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Many complex networks have an underlying modular structure, i.e., structural subunits �communities or
clusters� characterized by highly interconnected nodes. The modularity Q has been introduced as a measure to
assess the quality of clusterizations. Q has a global view, while in many real-world networks clusters are linked
mainly locally among each other �local cluster connectivity�. Here we introduce a measure of localized modu-
larity LQ, which reflects local cluster structure. Optimization of Q and LQ on the clusterization of two
biological networks shows that the localized modularity identifies more cohesive clusters, yielding a comple-
mentary view of higher granularity.
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Complex networks are a powerful tool for the analysis of
a diverse range of systems, including technological �1,2�,
social �3,4�, and biological networks �5,6�. Especially in bi-
ology, thanks to high-throughput experiments, there is a tre-
mendous growth of available data that can be efficiently ana-
lyzed and summarized in terms of complex networks �7,8�.
In many cases, networks have an inherent modular structure
which can represent functional units called communities or
clusters, e.g., web pages of a certain subject �9�, social
groups �3,10�, or biological modules �11,12�. However, there
is neither an obvious and commonly accepted definition of
communities nor a straightforward way to find the underly-
ing modules of a network. Recently, many clustering algo-
rithms have been proposed �13–18�. For a clusterization with
K communities, the modularity Q=�i=1

K �eii− �ai�in�ai�out� has
been introduced as a measure to assess the quality of a clus-
terization �19�, where eii=Li /Ltot, the effective fraction of
links inside community i, is compared to �ai�in�ai�out

= �Li�in�Li�out /Ltot
2 which is the predicted fraction of edges

that fall into community i if the links in a directed network
are set between nodes without regard to the community
structure. Q is high when the clusterization is good and it can
reach a maximum value of 1. Modularity is used to compare
the quality of different clusterizations, e.g., to find the best
split of a dendogram �20� or to validate different clusteriza-
tion methods and furthermore as a fitness function in optimi-
zation procedures, where Qmax should correspond to the ob-
jectively best clusterization of a network �11,14�. The
modularity is a global measure because the comparison of
Li /Ltot with �Li�in�Li�out /Ltot

2 assumes that connections be-
tween all pairs of nodes are equally probable, which reflects
connectivity among all clusters.

On the other hand, in many complex networks most clus-
ters are connected to only a small fraction of the remaining
clusters. In metabolic networks, for instance, major pathways
occur as clusters that are sparsely linked among each other
�11�. Furthermore, in the protein folding network �6� com-
munities are energy basins and transitions, i.e., connections,
are allowed only between adjacent basins �15�. We call this
property local cluster connectivity. In this paper, we intro-
duce a measure for the quality of network clusterizations. To
take into account local cluster connectivity and to overcome

global network dependency, the approach of modularity is
modified into a local version. The contribution to modularity
for each cluster i is calculated for the subnetwork consisting
of cluster i and its neighbor clusters. This requires the deter-
mination of i’s neighborhood or, more precisely, all the links
LiN

that are contained in this neighborhood. The sum of the
contributions of all K clusters yields

LQ = �
i=1

K � Li

LiN

−
�Li�in�Li�out

�LiN
�2 � .

We call LQ localized modularity. It is – in contrast to Q – not
bounded by 1, but can take any value. The more locally
connected clusters a network has, the higher LQ is. On the
other hand, in a network where all communities are linked
among each other, Q and LQ coincide.

It is interesting to compare the behavior of Q and LQ on
different network topologies and use them as fitness func-
tions for the optimization of network clusterizations �11,14�.
We start with an illustration of the differences between Q and
LQ by discussing a simple example of a scalable local cluster
connectivity network, which we call the school network �Fig.
1�a��. It is a toy model of social interactions between pupils
in a school with l levels and c classes per level. Levels have
periodic boundary conditions to avoid spurious boundary ef-
fects �in the first and last levels�. In a real school, all the
students of a class know each other and, as a first approxi-
mation, a student would interact most with people of his or
her age. In the school network model, students are the nodes
of the network and a link between two pupils is made if they
know each other. Each class contains s fully connected stu-
dents. A link between two students of the same level but
different classes is placed with a �high� probability p�1 and
connections between students that are one level above or
below �+1, Fig. 1�a�� are made with smaller probability r
� p. No social interaction is assumed between persons that
are more than one level apart from each other, i.e., if one of
the students is more than one year older than the other �+2 or
more, Fig. 1�a��. Interestingly, when only two levels and two
classes per level are considered, the school network model is
essentially the same as the well-known �globally connected�
four communities test network used in �11,14�. Hence, the
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school network is a simple generalization to locally con-
nected networks. It is unweighted and undirected but an ex-
tension to directed and weighted networks, e.g., asymmetri-
cal friendship, is straightforward.

