with the
aspartyl dyad. Therefore, the ligand 1hvr is expected to be the
simplest test case of the set. The ligands 1hbv and 1htg present a
larger amount of flexibility (15 and 17 rotatable bonds, respec-
tively) with respect to 1hvr and therefore represent a test system
having an intermediate level of difficulty. Eventually, the ligands

1hvs and 5hvp (21 and 22 rotatable bonds, respectively) provide
very difficult test cases because of the large conformational space.

In addition, the N�-((2-naphthylsulfonyl)glycyl)-DL-p-amidino-
phenylalanyl-piperidine (NAPAP)/human �-thrombin complex41 and
the complex between lig15 and the estrogen receptor �42 were inves-
tigated to measure the robustness of the docking method. The former
is a cross-docking experiment in the uncomplexed structure of the

Figure 1. HIV-1 PR inhibitors used in this work. Coordinates for each
complex were obtained from the PDB35 using the accession codes
given in bold. Bonds that were treated as flexible are marked by curly
arrows; gray and black arrows indicate side-chains14 and main-chain,
respectively. Fragments used in SEED are in bold. Experimental free
energies of binding (kcal/mol) are given in parentheses; they were
obtained from the primary reference for each crystallographic struc-
ture.36–40
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human �-thrombin (1hgt). The latter is a redocking simulation in the
“native” conformation of the estrogen receptor � (1nde). NAPAP is a
peptidomimetic molecule with eight rotatable bonds. It includes two
large hydrophobic fragments, naphthalene and piperidine, and the
positively charged benzamidine. Lig15 is a 1, 3, 5-triazine-based
molecule with 11 rotatable bonds. The ligand presents a trisubstituted
planar central scaffold (the triazine) with flexible linkers to hydropho-
bic substituents.

Preparation of the HIV-1 PR Structures

The five crystal structures were downloaded from the PDB data-
base.35 The ligand and all water molecules but one were removed.
The water bridging the two flaps was retained except for the
docking runs with either the 1hvr protease structure or the 1hvr
ligand (cyclic urea inhibitor). The side-chains of lysine and argi-
nine residues were protonated, as well as the side-chains of histi-
dine residues because the optimal pH of HIV-1 PR is around 5 and
they are exposed to the solvent. The carboxylate groups of aspartic
and glutamic acid were ionized. Particular attention was addressed
to the ionization state of the cleavage site, which contains the
aspartyl dyad (Asp25/Asp25
). At optimal pH for enzymatic ac-
tivity (�5–6), the aspartyl dyad is most probably monoprotonated
in the uncomplexed enzyme. Besides the pH, different inhibitors
can have an effect on the ionization state of the active site because
they can stabilize the neutral dyad or the negatively or dinegatively
charged forms. According to Piana et al.,43 the monoprotonated
state is accompanied by the presence of two strong hydrogen
bonds between the aspartyl dyad and H-bond donors belonging
either to the inhibitor or to an ordered water molecule. Hence, a
monoprotonated state was considered for the proteases 1hvr and
1hvs, while a diprotonated state was chosen for the others. Hy-
drogen atoms were added to the structures and minimized with the
program CHARMM34 and the CHARMm22 force field (Accelrys,
Inc.). Partial charges were assigned using the MPEOE meth-
od.44,45 Finally, the binding site was defined as the smallest zone
that encompasses the HIV-1 PR residues with more than 50% of
the atoms within a distance of 5 Å from any atom of the inhibitor
in the X-ray structure of the complex.

Preparation of Human �-Thrombin and the Estrogen
Receptor �

After downloading the crystal structures from the PDB database,35

human �-thrombin (1hgt) and the estrogen receptor � (1nde) were
prepared following a procedure similar to the one described above
for HIV-1 PR.

