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High throughput docking (HTD) using high performance computing platforms is a multidisciplinary challenge.
To handle HTD data effectively and efficiently, we have developed a distributed virtual screening data
management system (DVSDMS) in which the data handling and the distribution of jobs are realized by the
open-source structured query language database software MySQL. The essential concept of DVSDMS is
the separation of the data management from the docking and ranking applications. DVSDMS can be used
to dock millions of molecules effectively, monitor the process in real time, analyze docking results promptly,
and process up to 108 poses by energy ranking techniques. In an HTD campaign to identify kinase inhibitors
a low cost Linux PC has allowed DVSDMS to efficiently assign the workload to more than 500 computing
clients. Notably, in a stress test of DVSDMS that emulated a large number of clients, about 60 molecules
per second were distributed to the clients for docking, which indicates that DVSDMS can run efficiently on
very large compute cluster (up to about 40000 cores).

INTRODUCTION

In silico screening of large libraries of compounds is a
commonly used tool in drug discovery because it efficiently
identifies candidate lead compounds.1-7 Its efficiency is due
to methodological progresses and the ever increasing per-
formance of ordinary low-cost computers. Despite these
progresses, handling large libraries of compounds is still a
challenge for data management in drug design and discovery.
The demand for an efficient data management increases even
further if multiple computing instances access and update
the data simultaneously.

Recently, several applications of large-scale virtual screen-
ing in parallel have been reported. For instance, para_glide,
a recently developed extension of Glide8,9 for parallel
execution, counts the number of ligands, divides them into
equal segments, and distributes them over several processors
or machines. At the end of all docking calculations it provides
a unified report of docking scores. Zhang and co-workers
have developed the free package DOVIS which runs Au-
toDock10 in parallel.11 With DOVIS users can submit
multiple jobs from a graphical user interface to both cluster
and standalone computers. The authors docked about 2
million compounds on a Linux cluster with 256 CPUs and
observed near-optimal performance. The essential concept
of para_glide and DOVIS is the splitting of the molecular
database into multiple partitions, which are then submitted
to different processors individually, and the results are
retrieved from all processors and combined after docking.
In this way, the number of partitions and the amount of
molecules are determined before splitting, the running time
of each partition cannot be estimated, and the balance of
each processor cannot be guaranteed either. Moustakas and
Kuntz developed the MPI version of DOCK,12 which used
a master-worker scheme for parallelization.13 To reduce

bookkeeping tasks associated with manual partition of jobs,
data were distributed to workers as molecules were read by
the master, such that the poor load balance due to the random
distribution of jobs was circumvented. Furthermore, Peters
and co-workers recently optimized and validated DOCK on
a massively parallel system with more than 16000 proces-
sors.14 They pointed out that as the number of processors
increased, the HTC (High Throughput Computing)15 version
of the DOCK program was more efficient than the MPI
version, since library docking could be run as a collection
of independent tasks while the MPI version suffered from
overloading of the master. In other words, the efficiency of
distribution of the master is the bottleneck of the master-
worker scheme, in particular when a considerable amount
of workers request jobs simultaneously. As an example, the
efficiency of the MPI version of DOCK is 88% at 8192
workers but decreases to 55% at 16384 workers.14 The
overloading has been overcome by employing multilevel
master-worker scheme (MLMW). However, both HTC and
MLMW require additional time-consuming programming,
in particular, HTC demands for the implementation of an
asynchronous task dispatch subsystem, while MLMW re-
quires the modification of the source code of the docking
software.

The efficiency of data management is crucial in parallel
applications. Furthermore, there is a strong demand of an
efficient and easy-to-implement procedure to handle the data
for a large number of computing clients. At present, most
docking software reads the input and stores the output in
plain files directly. Nonetheless, storing massive data in plain
files is not suitable for extensive data management, since it
usually requires more application programming effort to
create, modify, and access data efficiently and securely. A
database management system is a computer software de-
signed to handle massive data efficiently. Providing controls
of communication and synchronization, it allows multiple
tasks to access and update the data in parallel with marginal
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additional effort in programming. It contains mature facilities
to keep data integrated and consistent and provides utilities
for database maintaining, such as backup, recovery, monitor-
ing, and tuning.

