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Library screening by fragment-based docking

Danzhi Huang® and Amedeo Caflisch®*

We review our computational tools for high-throughput screening by fragment-based docking of large
collections of small molecules. Applications to six different enzymes, four proteases, and two protein kinases,
are presented. Remarkably, several low-micromolar inhibitors were discovered in each of the high-throughput
docking campaigns. Probable reasons for the lack of submicromolar inhibitors are the tiny fraction of chemical
space covered by the libraries of available compounds, as well as the approximations in the methods employed
for scoring, and the use of a rigid conformation of the target protein. Copyright © 2009 John Wiley &

Sons, Ltd.
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INTRODUCTION

Among the many significant contributions to computational
chemistry and physical chemistry, Martin Karplus has also
pioneered the use of molecular fragments to map protein
binding sites. His paper with Andrew Miranker on the
simultaneous minimization of multiple copies of small and
mainly rigid functional groups in the protein force field (MCSS)
can be considered as the first fragment-based procedure for
drug discovery.! Experimental techniques for fragment-based
lead identification, such as structure-activity relationship by
nuclear magnetic resonance spectroscopy,® share the same
essential idea as the MCSS approach. Thus the importance of
molecular fragments has been recognized and exploited first by
computational approaches."** More recently, fragment-based
drug discovery strategies have been developed using X-ray
crystallography,® nuclear magnetic resonance spectroscopy,’®
surface plasmon resonance,” mass spectrometry,®® substrate
activity screening (where the fragments are substrates later
converted into inhibitors'®"'?), and tethering.13'14 Experimental
techniques for fragment-based drug discovery have been
discussed in previous reviews which contain a large number
of applications."”™2° Successful in vitro screening campaigns
have been reported for several targets, and a non-exhaustive list
includes p-secretase,”'>?'22 several protein kinases,>> >’ DNA
gyrase,® caspase,®3° anthrax lethal factor' and phosphodi-
esterase.?

In this review, we focus on the computational methods for
fragment-based docking developed in our research group. We
do not discuss in silico approaches developed by others
(reviewed in*373), but rather describe briefly our compu-
tational tools (in Section High-throughput fragment-based
docking), and present applications (in Section In silico screen-
ing campaigns) to six different enzymes, four proteases and
two protein kinases. Notably, it has been possible to identify
single-digit micromolar inhibitors for all of the six enzymes by
fragment-based docking of large libraries of small molecules. In
the Conclusions section we give possible reasons for the
difficulties encountered in discovering submicromolar inhibi-
tors by in silico screening of collections of available
compounds.

HIGH-THROUGHPUT FRAGMENT-BASED
DOCKING

Two essential elements of our in silico screening approach are
the fragment-based docking procedure and the scoring based
on force field energy’’ with continuum electrostatics
solvation.*®*2 The pipeline for high-throughput docking consists
of four consecutive steps (Figure 1): (1) automatic decomposition
of each molecule of the library into fragments,** (2) fragment
docking and ranking of poses,***' (3) flexible docking of each
molecule of the library using the best poses of its fragments as
anchors,** (4) evaluation of the binding free energy of multiple
poses of each compound by the LIECE method (linear interaction
energy (LIE) with continuum electrostatics*®). The first three steps
are performed by computer programs developed in our research
group. In the fourth step, CHARMM?***” is used for the energy
minimization and finite-difference Poisson calculations.

Decomposition of compounds into fragments

The automatic fragmentation of a molecule into substructures
and the selection of the three anchor fragments for docking (see
below) are performed by the program DAIM (Decomposition And
Identification of Molecules®®). The decomposition generates
mainly rigid fragments which can be docked very efficiently (as
explained in the next subsection). The decomposition of a
molecule consists of four steps: ring identification, fragment
definition, functional group merging, and completion of the
valences. (i) Rings are identified by successively enumerating all
neighbors (i.e., directly covalently bound atoms) of every atom,

* Correspondence to: A. Caflisch, Department of Biochemistry, University of
Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
E-mail: caflisch@bioc.uzh.ch

a D. Huang, A. Caflisch
Department of Biochemistry, University of Zurich, Winterthurerstrasse 190,
CH-8057 Zurich, Switzerland

Abbreviations: CDK2, cyclin-dependent kinase 2; DAIM, decomposition and
identification of molecules; EphB4, ertythropoietin producing human hepatocel-
lular carcinoma receptor tyrosine kinase B4; FFLD, fast flexible ligand docking;
SEED, solvation energy for exhaustive docking.