Human �-thrombin is a trypsin-like serine protease that fulfills
a central role in both hemostasis and thrombosis.46 Several inhib-
itors are known to bind to the nonprime region of the active site,
i.e., pockets S3–S1. The S3 and S2 pockets are hydrophobic. S3 is
occupied by an aromatic ring in most of the known inhibitors and
by the Phe side-chain in the natural substrate. The S2 pocket is
usually filled by aromatic or aliphatic side-chains. The S1 pocket
is a cylindrical cavity with an Asp at the bottom. It is usually filled
by a positively charged side-chain (Arg, Lys, benzamidine, etc.)
involved in a salt bridge with the Asp. During the preparation of
the protein, particular attention was addressed to the protonation

state of the active site residues (His, Asp, Ser). In particular, the
catalytic His was protonated at the � nitrogen. Its monoprotonated
state is fully compatible with its partially buried position in the
binding site and allows the formation of two intramolecular hy-
drogen bonds between the residues of the catalytic tryad.

The estrogen receptor � is a ligand-activated transcription
factor that plays a key role in the modulation of gene expression.
It binds a wide range of steroidal and nonsteroidal ligands with
moderate to high affinity, with the minimal requirement of at least
one paramonosubstituted phenol as the basic pharmacophore.42

The estrogen receptor � binding site is almost buried and predom-
inantly hydrophobic. Nevertheless, the paramonosubstituted phe-
nol increases the ligand binding affinity because its hydroxyl group
fits optimally into the gap between Arg394 and Glu353, accepting
a hydrogen bond from the guanidinium and donating a hydrogen
bond to the carboxy group.42 In the structure downloaded from the
PDB database,35 the coordinates of 24 residues were missing due
to poor electron density. These incomplete regions were far away
from the binding site and were neglected in the docking experi-
ments.

Preparation of the Ligands

The initial coordinates were downloaded from the PDB database.35

Formal charges were assigned by ionizing carboxylic-acid groups
and protonating amino groups. Hydrogen atoms were added and
partial charges were assigned (see previous subsection). The mo-
lecular structure was minimized in two different ways with the
program CHARMM34 and the CHARMm22 force field (Accelrys,
Inc.).

The first minimization was carried out in the binding site with
the protein fixed. For redocking, the ligand structure optimized
within its own protein conformation is used as reference for the
calculation of the RMSD values. For cross-docking, protein coor-
dinates were first superimposed by fitting the C� atoms. The ligand
conformation then optimized in the “non native” protein is used as
the RMSD reference structure. In both cases, the reference struc-
tures used for evaluating docking results differ from the experi-
mental conformation of the bound ligand. Nevertheless, the com-
parison between reference and predicted conformations is more
consistent in this way because both structures correspond to min-
ima of the same energy function (CHARMm22, Accelrys, Inc.).
For redocking, the RMSD between X-ray and reference structures
was 0.4, 0.6, 0.7, 1.0, 1.1, and 1.0 Å for 1hvs, 1htg, 1hvr, 1hbv,
5hvp, and 1nde, respectively. The average RMSD between X-ray
and reference structures for cross-docking was 1.3 � 0.4 Å, with
a maximum value of 2.4 Å.

The second ligand minimization was performed outside of the
receptor to remove any bias originating from the PDB structure of
the protein–ligand complex [see type (3) docking experiments
below]. Both minimizations were carried out using the same pro-
tocol as described before for the postprocessing.

Results and Discussion

The results on HIV-1 PR are discussed first while the human
�-thrombin and estrogen receptor � results are at the end of this
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section. Each of the five HIV-1 PR ligands was docked to each of
the 5 protein structures, yielding a matrix of 25 docking experi-
ments. The complexes along the matrix diagonal correspond to
redocking experiments and are expected to more easily match the
crystallographic structures because any “induced fit” due to the
inhibitor is already present in the protein conformation. To study
the effect of both ligand flexibility and geometry (covalent bond
distances and bond angles in the ligand input structure) on the
docking results three kinds of docking experiments were per-
formed:

1. Biased geometry and partial flexibility. The covalent geometry
of the ligand was minimized with CHARMM in the binding site
of the receptor before running FFLD. The docking experiments
were performed with flexible ligand side-chains and rigid main-
chain (same rotatable bonds as in ref. 14; gray arrows in Fig. 1).

2. Biased geometry and full flexibility. The covalent geometry of
the ligand was the same as in (1) but the experiments were
carried out allowing flexibility to all rotatable bonds (gray and
black arrows in Fig. 1).

