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ETNA: Equilibrium Transitions Network and Arrhenius Equation for Extracting Folding
Kinetics from REMD Simulations
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Department of Biochemistry, UniVersity of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

ReceiVed: August 14, 2008; ReVised Manuscript ReceiVed: December 1, 2008

It is difficult to investigate folding kinetics by conventional atomistic simulations of proteins. The replica
exchange molecular dynamics (REMD) simulation technique enhances conformational sampling at the expenses
of reduced kinetic information, which in REMD is directly available only for very short time scales. Here,
we propose a procedure for obtaining kinetic data from REMD by making use of the equilibrium transitions
network (ETN) sampled at the temperature of interest. This information is supplemented by mean folding
times extracted from ETNs at higher REMD temperatures and scaled according to the Arrhenius equation.
The procedure is applied to a three-stranded antiparallel �-sheet peptide which has a very heterogeneous
denatured state with a broad entropic basin and several enthalpic traps. Despite the complexity of the system
and the REMD exchange time of only 0.1 ns, the procedure is able to estimate folding times (ranging from
about 0.1 µs at the melting temperature of 330 K to about 8 µs at 286 K) as well as transition times from
individual non-native basins to the native state.

I. Introduction

Molecular dynamics (MD) and Metropolis Monte Carlo are
simulation techniques widely used for Boltzmann-weighted (i.e.,
equilibrium) sampling. In principle, the main advantage of MD
simulations is the correct description of the dynamics because
the time-behavior of the system is not characterized in detail
by Monte Carlo sampling.1 In practice, because of the many
degrees of freedom in the (poly)peptide chain and the related
complexity of the free-energy landscape it is very challenging
to sample the conformational space of peptides and proteins by
standard MD techniques, which have an inherently “slow” time
step of about 1-2 fs. At low temperatures, MD simulations
can get trapped and sample mainly the starting basin. On the
other hand, at high temperatures the accessible phase space
increases dramatically and not all possible conformations are
visited. A number of simulation techniques have been introduced
to enhance the sampling of the conformational space.2-4 At the
same time, the availability of hundreds to thousands of proces-
sors has been exploited by intrinsically parallel jobs like
distributed computing5,6 and loosely coupled MD simulations.7

Because of the significant time-scale gap between the actual
folding process (microseconds to seconds) and simulation length
(nanoseconds), it is not possible to extract folding kinetics
directly from distributed computing simulations.6,8 In this
context, Markov chain models have been applied to determine
transition probabilities between a small number (usually less
than 100) of coarse-grained states from multiple short MD
runs9-11 but the development of an automatic procedure to
cluster the MD snapshots into kinetically distinct states is a
major obstacle and an active area of research.12-15

One simulation technique widely used to enhance sampling
is replica exchange MD (REMD). In REMD, several noninter-
acting copies of the system are evolved in parallel over a range
of temperatures.16 The values of temperature are exchanged
periodically using a Metropolis-like criterion that ensures

sampling of the canonical ensemble at each of these values.
REMD is more efficient than constant temperature MD (CTMD)
for equilibrium sampling in particular at low temperatures as
shown for peptide folding17 and aggregation.18 However, the
REMD sampling consists of many discontinuous segments of
trajectory, which cannot be used straightforwardly to analyze
the kinetics on relevant time scales.

Four approaches to the extraction of kinetics from REMD
have been published. Andrec et al. have proposed a network
model in which links represent allowed conformational changes
between states according to a geometrical similarity criterion,
and each snapshot is a node of the network. Sampling at
different temperatures is combined according to the kinetic
energy of states.19 Van der Spoel and Seibert assumed a two-
state model and fitted the four parameters of a rate equation by
employing the fraction of native folded species along a
heterogeneous set of 16 REMD and 4 CTMD trajectories of a
�-hairpin decapeptide.20 Yang et. al approximate the folding
process by Langevin dynamics along a one-dimensional reaction
coordinate R with effective random forces and diffusion
coefficient (as a function of R) extracted from REMD.21 Their
approach requires the a priori definition of a one-dimensional
reaction coordinate for folding which almost always masks the
hidden complexity of the folding process.22-24 This complexity
is also masked in the two-state assumption of van der Spoel
and Seibert. Recently, Buchete and Hummer have proposed a
procedure to extract rates from the number of transitions on
the time scale of replica exchanges by calculating the rate
coefficients of a master equation using the maximum likelihood
technique.14,25 They applied this procedure to the blocked alanine
pentapeptide in explicit water (which was coarse-grained into
32 states according to a 5-bit string of residue helicity) but
concluded their letter by explicitly mentioning that the applica-
tion to protein folding might “pose a major challenge” because
of the large number of states.14