J. Mol. Recognit. (2009)

Copyright © 2009 John Wiley & Sons, Ltd.



Journaat
Molecular
Recognition

D. HUANG AND A. CAFLISCH

DAIM SEED
Proteins, 1999;37:88-105
Proteins. 2001;42:256-68

I Med Chem. 2006;49:7384-92

" Dam

o
\ D

oo IBO QO
O 2
FFLD

Biol Chem. 2001;382:1365-72
J Comput Chem, 2004;25:412-22

Figure 1. Schematic picture of the pipeline for automatic docking developed in our group. The automatic decomposition of the molecules into rigid
fragments is carried out by the program DAIM.*® The fragments are docked by the program SEED which evaluates the binding free energy including
electrostatic solvation effects.*® The program FFLD** is used for flexible ligand docking using positions and orientations of fragment triplets (dashed

triangles).

similar to a breadth-first search. (ii) A fragment is defined as a set
of atoms connected by unbreakable bonds. The basic definition
of unbreakable bonds includes terminal, double, triple, aromatic
bonds, and bonds in rings. Non-rotatable and unbreakable bonds
are distinguished in DAIM; a non-rotatable bond is always
unbreakable, whereas the reverse is not true (e.g., a double bond
is non-rotatable and unbreakable, whereas an amide bond is
unbreakable, but can assume more than one conformation). (iii)
To form chemically relevant fragments and avoid the generation
of many small groups, small functional groups (e.g., -OH, -CHs,
—-CX3 [where X can be any halogen], -SO3, -CHO, -NO,, -NH,, and
-SH) are merged with the fragment they are connected to.
Unbreakable bonds and functional groups (points (ii) and (iii),
respectively) can be defined by the user. (iv) In the final step,
missing atom neighbors are added. An atom will lack a neighbor
atom whenever the bond connecting them has been cut. These
missing neighbors are replaced by hydrogen atoms to
reconstitute the correct valence for every atom. A methyl group
is used to fill valences where a hydrogen atom would result in an
unwanted additional hydrogen bond direction (e.g., a hydrogen
replacing a carbon atom bound to an sp® nitrogen).

Docking of anchor fragments

The docking approach implemented in the program SEED
determines optimal positions and orientations of small to
medium-size molecular fragments in the binding site of a
protein.***" Apolar fragments are docked into hydrophobic
regions of the receptor while polar fragments are positioned
such that at least one intermolecular hydrogen bond is formed.
Each fragment is placed at several thousand different positions
with multiple orientations (for a total of in the order of 10°
poses) and the binding energy is estimated whenever severe
clashes are not present (usually about 10° poses). The binding

energy is the sum of the van der Waals interaction and the
electrostatic energy. The latter consists of screened receptor-
fragment interaction, as well as receptor and fragment
desolvations calculated by an efficient numerical implementa-
tion of the generalized Born approach.*®

Flexible docking of library compounds

The flexible-ligand docking approach FFLD uses a genetic
algorithm and a very efficient scoring function.***® The random
perturbations (i.e., sampling) in the genetic algorithm affect only
the conformation of the ligand; its placement in the binding site
is determined by the SEED anchors and a least square fitting
method.*® In this way the position and orientation of the ligand in
the binding site are determined by the best binding modes of its
fragments previously docked by SEED. On the other hand, the
scoring function used in FFLD is based on van der Waals and
hydrogen bond terms and does not explicitly include solvation
for efficiency reasons. Solvation effects are implicitly accounted
for because the poses of the fragments are previously sorted
according to force field energy with electrostatic solvation in
SEED. FFLD requires three not-necessarily different fragments to
place a flexible ligand unambiguously in the binding site, e.g., the
fluorobenzene, morpholine, and benzoic acid of compound 2
(Table 1). The automatic definition of the three anchor fragments
for each molecule of the library is performed by DAIM using the
chemical richness, ie, the sum of all entries in the DAIM
fingerprint.*®