3. Unbiased geometry and full flexibility. The ligand structure
was minimized with CHARMM outside of the receptor to
remove any geometric bias. The ligand flexibility was the same
as in (2).

Conformations docked within 2.4 Å heavy-atom RMSD from the
reference structure are considered successes.

Biased Geometry and Partial Flexibility

In docking experiments (1), the SEED–FFLD procedure was able
to correctly dock the five ligands in each of the five protein
structures (Fig. 2, top). Upon CHARMM minimization, the low-
est-energy conformation for each experiment reproduced the crys-
tallographic binding mode very well with a maximal RMSD of 1.1
Å with respect to the reference structure. Moreover, all of the 10
docking runs gave the same binding mode in 23 of 25 cases. Lack
of full convergence for inhibitors 1hbv and 1htg in the 1hvr HIV-1
PR conformation was probably due to the lack of the water
bridging the flaps in the 1hvr structure of the protease. This
structural water plays an important role in the molecular recogni-
tion process, acting as anchor in the active site. Note that the
CHARMm energy of the docking solution can be up to 16 kcal/
mol (1htg in 5hvp) more favorable than the energy of the reference
structure despite RMSD values smaller than 1.2 Å (Fig. 2, top).
This is mainly due to electrostatic contributions coming from a
better placement of the hydroxyl hydrogen interacting with the
catalytic dyad (hydrogens are not considered in the RMSD eval-
uation). Albeit successful, the docking experiments of type (1)
assume the knowledge of the backbone conformation of the bound
ligand and are therefore only marginally useful (e.g., to dock a
library of compounds with the same backbone).

Biased Geometry and Full Flexibility

In docking simulations of fully flexible ligands, such as experi-
ments (2) and (3), the conformational space of the ligand is much
larger than in (1). Nevertheless, in experiments (2) redocking and

cross-docking of inhibitors 1hvr and 1hvs gave good results while
cross-docking of 1hbv, 1htg, and 5hvp was only partially success-
ful.

Cross-docking with the ligand 5hvp and with the protease 1hvr
proved difficult for the SEED–FFLD procedure. In the first case,
the large conformational space of the ligand (22 rotatable bonds)
and the lack of fragments suitable as anchors were crucial for the
poor performance of the simulations. Moreover, the wrong binding
modes have a CHARMm energy more favorable than the reference
structure (Fig. 2, right) and this points to limitations of the energy
model. As an example, the misdocked conformation of the ligand
5hvp in the protease 1hvr (RMSD of 3.8 Å and Epred

CHARMm �
Eref

CHARMm � �18.9 kcal/mol) is completely bent in the middle,
folds back onto itself, and occupies only half of the binding site
“cylinder.” Although both inter- and intramolecular van der Waals
interactions are optimized by this binding mode, the negatively
charged terminal carboxy group is buried. This is a clear indication
that solvation is needed for the final ranking of the solutions,
especially for very flexible ligands without anchors.

The lack of the structural water in the protease 1hvr precluded
the reproduction of the experimental results. Although successful,
most of the redocking and cross-docking experiments did not
converge in all cases (Fig. 2, middle). This is due to the large space
accessible to ligands and in particular to the presence of flexibility
in the main-chain. In fact, only the convergence for the ligand
1hvr, which has a rigid central ring rather than a flexible main-
chain, was not affected by the increased number of rotatable
bonds.

Unbiased Geometry and Full Flexibility

As for the docking experiments of type (1), experiments (2) require
the knowledge of the bound complex, at least for determining the
geometry of the input ligand structure. Therefore, to reproduce the
typical high-throughput docking conditions completely unbiased
docking simulations, experiments (3), were performed. Here, re-
docking was successful in three of five cases (1hvr, 1htg, and
1hvs), while cross-docking gave good results only for the highly
flexible ligand 1hvs (Fig. 2, bottom). Experiments of type (3) are
much more prone to fail with respect to experiments of type (2),
even though both deal with the same amount of ligand dihedral
flexibility. With respect to this point, the docking simulations of
the ligands 1hvr and 1hbv are in particular significant. For the 1hvr
inhibitor, while experiments (2) always converged to the reference
structure experiments (3) completely misdocked the ligand in the
majority of the cross-docking simulations. In the case of ligand
1hbv, while partially successful in experiments (2) and (3) did not
reproduce the experimentally determined binding mode.