In this paper, we introduce the Distributed Virtual Screen-
ing Data Management System (DVSDMS) for docking and
ranking based on a master-worker scheme and the freely
available database software MySQL. By separating opera-
tions related to data management from the main application
and allocating the former to the database management
system, DVSDMS can manage HTD data effectively and
efficiently. The connection between the different programs
is handled via scripts written in Python. A MySQL database,
the master of the system, is used for organizing all the data.
The clients (workers) do not communicate among each other
but only with the database. In the application presented here,
AutoDock was used as the docking engine, while DAIM,16

Witnotp,17 CHARMM,18 and MOPAC19 were employed for
preparing the compound library, file type conversion, mini-
mizing poses, and quantum mechanical calculations, respec-
tively. Because of the flexibility of DVSDMS, other pro-
grams can be used for docking and ranking. Alternative
procedures range from simple molecular mechanics energy
terms and combinations thereof20 to a quantum mechanics
based ranking approach.21 Furthermore, it is straightforward
to use DVSDMS for consensus scoring.22-24 In fact energy
values calculated by different scoring functions can be stored
in tables for ranking.

DVSDMS was validated in this study by docking about
1.5 million compounds into the ATP-binding site of the
receptor tyrosine kinase EphB4 and ranking about 100
million poses using two Beowulf clusters (located on the
same grid but with a number of switches ranging between 1
and 4). In the productive phase of docking and ranking the
average load of the database management system was less
than 10% and 30% with more than 500 workers requesting
jobs, respectively. In a stress test, the database server built
on a low cost Linux PC was able to distribute about 60
molecules per second.

DOCKING AND RANKING BY DVSDMS

The following three subsections describe briefly the overall
process and programs used for docking and ranking in this
application of DVSDMS. Details of the DVSDMS architec-
ture are given in the next section.

Predocking. All structures and properties of the molecules
required for docking and ranking were calculated and stored
in the database. For each molecule in the ZINC library25

(version 7) CHARMm26 atom types were assigned with
Witnotp.17 Then DAIM16 was applied to calculate the atomic
and chemical properties of each molecule (listed in Table
1). Even though not all of these properties were used in
docking and ranking, they were prepared for different kinds
of filters one might want to apply before docking. Besides
these properties, the mol2 file of each molecule was also

Table 1. Structure of Table “ZINCMOL”a

column name data type explanation

zincmol.id int(11) unsigned not null auto_increment a unique identity for each molecule
zincmol.numatoms tinyint(3) unsigned not null number of atoms
zincmol.numc tinyint(3) unsigned not null number of carbon atoms
zincmol.numn tinyint(3) unsigned not null number of nitrogen atoms
zincmol.numo tinyint(3) unsigned not null number of oxygen atoms
zincmol.numhal tinyint(3) unsigned not null number of halogen atoms
zincmol.nums tinyint(3) unsigned not null number of sulfur atoms
zincmol.nump tinyint(3) unsigned not null number of phosphorus atoms
zincmol.numarombnd tinyint(3) unsigned not null number of aromatic bonds
zincmol.numdoubbnd tinyint(3) unsigned not null number of double bonds
zincmol.numtribnd tinyint(3) unsigned not null number of triple bonds
zincmol.numamibnd tinyint(3) unsigned not null number of amide bonds
zincmol.numacc tinyint(3) unsigned not null number of hydrogen bond acceptors
zincmol.numdon tinyint(3) unsigned not null number of hydrogen bond donors
zincmol.numring tinyint(3) unsigned not null number of rings
zincmol.totringsize tinyint(3) unsigned not null number of heavy atoms in rings
zincmol.longestchain tinyint(3) unsigned not null longest chain of atoms in the molecule
zincmol.wienerind4 float(16,14) not null Wiener index
zincmol.numbnd tinyint(3) unsigned not null number of bonds
zincmol.numfrg tinyint(3) unsigned not null number of fragments
zincmol.numrotbnd tinyint(3) unsigned not null number of rotatable bonds
zincmol.mw float(8,3) unsigned not null molecule weight
zincmol.clogp float(5,2) not null CLogP
zincmol.charge int(2) not null formal charge
zincmol.mol2file blob compressed mol2 file
zincmol.tag1 char(20) default null notes of calculation status for first target
zincmol.tag2 char(20) default null notes of calculation status for second target
... ... ...
zincmol.tagn char(20) default null notes of calculation status for nth target