LIECE binding energy evaluation

The essential idea of linear interaction energy (LIE) models is that
the free energy of complex formation can be calculated by
considering only the end points of the thermodynamic cycle of
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Table 1. The library screening campaigns by fragment-based docking performed at the University of Zurich

(kcal/mol per

Ligand efficiency

molecules tested experimentally.
P Cell-based assay.
¢ Enzymatic assay with purified protein in solution.

Enzyme Affinity non-hydrogen MW Size of Scoring

Protein class Cpd. (M) atom) (g/mol) Hit rate® library method Reference

Proteases

B-secretase Asp PR 1 3.0P 0.19 561 17% (12/72) 512000 LIECE 83

B-secretase  Asp PR 2 7.1¢ 0.19 538  10% (9/88) 316000 LIECE 84

Plasmepsin  Asp PR 3 2¢ 0.25 500  32% (6/19) 40000 Consensus &3
scoring

NS3 protease  Ser PR 4 40° 033 282 5% (1/22) 12000 LIECE 64

NS3 protease  Ser PR 5  28%90¢ 0.34/0.25 298 40% (2/5) 19000 Pose filtering o8

Cathepsin B Cys PR 6  48/6.7° 0.29/0.28 369 3% (1/29) 48000 Consensus 3
scoring

Kinases

EphB4 Tyr kin. 7 1.5¢ 0.32 337 19% (8/43) 728000 LIECE s

CDK2 Ser/Thr kin. 8 7.8 0.32 321 3% (1/30) 40000 LIECE 6>

@The ratio in parentheses is the number of compounds with a value of the measured affinity below 100 uM divided by the number of

9Binding affinity measured by nuclear magnetic resonance spectroscopy.

ligand binding, i.e., bound and free states. For this purpose, one
usually calculates average values of interaction energies from
molecular dynamics simulations of the isolated ligand and the
ligand/protein complex>®' The free energy of binding is
approximated by

AG = O[(<EVdW>bound - <EVdW>free)

+ IB(<Eelec>bound - <EE|ec>free) (1)

where £ and E®'*¢ are the van der Waals and electrostatic
interaction energies between the ligand and its environment. The
environment is either the solvent (free) or both the protein and
solvent (bound). The () denotes an ensemble average sampled
over a molecular dynamics®® or Monte Carlo®? trajectory. The
coefficient « is determined empirically.>° Originally, 8 was fixed to
a value of 1/2, as predicted by the linear response approxi-
mation.>® Later studies have shown, however, that improved
models for a large variety of systems could be obtained by
considering B as a free parameter>® Consequently, both
coefficients are obtained by a fit of experimentally determined
values of AG to the calculated values of £°'° and E'4Y for a
training set of known ligands.

The original LIE method and modifications thereof have been
applied to a large number of existing inhibitor/protein
datasets.’*>*>° Moreover, LIE-based scorings of ligands were
shown to perform better than established scoring functions.®
Interestingly, recent applications to pharmaceutically relevant
enzyme targets have documented the predictive ability and
usefulness in lead-discovery projects. As an example, the LIE
method with explicit water molecular dynamics sampling was
successfully used in the design of a series of inhibitors of the
malarial aspartic proteases plasmepsin | and 115" Unfortunately,
LIE cannot be used for high-throughput docking because of its
computational requirements (the currently fastest implementa-

tion needs about 6 h for each compound®®). Therefore, we have
replaced the explicit water molecular dynamics (or Monte Carlo)
simulations with a simple energy minimization and combined the
LIE method with a rigorous treatment of solvation within the
continuum electrostatics approximation,*® i.e., the numerical
solution of the Poisson equation by the finite-difference
technique.®? The LIECE approach, where the last two letters
stand for continuum electrostatics, is about two orders of
magnitude faster than previous LIE methods and shows a similar
precision on the targets tested. In fact, we have observed an error
of about 1kcal/mol for 13 and 29 peptidic inhibitors of
B-secretase and HIV-1 protease, respectively.*> Similar accuracy
has been reported for other proteases®*®* and five kinases.®®