Here, we present a procedure for extracting kinetics from
REMD which can be applied to systems more complex than
those mentioned above, for example, peptides and proteins
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simulated at atomistic resolution. First, the equilibrium transi-
tions network (ETN) is constructed for each value of the
temperatures used in REMD. More precisely, the ETN is the
capacitated graph whose nodes and links represent coarse-
grained microstates and transitions, respectively, sampled in the
short segments at constant temperature. The ETN often consists
of several disconnected components because of the short
trajectory segments between replica exchanges and due to free-
energy barriers separating states. Within each component an
equilibrium phase-space distribution at the respective temper-
ature is sampled because of the canonical-ensemble sampling
within the REMD segments. An important aspect of the
procedure for extracting kinetics from REMD is that the ETN
can be treated as a Markov state model, implying that Monte
Carlo simulations on the network reproduce the correct dynamics
within each component. To estimate folding rates at each
temperature, mean folding times (mft’s) are computed as in refs
26 and 27 on the ETN component that is connected to the native
state. Finally, the Arrhenius equation and the sampling at high
temperatures are used to extract kinetics for the low temperature
nodes that are disconnected from the NC of the ETN (Figure
1). The procedure is termed ETNA because of the combination
of the ETN and the Arrhenius equation. Moreover, thanks to
the thermodynamically correct sampling from the REMD
trajectories and the integration of short REMD segments into
ETN components, it is possible to extract correct populations
of enthalpic free-energy basins from the analysis with cut-based
free-energy profiles (cFEPs), which is a method for grouping
conformations according to (local) transitions at equilibrium.28

ETNA is applied to the miniprotein called Beta3s29 whose
native structure corresponds to a three-stranded antiparallel
�-sheet consisting of two �-hairpins.30 Beta3s has been shown
to fold to the native structure determined by NMR30 in molecular
dynamics simulations with the CHARMM polar hydrogen
molecular mechanics potential energy function supplemented
by a simple implicit solvent model.29 Since folding simulations
of Beta3s are very fast close to its melting temperature of 330
K (folding time of about 0.1 µs, which requires roughly 18 h
on a single core of a XEON 2.33 GHz), many studies have
been made to elucidate its folding mechanism.15,17,23,27,29,31,32

ETNA is able to extract from REMD overall folding times of
Beta3s, as well as folding times from individual basins in the
unfolded state, that are in good agreement with the correspond-
ing values obtained by multiple CTMD folding runs started from
the denatured state ensemble at 286 K. Therefore, kinetics on
time scales 5 orders of magnitude longer than the REMD
segments are accessible, as the REMD exchange time was only
0.1 ns and the folding time of Beta3s is about 8 µs at 286 K.

II. Theory

A. Equilibrium Transition Network (ETN) from REMD
Segments at Constant Temperature. The trajectory segments
collected in REMD simulations at a given temperature are much
shorter (picoseconds) than the time scales of large conforma-
tional transitions or folding (microseconds to seconds). The
length of the segments depends on the frequency of the
swapping attempts and their acceptance ratio, which is usually
25-30%. These segments of trajectory are between 3 and 6
orders of magnitude shorter, depending on the temperature, than
the folding time of a structured peptide or a small protein. The
essential idea of ETN is to extract kinetics from the integration
of all REMD segments at the same temperature. For complex
systems, the ETN at each temperature consists of several
disconnected parts, one of which contains the native state and
is termed native component (NC) hereafter. The NC is usually

the largest component, but its size can be reduced at very low
temperature due to large free-energy barriers between states,
as well as at high temperature (above 307 K for Beta3s; see
section IIIF) because sampling is not sufficient to fully connect
the large accessible space, especially in the presence of entropy-
dominated regions.