a The data types are represented in MySQL syntax.33 The column “zincmol.id” is the primary key. The auto-incremental identifier can be
used to discriminate individual protonation states and/or tautomeric forms. The 23 following columns contain the atomic and chemical
properties of a molecule. The column “zincmol.mol2file” contains the compressed molecule file in mol2 format. The last columns
“zincmol.tagn” (tag columns) record the calculation status for each protein target (e.g., multiple structures of protein or multiple proteins).
Besides the primary key on column “zincmol.id”, indexes are built on tag columns to speed up checking of the status by the computing clients.
Other columns were not indexed because there was no query on them in the applications presented here.
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stored in the database. A table termed “ZINCMOL” (Table
1) was designed to store these data (Figure 1).

Docking. AutoDock10 (version 4) was applied for docking
small molecules from the library into the receptor (see the
Supporting Information). The poses of each molecule in the
PDB format, with their interaction energies with the receptor
and efficiencies (electrostatics and vdW), were stored in the
table “POSE” (Table 2) of the database. During the docking,
the computing clients acquired the 3D structure of the
molecules directly from the database and stored poses and
energies in the database after each docking process finished
(Figure 1).

Ranking. Different scoring approaches can be handled
efficiently by DVSDMS. In the present application to the
EphB4 kinase, we used an in-house developed approach
based on calculations of semiempirical quantum mechanics
to efficiently rank the poses (Zhou et al., manuscript in
preparation). Ranking a pose was usually faster than docking
a molecule; therefore, the former needed a more efficient
database I/O environment than the latter (see Results).

ARCHITECTURE OF DVSDMS

Database Structure. All the actions of the computing
clients were coordinated by the database server (Figure 2).

Three tables are necessary in the database for handling poses
and molecules: one for the data of the molecules (Table 1),
one for the poses from docking (Table 2), and one for the
results of the ranking process (Table 3). Besides the
properties of the molecules and mol2 files, the column
“zincmol.tag” was added to Table “ZINCMOL” to record
the status of docking. The format of the “zincmol.tag”
column is shown in Figure 3. In the case of multiple protein
targets, additional tag columns can be appended for each of
the targets to record the status of docking processes. If the
amount of targets is large and the appended tag columns
affect the efficiency of the database, the ZINCMOL table
can be vertically partitioned like the POSE table (not used
in this application, see Partitioning Large Tables). The main
columns, such as the properties and the coordinates of
molecules, do not need to be copied for each target. If the
molecule has not been handled for the specific target, the
related “zincmol.tag” column is set to “null”. Before the
docking starts the non-drug-like molecules (according to
user-defined filters) can be marked as “not passed” at
“zincmol.tag” columns (see Results). The database server
returns one of the molecules with a “null” tag when a docking
client requests a job. The molecules which were marked as
“not passed” will not be returned to computing clients. The
“pose.tag” column of Table “POSE” (Table 2) was parti-
tioned into another table (“POSETAG”, Table 4) to improve
the database performance (see Partitioning Large Tables).
Column “posetag.sign” in the Table “POSETAG” is the
status of ranking process of the related pose: “1”, “2”, “3”,
and “6” mean “in process”, “finished normally”, “finished
with errors”, and “unhandled”, respectively. When a ranking
client requests a job, the database returns a set of poses with
“unhandled” signs.

Interface between Software Packages. Python scripts
were developed for connecting all software packages in
DVSDMS. The whole process needed the cooperation of
several types of software (Table 5) developed by different
groups. Therefore, some jobs such as converting file type,
preparing input files, and parsing output files were needed
to connect each stage of the pipeline. The communication
to the database is essential in the DVSDMS. The Python
package SQLAlchemy27 is used to establish the crucial
connection of python scripts (connecting the different stages
of the docking pipeline) and the MySQL database (the data
and result storage facility). The package Elixir28 (object-
relational mapping features) facilitates the consequent treat-
ment of all data entries as objects, which results in clean
code such that raw SQL statements are used only in
performance critical parts.

Running on Standalone and Cluster Computers. DVS-
DMS runs as a single executable Python script on standalone
or cluster computers without a queuing system. In the
presence of a queuing system DVSDMS can be submitted
to the queue with a runtime limit in accordance with the
configuration of the queuing system. In this case, the
DVSDMS client estimates the execution time of the next
job before acquiring it from the database.