Consensus scoring

It has been reported that consensus scoring is generally
preferable to the use of a single scoring function.®® Furthermore,
the median rank is more suitable than the average rank in
consensus-scoring because the former is less sensitive to
outliers.®” Rank by median consensus scoring was used in the
in silico screening against plasmepsin and cathepsin B (Table 1).
For plasmepsin, consensus scoring was preferred to ranking by
LIECE because visual inspection of the best LIECE poses revealed
several unlikely binding modes. In the case of cathepsin B, the
lack of experimental data on inhibitors binding outside the
catalytic center was the reason for not using LIECE which requires
at least 10-15 binding affinity data points for fitting the 2-3
parameters of the linear model.

IN SILICO SCREENING CAMPAIGNS

During 2004-2008, our suite of programs for fragment-based
docking®®**** has been employed in eight in silico screening
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campaigns on six different enzymes which play a key role in a
variety of diseases (Table 1). Four of these enzymes are proteases
of three different classes (aspartic, serine, and cysteine proteases),
while the remaining two are a tyrosine kinase and a Ser/Thr
kinase. The 2D structures of the most potent inhibitors
discovered in the eight high-throughput docking campaigns
are shown in Figure 2.

B-Secretase (Alzheimer’s disease)

Alzheimer’s disease is the most common neurodegenerative
disease and it accounts for the majority of the cases of dementia
diagnosed after the age of 60.°® Amyloid plaques, which are
found in the post-mortem brain of Alzheimer’s disease
patients,%>7° consist mainly of fibrillar aggregates of the Aj
peptide, a proteolytic cleavage product of the p-amyloid
precursor protein (APP). Two enzymes, y- and B-secretase (B-site
APP cleaving enzyme) are responsible for the sequential
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processing of APP.”" Although it is not clear whether the plaques
or oligomeric prefibrillar species are responsible for neuronal loss
and dementia,”? the pepsin-like aspartic protease S-secretase has
become one of the major Alzheimer's disease targets.®®”3~77
B-Secretase inhibitors have been shown to lower brain Ag after
direct intracranial administration”®”® or via peripheral adminis-
tration at relatively high doses in murine models.”>”® Moreover, a
novel potent tertiary carbinamine inhibitor of S-secretase
effectively lowers AB levels in a non-human primate model.”
B-Secretase is not an easy target to block.%737°-81 For
instance, only a single molecule (1,3,5-trisubstituted benzene)
emerged as fB-secretase inhibitor from a multimillion compound
library submitted to a high-throughput screening campaign.®? As
a proof-of-principle of our in silico screening approach, high-
throughput fragment-based docking into the B-secretase active
site and LIECE binding free energy evaluation has led to the
discovery of three novel series of inhibitors: phenylurea
derivatives (e.g, compound 1),% triazine derivatives (e.g.,
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Figure 2. Low micromolar inhibitors discovered by high-throughput fragment-based docking into g-secretase (compounds 1 and 2), plasmepsin Il (3),
West Nile virus NS3 protease (4 and 5), cathepsin B (6), EphB4 tyrosine kinase (7), and CDK2 Ser/Thr kinase (8). See Figure 1 for the programs used for
docking, and Table 1 for hit rates, sizes of libraries screened, and experimentally measured affinities.
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compound 2),%* and a set of five cell-permeable, non-peptide,
low-micromolar inhibitors with a different scaffold (D. Huang and
A. Caflisch, unpublished results). Among them, the phenylurea
derivatives were identified from an initial set of about half a
million molecules®® (Table 1). Twelve of the 72 tested compounds
inhibit B-secretase in at least one of two different mammalian
cell-based assays (ECso < 10 wM). It is important to note that for
almost all of the 12 compounds, for which an ECs value could be
measured, the discrepancies between LIECE-predicted affinity
and the experimental value is within the LIECE accuracy of about
1 kcal/mol.** The triazine derivatives were selected from an initial
set of about 300000.2* Ten of the 88 tested compounds inhibit
B-secretase activity in an enzymatic assay (ICso < 100 M), and
four of them are active in a mammalian cell-based assay
(ECs0 < 20 pLM).