There are two important conditions on the ETNs. First, the
individual ETN components must fulfill the property of Markov
state models. Markovianity depends on the way how snapshots
are grouped into nodes and on the lagtime of the transitions.
The second condition is that all components represent local-
ly the correct connectivity and population of states, that is, that
the ETN assembled from REMD sampling is indistinguish-

Figure 1. Illustration of the ETNA procedure for folding time
evaluation of snapshots outside of the native component (NC) at the
temperature of interest. (Top) Whenever a disconnected REMD segment
at temperature T1 is visited (dashed nodes), the next segment in the
time series of that replica is considered (white nodes). In the example
shown, only the second temperature increase to T3 is successful in
visiting snapshots belonging to nodes of the NC (black nodes). The
details of the procedure are given in the text. (Bottom) Schematic view
of the main idea behind the Arrhenius scaling approach. Folding time
information extracted at high temperature is used to estimate folding
kinetics at low temperature. Each color and symbol shape represents a
free-energy basin.

Extracting Folding Kinetics from REMD Simulations J. Phys. Chem. B, Vol. 113, No. 10, 2009 3219



able from the corresponding portion of the ETN from converged
CTMD simulations. This requires that the REMD exchange time
is long enough for establishing local connectivity.

Note that for an ETN generated by the combination of
thousands of short trajectories, like in REMD, it is important
to symmetrize the transition matrix (i.e., impose detailed
balance) by replacing the absolute number of transitions nji from
node i to node j by cji ) (nji + nij)/2. Such an enforced detailed
balance is allowed only if the REMD simulations are long
enough to reach equilibrium at all temperatures. While this step
is helpful (but not essential) for long equilibrium trajectories,28

it is necessary for ETNs extracted from REMD to avoid dead-
ends. A dead-end may arise when the trajectory is interrupted
because of a temperature swap, leaving the last visited node
without a next neighbor. Such nodes are problematic if transition
times are calculated by solving the respective master equation
on the ETN (see next subsection).

B. Mean Folding Time Calculation on the NC at Constant
Temperature. The mean folding time (mft) is the mean first
passage time to the native node. Given the transition probability
pij between nodes j and i (with pij ) cij/∑k ckj), the mft for a
node i in the NC at a given temperature is the solution of the
equation system mfti ) ∆t + ∑ pij ·mftj, which can be
determined by iterative multiplication.26,27 ∆t is the lagtime time
of the Markov state model. Solving the equation system allows
the calculation of the mft from nodes in the NC that actually
never fold within any of the short REMD segments. On the
other hand, it is not possible to calculate the mft of nodes not
belonging to the NC. For snapshots in non-NC nodes, the
Arrhenius-scaling approach (ETNA) is introduced as follows
in the next subsection.

C. Scaling Folding Times Using the Arrhenius Equation.
An essential aspect of the ETNA procedure is the use of the
Arrhenius equation and high-temperature sampling to extract
kinetics at low temperature for microstates that do not belong
to the NC. Assuming both the pre-exponential factor A and the
activation energy to exit from a minimum of interest Ea to be

temperature independent, the ratio of folding rates from the
respective basin ki at different temperatures T1 and T2 is

In a first approximation, Ea/R can be taken as a universal
constant of the system and extracted by a linear fit of the 1/T
versus ln(k) plot of unfolding rates at several temperatures. Note
that this assumption of universality for Ea/R is invalid if folding
barriers from different non-native regions are very heterogeneous
or very different from the unfolding barrier, but a more general
theory with multiple scaling factors can be derived in a
straightforward way.

The Arrhenius equation is an approximation that ignores
entropic contributions. Using the Eyring equation from transition
state theory, the ratio of reaction rates can be written as

k2

k1
)

T2

T1
· e[(-∆G/RT2)-(-∆G/RT1)]

)
T2

T1
· e[(-∆H/R)((1/T2)-(1/T1))]

Thus, under the simplifying assumption that ∆H and ∆S are
temperature independent, the entropic contribution T∆S cancels
in the ratio of rates even when the Eyring approach is used.
Moreover, the “pre-factor” T2/T1 is close to 1.0 for similar
temperatures, as they are usually employed in REMD simula-
tions. Therefore, the use of the (simpler) Arrhenius equation is
justified.