The explanation for this clear worsening in the performance of
docking calculations is to be searched for in the covalent geometry
of the ligand structures used as input in experiments (2) and (3).
Therefore, for each docking simulation the biased and unbiased
input structures were superimposed and compared. In most cases,
the biased structure, i.e., the geometry of the bound ligand, was far
away from the energy minimum and the CHARMM minimization
performed outside of the receptor yielded geometries not compat-
ible with the binding site (Fig. 3). In the ligand 1hvr, the covalent
angle at the methylene carbons linking the naphthalenes to the
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cyclic urea is stretched to about 120° in the bound conformation to
optimize the van der Waals interactions between the naphthalenes
and the protein. In the minimization outside of the receptor, the
covalent angle at the methylene carbons relaxes to a value of about
113°.

Analogous considerations can be made for the ligand 1hbv
(Fig. 3). Here, the geometry of the nitrogen atom belonging to the
cyclic scaffold is stretched to about 120° in the bound conforma-
tion. Upon minimization outside of the receptor, the geometry at

the nitrogen atom relaxes and moves to a more pronounced tetra-
hedral geometry. In both cases, the CHARMM minimization out-
side of the receptor significantly modifies the covalent geometry of
the ligands so that the SEED–FFLD approach cannot reproduce
the experimental binding mode only by dihedral modifications of
the input structure.

For redocking 1hvr and cross-docking of 1hvr into 1htg, this
problem was overcome by CHARMM postprocessing. The lowest-
energy conformation found by the SEED–FFLD procedure was

Figure 2. Results of the docking simulations. Redocking (boxes along the diagonals) and cross-docking
experiments of types (1), (2), and (3) are presented from top to bottom, respectively. In the left column,
heavy-atom RMSD values between the docked conformation of most favorable energy and the reference
structure are given (Å). For redocking experiments, RMSD values to the unminimized experimentally
determined ligand positions are reported in parentheses. In the middle column, the convergence of docking
experiments are given in terms of percent ratio of successes. Docking predictions within 2.4 Å RMSD of
the reference structure were considered successes. In the right column, the CHARMm energy difference
between the docking solution and the reference structure is reported. Large negative values indicate
limitations in the scoring function whereas positive values may point to uncomplete sampling.
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close to the X-ray structure so that during CHARMM postprocess-
ing the experimental binding mode was reproduced. However, it
has to be mentioned that this was a fortuitous event. In fact,
cross-docking of the 1hvr inhibitor failed in three of four experi-
ments (Fig. 2, bottom). It is important to note that the CHARMm

energy of the docking solution is much poorer than the one of the
reference structure not because the sampling in dihedral space was
incomplete. Rather, the reason is that the optimal covalent geom-
etry (obtained by minimization outside of the binding site) pre-
vents the FFLD docking from reaching the basin of the CHARMm
energy that contains the X-ray structure. Hence, the docking pro-
cedure has no chance to succeed, even after CHARMM postpro-
cessing. This happened also with the ligand 1hbv, where even
redocking was not successful. Here, the apparently small defor-
mation of the central ring (Fig. 3) played a crucial role in docking
and was the main reason for the observed failures.

The ligand 1hvs has similar biased and unbiased input struc-
tures (Fig. 3), i.e., there is not any significant deformation in the
bound conformation. Hence, the unbiased geometry cannot pre-
vent SEED–FFLD from finding a solution close to the correct one
and the performance of experiments (2) and (3) are comparable.
However, the biased and unbiased geometry structures are not
identical and the ligand poses predicted by experiments (3) are
slightly worse than those in (2) (Fig. 2).