P. falciparum plasmepsin Il (malaria)

An estimated 40% of the world's population is a potential victim
of malaria, which is responsible for 300-660 million infections
annually.®> Furthermore, there is an urgent need to develop new
antimalarial medicines because of the emerging drug resist-
ance.® Plasmepsins are pepstatin-like aspartic proteases unique
to the malaria parasites (which belong to the genus Plasmodium).
They are involved in metabolism and host cell invasion.” Ten
plasmepsins have been identified in the genome of P. falciparum,
the plasmodium species that causes the most fatal form of
malaria in human, and four of these 10 are located in the food
vacuole, an acidic lysosome-like organelle in which hemoglobin
degradation takes place. It has been shown that inhibitors of
plasmepsins are fatal to the parasites® which suggests that
plasmepsins are pharmaceutically relevant targets. Furthermore,
several small-molecule inhibitors of retroviral and human aspartic
proteases, namely HIV-protease®® and renin,*° are effective and
safe medicines, which provides additional support to the
relevance of plasmepsins as drug targets.

We used our fragment-based docking procedure to search for
inhibitors of plasmepsin I1.°* A total of 4.6 million compounds
were first clustered according to 2D structural similarity resulting
in about 40 000 molecules which were then used for fragment-
based docking. Docking into the plasmepsin Il active site was
followed by consensus scoring using four force field-based
energy functions. A total of 19 compounds were tested in an
enzymatic assay, and three of them showed single-digit
micromolar inhibitory activity (Table 1).°*> One of these three
inhibitors is halofantrine (compound 3), an antimalarial drug
discovered more than 40 years ago whose mechanism of action is
still unknown. To better investigate the binding mode of
halofantrine, four 50 ns molecular dynamics simulations with
explicit solvent were performed starting from two different
poses, one generated by automatic docking and the other by
manual fitting with the help of a computer graphics program. The
molecular dynamics simulations indicate that the binding mode
generated by fragment-based docking is more stable than the
one obtained by manual docking although it is not possible to
definitively discard either.%®

West Nile virus NS3 protease (flaviviral infections)

The pathogenic members of the flavivirus family, e.g., West Nile
virus and the closely related Dengue virus, are transmitted by
mosquito bites. Although an estimated 2.5 billion people are

potential victims of encephalitis and other fatal maladies caused
by flaviviruses’' these diseases have received much less
attention than other tropical diseases like avian influenza. Their
status as “neglected” diseases is in part due to the fact that
flaviviruses are widespread mainly in poor countries, and
mosquitos can fly only much shorter distances than migratory
birds so that they do not represent a threat in developed
countries. Recently, the non-structural 3 (NS3) protease has been
shown to be responsible for cleavage of the viral polyprotein
precursor and to play a pivotal role in the replication of
flaviviruses.®®“* In fact, site directed mutagenesis focused on the
NS3 protease cleavage sites in the polyprotein precursor
abolishes viral infectivity.”® Therefore, the NS3 protease is one
of the most promising targets for drug development against
flaviviridae infections. In this context it is important to note that
two inhibitors of the closely related hepatitis C virus protease are
under late-stage clinical development.®*’

We have run two in silico screening campaigns to identify
inhibitors of the West Nile virus NS3 protease. The first
high-throughput docking campaign (Figure 3, left) was per-
formed on the X-ray structure of the protease®® while the second
campaign (Figure 3, right) made use of a snapshot selected along
a 1ns explicit solvent molecular dynamics simulation started
from the crystal structure.’® This snapshot was chosen from a set
of 100 as it optimally accommodates three representative
molecular fragments: benzene and two functional groups with a
positive charge. The former is the most common ring in the
known drugs, while the latters were employed because the active
site of the NS3 protease has a large amount of hydrogen bond
acceptors. Interestingly, the hit rate was high in both campaigns
(5 and 40%, Table 1). Most importantly, inhibitors 4 and 5 are
candidate lead compounds. They occupy only the S1 and S2
pockets of the substrate binding site (Figure 4), so that additional
substituents are expected to improve their affinity and, at the
same time, retain good druglike properties as they both have very
favorable ligand efficiency (which is defined as the experimen-
tally measured free energy of binding divided by the number of
non-hydrogen atoms®). The in silico discovery of compounds 4
and 5 is remarkable because the West Nile virus NS3 protease is a
very difficult target. Very few non-peptidic inhibitors have been
reported. Moreover, less than 10 molecules emerged as inhibitors
(in the micromolar range) from a library of more than one million
compounds submitted to a high-throughput in vitro screening
campaign.'®