As mentioned above, the scaling of folding times according
to the Arrhenius equation comes into play because at low
temperatures the ETN from REMD is usually split into
disconnected pieces due to high free-energy barriers that separate
basins (Figure 1). Therefore, folding times from outside the NC

Figure 2. Schematic illustration of the cFEP procedure.27,28 (Left) Nodes of the ETN are first sorted according to increasing mft. For each value
mftc between 0 (node A) and Max(mft), a value of the cut ZAB between nodes A and B is calculated. The set of nodes on the left of the cut contains
node A and all nodes with mft e mftc, where ZA/Z is its relative partition function. The green, red, and blue nodes have consecutive values of mft
in this simplified illustration of the ETN. (Right) Relation between free-energy basins and the cFEP. Each solid circle borders a basin, while
concentric dashed circles represent values of mft. To illustrate the cFEP, ∆G ) -kT log(ZAB/Z) is plotted as a function of ZA/Z. Basins 1 and 2
overlap because they have the same mft distance from the native state and are therefore not separated in the unfolded part of the profile.

k2

k1
) Ae-Ea/RT2

Ae-Ea/RT1
) e(Ea/R)(1/T1-1/T2)

⇒ τ1 ) τ2 · e
(Ea/R)(1/T1-1/T2)

(1)
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at a low temperature of interest (T1) cannot be calculated directly
on the ETN. When the temperature of a replica is swapped to
the next higher temperature (T2) in the REMD simulation, the
trajectory moves to the ETN at T2. If nodes of the ETN at T2

are visited, the mft of the closest (in time) node is scaled to T1

according to the Arrhenius eq 1 and the snapshots in the previous
T1 segment are assigned an mft. If the procedure is not successful
for T2, the next temperature T3 is considered and so on. If
between two T1 segments the system does not visit the NC at
any other temperature, it is not possible to assign mft’s to the
previous T1 segment. Those snapshots remain unassigned and
are therefore ignored. Note, however, that the scaling of folding
kinetics with ETNA is valid only in temperature ranges where
folding times follow the Arrhenius law. If a temperature TA is
known, where the system starts to show an anti-Arrhenius
behavior, the data with T > TA must be discarded from the
analysis. Hence, the snapshots in a T1 segment are ignored if
no NC at a temperature between T1 and TA is visited before the
system continues to T > TA.

Figure 1 top illustrates the ETNA algorithm for the case where
nodes at T3 are used to scale a fragment of the trajectory at T1.
The mft of the first of these T3 nodes is used to calculate the
theoretical mft of the last T1 snapshot (mft1), taking into account
also the effective time τ2 spent in the segment at T2, mft1 )
mft3 · e(Ea/R)(1/T1-1/T3) + τ2 · e(Ea/R)(1/T1-1/T2), where mft3 was previ-
ously calculated by solving the system of equations at T3. Since
a snapshot cannot have a mean folding time, but only one value
originating from one folding event along the trajectory, the
folding time τ assigned to the last T1 snapshot is chosen
randomly according to the exponential distribution around mft1

as P(τ) ) ke-kτ with k ) 1/mft1. This last step is essential in
order to obtain, in addition to the average value, a cumulative
folding time distribution, which is used later for analysis. All
remaining T1 snapshots in the considered segment are assigned
a folding time exponentially distributed around mft1 + i∆t, with

i being the number of timesteps backward from the last snapshot
in the segment, and ∆t the lagtime of the model. Note that with
this procedure the mft scaling from higher temperature to the
reference temperature is done separately for every snapshot in
nodes not connected to the NC of T1. Therefore the ETNA
approach is different from pure Arrhenius-based methods,20

because each snapshot is assigned an individual folding time
value, which depends on the route the system takes for folding.