Monitoring Process and Identifying Errors. Users can
monitor progress of the computation and trace errors by
means of “sign” and “tag” columns of the corresponding
tables in DVSDMS. The docking status of a molecule,
machine name of the client, and the starting time of the job

Figure 1. Schematic representation of docking and ranking
processes. Red boxes indicate the public-domain databases, while
blue parallels mean the tables in DVSDMS.

Table 2. Structure of Table “POSE”a

column name data type explanation

pose.id int(11) not null
auto_increment

a unique identity for
each pose

pose.ele float electrostatic interaction
pose.elee float electrostatic efficiency
pose.vdw float vdW interaction energy
pose.vdwe float vdW efficiency
pose.pdbfile blob compressed pdb file
pose.mol_id int(11) unsigned

not null
related zincmol.id in

Table “ZINCMOL”

a The data types are represented in MySQL syntax.33 The
Column “pose.id” is the primary key. An index is built on Column
“pose.mol_id”, which is a pointer for connecting the record in Table
“POSE” to the one in Table “ZINCMOL”. The value of Column
“pose.mol_id” equals to the value of the primary key of Table
“ZINCMOL”.
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can be read from Column “zincmol.tag” in Table “ZINC-
MOL” (Figure 3). In Table “POSETAG”, Column “posetag.
sign” is further separated from Column “posetag.tag” (Table
4) because in the I/O intensive ranking stage, the database
only needs to scan “posetag.sign” to attain the status of the
pose when requested for an “unhandled” pose.

Distributed computing systems are more prone to error
than a standalone computer. It is very labor-consuming to
reroll the process and locate errors when millions of
compounds are handled in a high-throughput screening
campaign. DVSDMS records stage information of clients in
“sign” and “tag” columns and can check the status of jobs
with user-defined frequency. Practically if a job does not
finish during a given period of time, its status will be set to
“unhandled”, and its executing client will be reported. Then
the job returns to the waiting list and is ready to be assigned
to another free client.

PERFORMANCE TUNING

The optimization of DVSDMS focuses on the database
performance tuning because, as mentioned above, the data
management is separated from the main docking and ranking
applications in DVSDMS. In the following, details on the
process of optimization are given.

Figure 2. Hardware and data flow in DVSDMS. Note that in the application presented here the user’s machine, backup machine, and
database server were all on a single PC.

Table 3. Structure of Table for Ranking (PROBENER in Our
Application)a

column name data type explanation

probener.id int(11) not null
auto_increment

auto increment
“probener” id

probener.p1 float interaction energy with
the first probe

probener.p2 float interaction energy with
the second probe

... ... ...
probener.pn float interaction energy with

the nth probe
probener.pose_id int(11) related pose.id in

Table “POSE”

a The data types are represented in MySQL syntax.33 The
Column “probener.id” is the primary key. An index was built on
Column “probener.pose_id”, which is a pointer for connecting the
record in Table “PROBENER” to the one in Table “POSE”. The
value of Column “probener.pose_id” equals to the value of the
primary key of Table “POSE”.

Figure 3. Format of “zincmol.tagn” column in Table “ZINCMOL”.

Table 4. Structure of Table “POSETAG”a

column name data type explanation

posetag.id int(11) not null
auto_increment

auto increment
posetag ID

posetag.pose_id int(11) related pose.id
in Table POSE

posetag.sign int(2) unsigned
default ‘6’

sign of status

posetag.tag char(20) default null note for calculation
status

a The data types are represented in MySQL syntax.33 The
Column “posetag.id” is the primary key. The Column
“posetag.sign” was introduced for efficient retrieval of the ranking
status. The meanings of signs are mentioned in the main text. An
index was built on Column “posetag.pose_id”, which is a pointer
for connecting the record in Table “POSETAG” to the one in Table
“POSE”. The value of Column “posetag.pose_id” equals to the
value of the primary key of Table “POSE”.
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Using Database Index. An index was created on the
column which was of high querying frequency. Each table
has a primary key, a unique index to identify each row in a
table, used for attaining the specific record promptly. For
instance, with the primary key, any molecule record in the
Table “ZINCMOL” can be retrieved out of millions of others
by its ID stored in the Column “zincid.id” (Table 1) in one
millisecond after the index was cached in the memory (see
RESULTS section for hardware description). This is also
valuable when the application needs to find out which
molecule a given pose belongs to via Column “pose.mol_id”
in Table “POSE” (Table 2). Similarly, but in an inverse way,
the index of Column “pose.mol_id” (Table 2) is of use for
fast reverse query, e.g., attaining poses related to a molecule.
Only columns frequently queried are indexed. Other columns,
e.g., interaction energies of poses and ranking scores, are
not indexed because each additional index increases the size
of the database and reduces the writing speed of tables.