It is interesting to note that compound 5, as well as another
inhibitor of the West Nile virus NS3 protease discovered by
docking into the molecular dynamics snapshot (the dipheny-
lesther 2 in Reference®®), would not have been identified by
docking into the X-ray structure, as the S1 pocket in the latter
does not accommodate the benzene ring in an energetically
favorable way.”®

Cathepsin B (cancer and rheumatic disorders)

Cathepsin B is capable of endopeptidase,'®’ peptidyl-
dipeptidase,'®'% and carboxypeptidase activities.'**'°> Among
the cysteine peptidases cathepsin B is unique for the presence of
a flexible segment, known as the occluding loop, that can block
the primed subsites of the substrate binding cleft. With the
occluding loop in the open conformation cathepsin B acts as an
endopeptidase, while it acts as an exopeptidase when the loop is
closed. Cathepsin B is involved in a number of human disorders. It
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Figure 3. Schematic picture of the two in silico screening campaigns against West Nile virus NS3 protease. Docking of the compounds was performed

by DAIM/SEED/FFLD using the 2fp7 structure of the WNV protease as explained in the text and References.

Figure 4. The guanidinium groups of inhibitors 4 (top left) and 5 (top
right) are involved in electrostatic interactions with hydrogen bond
acceptors in the S1 and S2 pockets of the West Nile virus NS3 protease,
as observed in the X-ray structure of the aldehyde peptidic inhibitor
benzoyl-Nle-Lys-Arg-Arg-H (PDB code 2fp7) (bottom left). Only the
C-terminal dipeptide Arg-Arg-H of the aldehyde inhibitor is shown for
clarity. (Bottom right) Overlap of the poses of compounds 4 and 5, which
were generated by fragment-based docking, with the binding mode of
the peptidic inhibitor. The inhibitors are shown by sticks colored by
atom-type with carbon atoms in green, cyan, and yellow for compound 4,
5, and the peptidic inhibitor, respectively. The surface of WNV
NS2B-NS3pro is colored by electrostatic potential with red and blue
for negative and positive potential, respectively. The figure was prepared
using PyMOL (Delano Scientific, San Carlos, CA) and the APBS program'?®
was used for calculation of the electrostatic surface.

64,98

activates trypsinogen in hereditary pancreatitis,'°® participates in
apoptosis,'®” tumor progression and malignancy,'®®'% and plays
an important role in rheumatic diseases.''%""?

We have targeted the occluding loop of human cathepsin B
outside the catalytic center, using high-throughput fragment-
based docking.''® The aim was to identify inhibitors that would
interact with the occluding loop thereby modulating enzyme
activity without the help of chemical warheads (i.e., without
reactive functional groups that form a covalent bond with
residues in the catalytic site but usually also bind unspecifically to
other proteins). From a library of about 48 000 compounds, the
in silico approach identified compound 6 which fulfills the
working hypothesis (Table 1). This molecule possesses two
distinct binding moieties and behaves as a reversible, double-
headed competitive inhibitor of cathepsin B by excluding
synthetic and protein substrates from the active center. The
kinetic mechanism of inhibition suggests that the occluding loop
is stabilized in its closed conformation, mainly by hydrogen
bonds with the inhibitor, thus decreasing endoproteolytic activity
of the enzyme. Furthermore, the dioxothiazolidine head of
compound 6 sterically hinders binding of the C-terminal residue
of substrates resulting in inhibition of the exopeptidase activity of
cathepsin B in a physiopathologically relevant pH range.'"?