Another interesting case is the redocking of the ligand 1htg and
its cross-docking with the protease 1hbv. As shown in Figure 2,
using a biased input structure (middle) both docking simulations
were successful while using an unbiased input structure (bottom)
only redocking succeeded. To understand how the covalent geom-
etry influenced the performance of the simulations, the biased and
unbiased input structures are analyzed. Figure 3 shows that for
redocking the molecular conformations can be well superimposed
and that no important deformation of the covalent geometry occurs
upon binding. On the contrary, for cross-docking the geometry of
the nitrogen in the central ring of the biased conformation is
stretched and the unbiased structure significantly differs from the
one minimized in 1hbv. These deformations can preclude the
finding of the solution and were responsible for the cross-docking
failure in experiments (3).

A careful analysis of the results shown in Figure 2 suggests that
there is a correlation between the quality of the docking prediction
and the convergence of multiple runs of the genetic algorithm. This
is partially due to the fact that it is more difficult to dock highly
flexible ligands for which the lack of convergence is a conse-
quence of the large conformational space. In principle, the lack of
convergence could then be used as a criterion for judging the
quality of a docking prediction and as a valuable indicator in
virtual high-throughput screening projects. To evaluate the reli-
ability of a convergence-based criterion, only the cross-docking
experiments of type (c) were considered, yielding a test sample of
20 docking simulations. The redocking simulations were discarded
because they implicitly contain information of the bound complex.
For each of the 20 docking simulations, convergence toward the
lowest-energy conformation (not necessarily the experimental
structure) in 10 FFLD runs with different random generator seeds
was first determined (Fig. 4, top). The convergence values were
then used to build the density plot shown in Figure 4 (bottom). The
density plot is darker in the top right region, which indicates that
convergence is a necessary condition for reliable predictions. Un-
doubtedly, the sample used for testing the convergence-based
criterion is rather small (only 20 docking simulations) and there-
fore it is difficult to draw general conclusions. Nevertheless, the
density plot shows a clear trend and implies that docking experi-

Figure 3. Comparison between ligand structures with biased geome-
try (green carbons) and unbiased geometry (yellow carbons) used as
input for redocking 1hvr, 1hbv, 1hvs, and 1htg and for cross-docking
1htg with the protease 1hbv (from top to bottom, respectively). Sig-
nificant deviations in the covalent angles are marked by broken arcs.
(The pictures of the ligands were drawn using the program PyMOL.48)

Automated Docking of Highly Flexible Ligands 419



ments with convergence lower than 60% may have not found the
global minimum of the CHARMm22 energy surface and should be
discarded during the analysis of a library screening project.

Convergence toward a unique binding mode in multiple runs of
the genetic algorithm is a necessary but not sufficient condition for
judging the quality of a prediction. It is not sufficient because an
oversimplified energy function with a funnel-like profile together
with a protein conformation that does not allow the reproduction of
the crystal structure will yield convergence on a wrong binding
mode.

Finally, to completely remove the geometric bias of the crystal
structure a conformational search of the ligand 1hvs was per-
formed by high-temperature molecular dynamics in the absence of
the protein. The simulation was run for 2 ns at 400 K using the
Berendsen thermostat and a distance-dependent dielectric function

[
(r) � 4r]. The final snapshot was minimized and its RMSD
from the X-ray conformation after optimal overlap is 5.8 Å, which
indicates that all of the information was lost and the initial con-
formation for docking was fully unbiased. Redocking was success-
ful with a RMSD of 1.1 Å and a convergence of 80%. This result
can not be generalized. On the contrary, it is likely that the
majority of experiments (3) would deteriorate by using ligand
covalent geometries without any memory of the crystal structure.

Results on Human �-Thrombin and the Estrogen Receptor �

To test the approach on binding sites with different physicochem-
ical properties the same docking procedure was applied to human
�-thrombin and the estrogen receptor �. Human �-thrombin pre-
sents an asymmetrical binding site with two hydrophobic pockets
and a hydrophilic cavity specific for positively charged amino
acids (Lys or Arg). Estrogen receptor � has a predominantly
hydrophobic and almost completely buried binding site (see
above). In both cases, starting from an unbiased and fully flexible
conformation of the ligand [see type (3) docking experiments
above] the SEED–FFLD approach was able to correctly reproduce
the experimentally determined binding modes with RMSD smaller
than 1 Å and convergences larger than 90%.