Partitioning Large Tables. The performance of the
database can be improved by partitioning large tables. During
the database scan operation initiated by a query, only
partitions containing the data are accessed, and during the
maintenance, only damaged partitions instead of the entire
table are repaired. Furthermore, the partitioned tables can
be distributed on different physical drives, and tables can
be scanned in parallel to improve both CPU and disk
performance (which was not necessary for the present
application). Two major forms of partitioning were applied
in our database:

Horizontal Partitioning: Tables “ZINCMOL” and “POSE”
were horizontally segmented into 50 partitions according to
the hash function of their primary keys. Partitioning by hash
is used primarily to ensure an even distribution of data among
a predetermined number of partitions.29 The value of a hash
function determines the membership of a partition, e.g., the
hash function returns an integer from 0 to 49 in the case
with 50 partitions. The horizontal partitioning feature is
supported by MySQL starting from version 5.1.

Vertical Partitioning: The most referenced columns “sign”
and “tag” in the original Table “POSE” were separated into
a new table “POSETAG” (Figure 4). Table “POSE” and
“POSETAG” referred to each other via the column “pose.id”
in “POSE” and the column “posetag.pose_id” in “POSETAG”.

This relation is analogous to foreign key constraints in the
context of relational databases, even though MyISAM30 (see
Storage Engine) still does not support it in the latest version
(MySQL 6.0). In this way, when handling the status of poses,
the database management system only scanned the smaller
table (“POSETAG”) with the fixed row format instead of
the large and dynamic table (“POSE”). In addition, different
storage engines could be applied on different tables (see
Storage Engine).

Storage Engine. Most tables in the database are con-
structed with MyISAM,30 which is the default storage engine
of MySQL due to its very low overhead, except for Table
“POSETAG” constructed with InnoDB.31 InnoDB uses more
memory as cache to achieve a high performance. In fact,
the database engine does not allow parallel accesses: a client
has to lock the object for an update to prevent conflicting
with other clients. InnoDB implements row-level locking,
so that InnoDB only locks the rows needed for update instead
of locking the entire table as MyISAM does. This feature is
advantageous to concurrent updating from multiconnections
with low lock wait ratio (LWR). The LWR is the percentage
of queries that are required to wait for object locks to be
released so that the query can itself acquire a lock on the
object, e.g., many clients can update statuses of poses by
modifying the Table “POSETAG” synchronously. The
parallel performance of DVSDMS can be estimated by the
LWR. A low LWR means that the performance loss due to
the multiple connections of database is marginal. By using
InnoDB instead of MyISAM as the storage engine of
“POSETAG”, the LWR of the database is reduced signifi-
cantly, specifically in the ranking process MyISAM often
induced a deadlock (LWR≈100%) while InnoDB reduced
LWR to less than 0.1%.

Table 5. Software and Its Function

software name function ref

DAIM calculate the properties
of molecules

16

AutoDockTools convert molecule file
into pdbqt type

34

AutoDock dock small molecules
into receptor

10

CHARMM add hydrogen atoms,
and minimize structure

18

Witnotp convert molecule file
types among mol2, pdb, and psf

17

MOPAC calculate QM energies
used for ranking

19

MySQL the database
management system

35

SQLAlchemy the database toolkit
for Python

27

Elixir a declarative layer on
top of SQLAlchemy

28

Figure 4. Vertical partitioning of Table “POSE”. The value of
Column “posetag.id” in “POSETAG” (Table 4) has no relation to
that of Column “pose_id”. The value of Column “sign” can be “1”,
“2”, “3”, and “6”, which mean “in process”, “normally finished”,
“finished with errors”, and “unhandled”, respectively.
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Local Cache and Bulk Update. The performance of the
database can be improved by using local cache and bulk
update, which were especially important for the short-term
process, such as ranking in our calculation. Otherwise, the
applications communicated with the database with high
frequency and cast a heavy burden on the database. In our
application, 2000 poses were retrieved from the database by
a single SQL command and stored in the local memory.
During the calculation, every result of single pose was stored
in memory temporarily, which works as local cache. After
all the ranking calculations of these poses had been finished,
the client sent the results to the database and updated multiple
rows (bulk update) by another SQL command. In this way,
the clients only need to communicate with the database twice
for handling 2000 poses. Note that if the amount of poses
retrieved by the client using a single SQL command is too
small, there will be no obvious increment of performance.
Conversely, a large amount of poses will increase the
individual query time and the memory use of the database
server.