EphB4 tyrosine kinase (cancer)

The protein kinase EphB4 (ertythropoietin producing human
hepatocellular carcinoma receptor tyrosine kinase B4) is a highly
attractive angiogenic target involved in many types of cancer.'"*
It seems to be rather recalcitrant to inhibition because, despite its
potential therapeutic importance, very few inhibitors have been
reported in the literature up to date.

We have developed and applied the ALTA (anchor-based
library tailoring) approach to identify ATP-competitive inhibitors
of EphB4'"® (Figure 5). ALTA is an automatic fragment-based
procedure for focusing libraries of compounds. First, molecular
fragments are docked and prioritized (i.e., anchors are selected
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Figure 5. Graphical representation of the workflow of the ALTA procedure.'"® The first step is the automatic decomposition*® of a library of compounds
(orange rectangle) to obtain the pool of fragments. Afterwards, fragments selected based on the binding site features are docked*° and ranked according
to their binding energy.*' Poses for molecules that contain at least one of the top-ranking fragments are then generated by flexible-ligand docking.**

based on a ranking) according to force field energy which
includes continuum electrostatics solvation.*®*° Large collections
of molecules can then be effectively reduced in size by selecting
only the compounds that have one (or more) fragment among
the top ranking anchors. In principle, ALTA does not require any
information about known inhibitors but in the application to the
EphB4 kinase pharmacophore knowledge (hydrogen bonds to
the hinge region) was additionally used to efficiently reduce the
size of the original library from about 728000 to 21418
molecules. Two series of novel EphB4 inhibitors have been
identified by ALTA. Compound 7 is a potential candidate for
further development because of its low-micromolar affinity and
molecular weight of only 337 DA which result in a very favorable
ligand efficiency (Table 1). Moreover, the kinetic characterization
of a very similar compound (2 in Table 1 of Reference''?) indicates
that this series of molecules bind to the ATP-binding site, as
predicted by the docking calculations.''® Recently, single-digit
nanomolar affinities have been reached by chemical synthesis of
derivatives of compound 7 that were designed on the basis of the
binding mode obtained by docking.''®

CDK2 Ser/Thr kinase (cancer)

The human cyclin-dependent kinase 2 (CDK2) is a Ser/Thr kinase
that controls cell cycle progression in proliferating eukaryotic
cell.""7""° The activity of CDK2 is tightly controlled, and fully
activated CDK2 is essential for proper S phase progression.
Studies have shown that inhibition of CDK2/cyclin A during S
phase leads to S phase arrest and apoptosis, which has suggested
a pharmacological role for CDK2 inhibitors in the treatment of
cancer.'?®

A diversity set of 40375 compounds was used for fragment-
based docking into the X-ray structure of CDK2 (PDB code TKE5).
A threshold in the ratio between van der Waals energy and
molecular weight, and the presence of at least one key hydrogen

bond were used as filters to discard unfavorable poses. The
remaining poses were scored by the two-parameter LIECE model
fitted on 73 known CDK2 inhibitors. Thirty compounds were
tested in an enzymatic assay, and compound 8 emerged with a
single-digit micromolar ICso value and a favorable ligand
efficiency (0.32 kcal/mol per non-hydrogen atom, Table 1).%°