A grouping of all the pupils on one level into the same
cluster is reasonable for high p, i.e., when students of the
same age interact among each other with high probability.
But, as p decreases, classes become more and more sepa-
rated from each other until they fully break apart for p=0,
where a fitness measure is expected to favor clusterizations
that identify classes. Therefore, we calculated modularity
and localized modularity for the clusterization of nodes ac-
cording to classes and according to levels for p� �0,1�, r
= p /2, and s=20 students per class. Figure 1�b� shows the Q
and LQ values for ten levels and two classes per level. They
were obtained analytically, using the expected numbers of
links for each p. Both Q and LQ favor the clusterization into
levels for p close to 1. LQ yields the same value for both
clusterizations �crossing point� at pc

LQ=0.42 and prefers the
clusterization into classes for p�0.42. The modularity, on
the other hand, has its crossing point at pc

Q=0.09, i.e., it
favors the classes only for p�0.09. In other words, Q con-
siders the classes and not the levels as the best cluster parti-
tion only if the probability of interaction between two stu-
dents of the same age but different classes is smaller than
10%.

The crossing point pc depends on the number of levels
and classes. Figure 2 shows the change of pc upon variation
of these two parameters with two, five, and ten classes per
level, respectively �from top to bottom�. It can be seen that
pc

LQ is higher than pc
Q for all values of levels and classes, and

is by construction constant for a fixed number of classes per
level. On the other hand, pc

Q strongly depends on network
size which means that it favors different clusterizations as
the number of levels increases, i.e., the lens of cluster detec-
tion becomes more coarse. Furthermore, it converges to 0 as
l grows, meaning that Q favors the clusterization into levels
for any p� �0,1�, even though the classes on the same level
are almost disconnected for small p.

These observations indicate that LQ is more reliable than
Q to validate clusterizations in local cluster connectivity net-
works. The discrepancies between the two measures origi-

nate from the fact that Q compares the effective to the ex-
pected fraction of links in the clusters, no matter if a link is
possible or not. The expected fraction of links is therefore
underestimated in local cluster connectivity networks, thus
the difference between the expected and the effective frac-
tion of links �i.e., Q� is overestimated. On the other hand, LQ
only takes into account local link expectations. Furthermore,
note that modularity as high as 0.8 has been found in Erdös-
Réni �ER� random graphs, scale-free networks, and regular
lattices �21,22�.

In recent years, biological networks �23� have attracted
the attention of many scientists for their potential impact on
the understanding of living systems. Metabolic and protein-
protein interaction networks have been clustered by Q opti-
mization �11� and the MCL method �24�, respectively. To
investigate the behavior of Q and LQ on real-world networks
we optimized the clusterizations of two recent realizations of
the metabolic and protein-protein interaction networks of E.
coli by simulated annealing �SA�, using each of the two mea-
sures as cost function. For each temperature T, c1n2 single-
node and c2n multinode moves, like splitting and merging of
�adjacent� communities, were performed, where c1,2 are con-
stants and n is the number of nodes in the network. Further-
more, T was iteratively reduced to c3T with a constant

FIG. 1. �a� A student’s view in the simplified schematic school network model with only three levels, three classes per level and four
students per class: The student interacts with all his classmates, with other students on the same level with probability p=0.5, and with pupils
one level above or below �+1� with probability r=0.25. No connections are assumed between students that are more than one level apart �
+2 or more�. �b� The p-dependent behavior of the modularity and the localized modularity in the school network with ten levels, two classes
per level, 20 pupils per class, and r= p /2. The modularity favors the grouping of classes �solid line� in the same level for almost all p,
whereas localized modularity favors communities consisting of single classes �dot-dashed line� for p�0.42.

FIG. 2. Dependence of pc on network size: for two, five, and ten
classes per level �from top to bottom�, pc

LQ �dotted lines� is always
higher than pc

Q �solid lines� showing that LQ favors the clusteriza-
tion into classes for higher p while Q almost always prefers the
grouping into levels. Moreover, pc

Q is rather sensitive on the size of
the network and converges to 0 as the network grows, while pc

LQ

does not depend on the number of levels.
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c3�1. This move set and cooling scheme is similar to the
one used in �11�. The computational effort for the two mea-
sures scales as O�K�, even though the calculation of LQ is
slightly more expensive since it involves the determination
of neighborhoods for each cluster.