Judging Search Methods

To evaluate the performance of the hybrid search procedure it was
compared with the GA of the original version of FFLD.10

For this purpose, unbiased redocking experiments were re-
peated without using the local optimizer during the evolution and
with the same amount of energy evaluations. The simulations
clearly show that a hybrid search is more efficient than GA
because it always reaches a lower-energy conformation. The re-
sults of two redocking experiments carried out with both search
methods are presented in Figure 5. For redocking 1hvr, a hybrid
search is more efficient than the GA, especially at the beginning of
the simulation, where the energy gap is large. At about 60% of the
evolution the gap decreases and the performance of the two meth-
ods is comparable. For redocking 1hvs, the hybrid search performs
better during the entire simulation and the energy gap increases
until the end. Moreover, the standard deviation of the hybrid
search evolutions (shown as error bars in Fig. 5) is larger, indi-
cating that it is less prone to premature convergence than the GA.

The comparison shows that the local search accelerates con-
vergence of the simulations and dramatically improves the quality
of the docking predictions in case the conformational space of the
ligand is large and its torsional degrees of freedom are strongly
coupled (main-chain flexibility). This is mainly due to the fact that
random perturbations of binary strings performed by the GA
during the evolution correspond to radical jumps in the energy
landscape and may be too large. On the contrary, the local opti-
mizer is able to refine large perturbations due to crossover and
mutations and leads to a better investigation of the energy land-
scape. The results of the present docking study suggest that hybrid
search methods should be preferred to canonical genetic algo-
rithms.

Figure 4. Evaluation of the convergence-based criterion proposed for
judging the quality of the docking predictions. Top, convergence
toward the lowest energy solution (not necessarily the experimental
structure) in 10 docking runs is shown for the cross-docking experi-
ments of type (3). Bottom, the density plot reports the frequency of
finding a certain RMSD between the lowest-energy ligand pose and
the experimental structure for a given amount of convergence; darker
colors represent higher-frequency values.
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Computational Requirement

All docking simulations were carried out on 1.6-GHz Athlon
processors. For experiments of type (1), because of the limited
amount of ligand flexibility fast docking calculations were per-
formed, having a maximum number of 50 hybrid search cycles per
run. The computational time required for a single docking varied
from 5 to 19 min, yielding an average time of 12 min/run. For
experiments of types (2) and (3), both carried out with full ligand
flexibility, more extensive calculations were performed, using ap-
proximately 1 million energy evaluations per run. The computa-
tional time required for a single docking varied from 123–214 min,
yielding an average time of 168 min/run. In these experiments, the
number of energy evaluations per run was intentionally overesti-
mated to make sure that the stochastic algorithm used for docking
reached convergence in all cases. The computational requirements
given above do not include docking of molecular fragments by
SEED,23 which was performed only once for each protein confor-
mation.

Conclusions

Four main conclusions can be drawn from the docking results.
First, a hybrid approach consisting of a local search and genetic
algorithm significantly improves the quality of the SEED–FFLD
docking predictions at a moderate additional computational cost.
This is not a new finding31 but simply provides further evidence
with more stringent test cases, i.e., cross-docking experiments with
highly flexible ligands.

Second, the quality of docking predictions depends on the
degree of ligand flexibility and we suggest that validation of
docking approaches should be always done with full dihedral
flexibility of the ligands. In this respect, it would be interesting if
the study of Österberg et al.14 could be repeated without holding
the main-chain of the peptidic inhibitors rigid.

Third, automatic approaches that sample only in dihedral space
can give misdocked predictions if the covalent geometry of the
ligand (i.e., its bond angles and lengths) is strained upon binding
to its target. Therefore, a reliable validation of a docking approach
should be performed without using any information on the con-
formation of the bound ligand, i.e., after a conformational search
outside of the receptor. This was not done in previous works by us
and others.10,14,22,29,31,47 For docking a limited set of compounds,
approaches that allow for full flexibility (including bond angles
and lengths) of the ligands, albeit computationally expensive,
should be preferred.11,12

Fourth, the docking results indicate that convergence toward
the same docking solution in multiple runs of the genetic algorithm
is a necessary (but not sufficient) condition for reliable predictions.
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