CONCLUSIONS

Low micromolar inhibitors of four proteases and two protein
kinases have been identified by high-throughput screening using
fragment-based docking. The catalytic sites of the proteases have
very different shape from the ATP-binding sites of the protein
kinases. Moreover, the former show a broad range of
surface-hydrophilicity ranging from mainly hydrophobic
(B-secretase) to a strong electrostatic potential (NS3 protease).
Itis thus encouraging that docking finds inhibitors for all of them.
The six enzymes are involved in key biological processes in
humans or human parasites. Therefore, they are relevant drug
targets: B-secretase in Alzheimer’s disease, cathepsin B in cancer
and rheumatic disorders, EphB4 tyrosine kinase in cancer-related
angiogenesis, CDK2 Ser/Thr kinase in several types of cancer,
plasmepsin Il in malaria, and NS3 protease in infections caused by
flaviviruses, in particular West Nile virus and Dengue virus.
Recently, a series of 50 derivatives of the inhibitor 7 of the EphB4
tyrosine kinase have been synthesized. These 50 compounds
were designed using the binding mode obtained by automatic
docking. Notably, six of these compounds are active in the
submicromolar range and one of them has an ICs value of about
5nM."® It is likely that medicinal chemistry optimization of all of
the inhibitors presented in this review article (i.e., discovered by
high-throughput docking) might yield (low) nanomolar inhibitors
but it is very difficult to predict in advance the eventual
improvement in potency.
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One essential component of our scoring approach is the use of
a force field energy supplemented by the evaluation of
electrostatic solvation effects. The latter are calculated by models
of aqueous solvent based on the continuum dielectric
approximation. For fragment docking, the generalized Born
approximation is used for evaluating the electrostatic component
of the binding free energy which includes screened electrostatic
interaction, and protein and fragment desolvation terms.***' The
finite-difference Poisson equation is employed to calculate
electrostatic solvation effects for the poses of the compounds
obtained by flexible ligand docking. The poses are then usually
ranked by the LIECE approach.*>®°

The two main outcomes of our in silico screening campaigns on
six different enzymes are that the hit rate is rather high (between
3 and 40%) and the most potent inhibitors have low micromolar
affinity and favorable ligand efficiency (Table 1). It is difficult to
compare hit rates reported in different studies due to differences
in the libraries employed for screening and in the affinity
thresholds adopted for the definition of hits. Yet, our hit rates
compare favorably with those reported for experimental high-
throughput screening (0.01-0.1%) and fragment-based screen-
ing (0.1-1%) techniques. Moreover, in silico screening involves
much smaller time, consumables, and labor costs than in vitro
screening.

It was not possible to identify submicromolar inhibitors in the
eight high-throughput docking campaigns (for six different
enzymes), probably because one or more of the three following
reasons. First, the libraries of available compounds cover a very
small fraction of the potential druglike molecules. In fact, it has
been estimated that the number of potential fragments with up
to 11 heavy atoms (under constraints due to chemical stability
and synthetic feasibility) is on the order of 10”,'?' while the
number of druglike molecules with less than 30 heavy atoms is
larger than 10%°."%2 Furthermore, it is likely that the coverage of
chemical space is very heterogeneous in the libraries of
compounds that are available. A recent analysis of commercially
available compounds suggests that that the chemical space is
skewed mainly toward ligands of G-protein coupled receptors
(10.6% of the compounds in a database of about 1 million small
molecules resemble known ligands of these receptors) with fewer
kinase-like ligands (4.2%) and an even smaller amount of
compounds resembling protease inhibitors (2.3%).'**> Note also
that an 80-nM ATP-competitive inhibitor of casein kinase Il has
been identified by high-throughput docking of a subset of the

Novartis collection of compounds (about 400 000 molecules in
2003, which are not in the public domain).'**

Second, there are significant sources of errors in both the force
field and continuum dielectric model used to approximate
solvation effects. As an example polarization effects are
neglected in force fields based on fixed partial charges. A recent
extension of the LIECE model has emphasized the importance of
quantum mechanics to capture these effects, in particular for sets
of inhibitors with significant differences in the number of formal
charges.'®

Third, all docking studies presented in this review were
performed with a rigid protein. The rigid-protein approximation,
which is required for efficiency reasons, dramatically restricts the
number of favorable poses and results in false negatives. As an
example, two small-molecule inhibitors of the NS3 protease have
been identified by docking into a molecular dynamics snapshot,
which would not have been possible by using the X-ray
structure.®

In conclusion, we have reviewed our computational tools for
fragment-based library docking and presented applications to six
different enzymes. The scoring of poses based on force field
energy with implicit solvation has shown robustness in
identifying low micromolar inhibitors. Therefore, for target
proteins of known three-dimensional structure, the efficiency
and high hit rate of our fragment-based docking approach makes
it a cost-effective alternative to experimental screening tech-
niques, in particular in the lead identification phase of the drug
discovery process.
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