�i� The metabolic network of E. coli. We use the metabolic
pathway database developed by Ma and Zeng �25�, which
has been derived from the Kyoto Encyclopedia of Genes and
Genomes �KEGG� �26�. Figure 3 shows the largest con-
nected component of the E. coli metabolic network in this
database. It contains 563 nodes and 708 links which have
been treated undirected. Each node is assigned to between
zero and nine out of 11 possible pathways. The optimization
with fitness function Q leads to a division into 16 clusters
consisting of 35 metabolites on average �as colored in Fig. 3�
and takes a value as high as Qmax=0.82. On the other hand,
LQ optimization leads to a maximum of LQmax=12.1 with
132 clusters, each containing an average of 4.3 metabolites.
The optimization of the two measures finds clusters at a dif-
ferent level, which yields complementary information. As
expected, Q is based on a global view and depends on the
size of the network. As a consequence, optimizing a network
with more metabolites would lead to larger Q clusters. This
problem is likely to arise because, as more data become
available, the network and its largest connected component
will grow. On the other hand, LQ finds the lowest-level mod-
ules, independent on the rest of the network. Still, a major
motivation to find clusters is to obtain information about
presumed pathways of nonannotated metabolites. Figure 3�b�
zooms into one of the Q clusters �white� and shows the split-
ting into smaller LQ clusters. The numbers indicate the re-
spective pathway�s� of the nodes. Note that an LQ cluster is
not necessarily fully contained in a Q cluster, i.e., a smaller
�local� cluster may be only partially contained in a larger
one. In the considered cluster of Fig. 3�b�, the further divi-
sion is justified because it results in more homogeneous sub-
clusters. The yellow community, for instance, contains
mainly nodes belonging to the carbohydrate metabolism
pathway �label 3�. According to this, the unassigned node
�N-acetyl-alpha-D-glucosamine 1-phosphate, labeled as ”?”
in Fig. 3�b�� can also be classified in pathway 3 with high

confidence. This would have been impossible when consid-
ering the white cluster obtained by Q whose nodes are as-
signed mainly to pathway 6 �glycan biosynthesis and me-
tabolism� and 1 �amino-acid metabolism�.

To obtain a more quantitative analysis, we compute the
conditioned probability

P�i, j� = P���i� � ��j� � � �c�i� = c�j�� �1�

that two nodes i and j, lying in the same cluster c, share at
least one pathway ���. For the Q clusterization, this prob-
ability is PQ�i , j�=0.57, while PLQ�i , j�=0.73, reflecting the
higher homogeneity of the LQ clusters. Comparison to the
null case, where nodes are picked at random from the net-
work, yields PR�i , j�=0.26 and the probability that any pair
of linked nodes shares a pathway is 0.59, thus essentially the
same as for the clustering with Q.

�ii� The protein-protein interaction (PPI) network of E.
coli. A set of 716 verified interactions involving 270 proteins
of E. coli has been reported �27�. We again focused on the
largest connected component consisting of 230 proteins and
695 undirected connections �Fig. 4�. Identifying clusters can
help to find indications about the function of unknown pro-
teins. Again, modularity and localized modularity differ in
the granularity of the clusters, similar to using two different
lenses of a microscope. While the highest value for Q has
been found for a clusterization with seven communities
�Qmax=0.49�, LQ splits the network into 56 communities
�LQmax=2.97�. An example where LQ yields a more accurate
“guess” is given in Fig. 4�b�, where the LQ clusterization
further subdivides the black cluster of Fig. 4�a�. The proteins
in the green circle are part of the DNA polymerase complex
�dnaE, dnaQ, dnaX, dnaQ, holA, holB, holC, holD and
holE�. According to LQ, the unknown protein b1808 appears
to be a protein of this complex. On the other hand, the black
cluster obtained by Q is more heterogeneous which makes a
functional assignment of b1808 difficult.

In conclusion, a measure for the quality of network clus-
terizations, called localized modularity, has been introduced
and compared to the widely used modularity. Both measures
can be used essentially in the same way. The latter has been

FIG. 3. �Color online� �a�
Largest connected component of
the metabolic network of E. coli.
The coloring scheme represents
the clusterization found by opti-
mizing modularity. Some colors
are used twice. �b� LQ clusteriza-
tion of the white Q cluster with
the annotation of different path-
ways. According to LQ it is highly
probable that the unassigned
yellow node �N-acetyl-alpha-D-
glucosamine 1-phosphate, marked
as “?”� belongs to the carbohy-
drate metabolism �label 3�.
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applied previously by others to assess the clusterization qual-
ity in many networks and has been used to find the best split
of a dendogram and as fitness function in optimization algo-
rithms. Finding clusters by optimizing a given fitness func-
tion has the advantage of not using any parameters �unlike
many other clustering methods �15,17,18��. Q depends on
global properties like the network size and the cluster con-
nectivity. However, in many real-world networks, communi-
ties are merely connected locally, i.e., most pairs of clusters
are not linked. We have called such organization local cluster
connectivity. By detailed investigation of model networks as
well as the optimization of Q and LQ on two biological

networks, we have provided evidence that the two measures
give a view of different depth into the cluster structure. In
contrast to Q, LQ takes into account individual clusters and
their nearest neighbors, generating high-confident clusters,
irrespective of the rest of the network. Thus, the two mea-
sures provide complementary information. Furthermore, the
LQ approach can be generalized to second or higher nearest
neighbors which, albeit computationally more expensive,
might yield additional insights, as if one were to use different
lenses of a microscope.
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FIG. 4. �Color online� �a� Largest connected
component of the PPI of E. coli. The colors rep-
resent the clusterization found by optimizing
modularity. �b� LQ clusterization of the black Q
cluster. The green circle contains proteins belong-
ing to the DNA polymerase complex. The un-
known protein b1808 is assigned to this complex
according to LQ while the complete Q cluster is
heterogeneous.
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