Compressing Molecule Files. Compressing molecule files
is favorable for saving disk space and network bandwidth
and decreasing the I/O intensity. For a normal PDB or MOL2
file, compression reduced its size by about 75% using zlib.32

The compression and decompression work was performed
by the clients and would not influence the load of the
database server. After compression, the Table “POSE” used
93.1GB hard disk for about 100.8 million poses and their
energies (Table 2).

RESULTS

Benchmark. Since we could not access a large computer
cluster, we wrote an emulator of a docking client to test the
performance of DVSDMS under conditions typical of very
large clusters where the bottleneck is the master rather than

the clients. In fact, our emulator does not run the real docking
calculation but only requests jobs from the master and returns
the output data, such as randomized interaction energies and
efficiencies as well as binding poses (Figure 5). Note that
emulated docking does not require any CPU time, which is
essential to estimate the maximal rate of distribution of
molecules (maxRoD) to the computer clusters we could
access (e200 nodes). The benchmark database server was
built on a dedicated desktop computer, which had two Xeon
3.06 GHz CPUs, 2 GB of RAM, and a 250GB normal speed
hard disk drive (maximal reading speed 50MB/s). The
efficiency of a parallel docking program based on the master-
worker scheme can be measured by the maxRoD of the
master. A series of test cases was performed with the amount
of emulators ranging from 1 to 160 and running one emulator
per core. Two Beowulf clusters at the University of Zürich
were used: The Etna and Matterhorn, which are separated
from the master by one and four switches, respectively. Both
clusters and the master are on a Gigabit network. The time
required for emulated docking of 128000 molecules, which
is a subset of ZINC library, is shown in Figure 6 for different
numbers of emulators. The minimal times for the simulated
docking are 1816 and 2292 s on the Etna and Matterhorn
cluster, respectively. The lower amount of switches to reach
Etna yields about 26.2% performance improvement in the
benchmark. Note that the system load of the master does
not hit 100% when the maxRoD reaches the plateau at about
12 cores (or emulators), which indicates that the network
delay rather than the capacity of the master limits the overall
performance. The maxRoD of DVSDMS running on Etna
and Matterhorn are 70 and 56, respectively. The MaxRoD
of the MPI version of DOCK14 is about 19 (see the
Supporting Information). Therefore the DVSDMS is about
two times faster than the MPI version of DOCK on the Blue
Gene/L platform. Even though the HTC version of DOCK

Figure 5. The flowchart of the docking emulator. In the benchmark the average amount of poses for each molecule is 37 ( 3 and the
average size of each pose is 1 ( 0.5KB, which are consistent to the average in the real application to identify kinase inhibitors.
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and the DVSDMS have similar capacities for distributing
molecules (up to at least 16384 processors) it is easier to
implement other docking engines in DVSDMS than to write
a specific HTC version for each docking engine.

Performance in Production. The database server, backup
machine, and the user’s machine (Figure 2) were all built
on the Linux desktop PC of the first author, which had dual-
core 3.4 GHz Pentium D, 3 GB of RAM, and 3×320GB
hard disks. The disk could read data at about 70 MB/s.

About 1.5 million compounds out of 3.8 millions in the
ZINC library passed the filters used for eliminating the non-
drug-like molecules (molecular weight <500 Da, number
of rotatable bonds e7, number of hydrogen bond donors g1,
and number of hydrogen bond acceptors g1). For the
compounds which did not pass the filters the column
“zincmol.tag” was set to “not passed”. About 15 to 20 min

were required for docking a single compound into the
receptor and CHARMM minimization of the poses (with a
rigid protein) on an Opteron Processor 252 (2.6 GHz). After
all the docking jobs had finished, about 100 million poses
were stored in Table “POSE”, 80% of which were selected
for ranking according to their interaction energies and
efficiency. The computational time required for ranking a
pose ranged from 1 s to 15 min depending on whether further
calculations were needed for the pose and/or the convergence
of quantum mechanical calculations.

The jobs were carried out by the Etna and Matterhorn
clusters and some standalone computers simultaneously. The
number of processors varied dynamically depending on the
availabilities. The load of the database was low during the
docking process using about 500 clients (<100 queries/s,
about 100KB/s traffic of network, and <10% overall system
load), because each docking client only communicated with
the database 3 to 5 times per hour. Therefore, if the master
of DVSDMS can distribute 60 molecules per second and a
client requests 5 molecules per hour, the database server can
support up to 43200 computing clients with nearly linear
scalability if the clients are well synchronized. In contrast,
during the ranking process, the load of the database was high
(about 300 queries/s, 500-1000 KB/s traffic of network, and
about 30% overall system load), because ranking 2000 poses
usually took less than 5 min, and each of the 500 clients
communicated with the database more than 12 times per
hour. Note that docking and ranking could be combined
sequentially to reduce the load of database.

CONCLUSIONS

DVSDMS uses freely available database software for
efficient and automatic virtual screening distributed on Linux
platforms. The essential concept of DVSDMS is the separa-
tion of data management from the main jobs in virtual
screening, i.e., docking and ranking. In this way, the user
has full flexibility on the choice of software for docking and
ranking as well as hardware. Organized by DVSDMS, jobs
are dispatched to each computing client to optimally exploit
the available resources even in the case of heterogeneous
hardware. Users not only can control and inspect the
computing process but also attain consistent and logically
organized data while computing is in progress or finished.

Because docking and ranking consist of many independent
jobs, they are typically suited for a coarse-grained parallel
architecture. In DVSDMS, computing clients do not com-
municate among each other but only with the database server.
When a job is requested by a client, the database server scans
the handling statuses and returns an unhandled job. In this
way, a priori job partitioning is not required, and the overall
computational load can be distributed equally to all comput-
ing clients. Moreover, the queue of jobs can be modified at
any time; new jobs can be added to the computational
pipeline by appending them to the database, while existing
jobs can be removed before they start to run.

Upon performance tuning, the evaluation of the number
of queries, the duration of queries, and the data flow indicate
that the overall performance of DVSDMS is good. In
particular, local cache and bulk updates reduce the query
number; database index, proper storage engine, and database
partitioning speed up queries; and data compression reduces

Figure 6. The duration of simulated docking of 128000 molecules
with different numbers of emulated docking clients. Note that each
core runs only one emulator. (Top) The emulators were submitted
to the Matterhorn cluster (80 compute nodes each with dual-
processor Opteron 2.4 GHz or 2.6 GHz), from which data needed
to pass 4 switches to reach the database server. With more than 12
emulators, the database server, i.e., the master of DVSDMS,
achieves a maximal rate of distribution of molecules (maxRoD) of
about 56 per second on average (128000/2292s). (Bottom) On the
Etna cluster (3 compute nodes each with dual Quad Core Xeon
2.33 GHz), the data only needed to pass 1 switch to reach the
database server, and the maxRoD increased to about 70 per second
on average (128000/1816s). Note that the delay due to the network
equipment is negligible when there is a small quantity of requests.
In both benchmarks however, the database server needs to respond
to thousands of requests per second, so that the network delay limits
the overall performance, and the plateau of the maxRoD is due to
the network.
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the data flow. Furthermore, since the database management
system works as the master of DVSDMS, most of its
sophisticated techniques (e.g., read write splitting and
database cluster) can be applied directly to improve the
performance of the master avoiding the overload without
modifying the code for docking and ranking. In a docking
benchmark, the master of DVSDMS built on a low cost
Linux PC could distribute about 60 molecules per second.
Furthermore nearly linear scalability of DVSDMS is expected
up to 50000 nodes.

In the application presented here, docking the ZINC library
into the receptor tyrosine kinase EphB4 with AutoDock and
ranking poses under the control of DVSDMS, a low cost
Linux PC was perfectly competent for the database server
connected to about 500 computing clients. Since, the database
management system MySQL and the program language
Python are both open-source projects, DVSDMS can be
applied in high-throughput virtual screening campaigns
without restrictions typical of proprietary software.

AVAILABILITY OF DVSDMS

All scripts are available at http://biocroma.uzh.ch/zhou/
dvsdms/.
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