D. Cut-Based Free-Energy Profiles (cFEPs). The cFEP
approach was first introduced in ref 28 and further developed
in ref 27. For a node i in the ETN the partition function is Zi )
∑j cij where, as mentioned above, cij is the symmetrized number
of transitions between nodes j and i. If the nodes of the network
are partitioned into two groups A and B, then ZA ) Σi∈AZi, ZB

) Σi∈BZi, ZAB ) Σi∈A, j∈B cij and the free energy of the barrier
between the two groups is -kT log(ZAB/Z) with Z being the
partition function of the full network (Figure 2). The cFEP has
the advantage with respect to the projections onto geometric
coordinates that barriers are preserved.28 In particular, the
relative partition function ZA/Z includes all pathways to and from
the state of interest (e.g., the folded state). The cFEP method
groups conformations according to equilibrium kinetics. Their
application to components of the ETN is possible, because
transitions from constant temperature segments establish locally
the correct connectivity. Therefore, the profiles of ETN com-
ponents are expected to be identical to those that would be
extracted from equilibrium sampling. The cFEP analysis was
performed with the program WORDOM,33 which is particularly
efficient in handling large sets of trajectories. Here, only cFEPs
with mft as progress variable are used. Values of mft for
individual nodes are calculated as explained above.

E. Isolation of Free-Energy Basins. Since the ETN con-
structed from REMD segments at constant temperature yields
multiple disconnected components, it is not possible to obtain
the complete cFEPs, that is, the profile up to ZA/Z ) 1. However,

Figure 3. Cumulative folding time distribution as extracted directly from the 330 K CTMD simulation (circles) and from the corresponding ETN,
which is treated as a Markov state model (triangles). The folding dynamics from the non-native ensemble (top left) and from specific metastable
states (top right and bottom) can be reproduced by the model, which is a very strong indication that the Markov assumption is justified for the
lagtime of 20 ps used here.
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the majority of nodes within a given free-energy basin belong
to the same component of the ETN, at least if relaxation in the
basin is as fast as the minimal length of the segments, which
ensures that different REMD segments are connected through
their visits to some of the highly populated nodes. Therefore,
the procedure to extract basins from the cFEP remains the same
as for the NC, where unfolding cFEPs from a node in the basin
of interest (usually its most visited node) are plotted. The nodes
lying on the left of the cut at the first barrier make up the basin.

III. Application of ETNA to Beta3s

A. Molecular Dynamics Simulations. All simulations and
part of the analysis of the trajectories were performed with the
program CHARMM.34 The designed 20-residue peptide Beta3s30

was modeled by explicitly considering all heavy atoms, and the
hydrogen atoms bound to nitrogen or oxygen atoms (PARAM19

force field35 with the default cutoff of 7.5 Å for the nonbonding
interactions). A mean field approximation based on the solvent
accessible surface (SAS) was used to describe the main effects
of the aqueous solvent on the solute.36 It was shown previously
using exactly the same SAS-based implicit solvent model that
at 330 K Beta3s folds reversibly to its NMR conformation
irrespective of the starting structure, and importantly, 23 of the
26 NOE restraints are satisfied.29 Despite the absence of
collisions with water molecules, in the simulations with implicit
solvent relative rates of folding of structured peptides are
comparable with the values observed experimentally.37-39

Importantly, the small variations in total SAS and radius of
gyration during folding of Beta3s at 330 K31 suggest that the
lack of solute/solvent friction does not have a significant effect
on pathways and kinetics.

B. REMD Setup. In the present simulations, eight replicas
were run with temperatures (in K) of 286, 307, 330, 355, 382,
411, 442, and 476 for a simulation time of 11 µs each. Swapping
attempts between replicas were performed every τswap ) 0.1 ns
with an acceptance ration of about 25% and thus most REMD
segments are 0.1-1 ns long. The Berendsen thermostat was
used with a much shorter coupling constant of 5 ps to allow
the temperature of the system to relax between two swapping
attempts. Frames were saved with a frequency of 20 ps and
therefore a REMD segment contains at least five consecutive
snapshots before a new temperature is accepted. The low
swapping versus saving frequency was chosen in order to let
the system sample local transitions, which are the essential
ingredient in the method presented here.

C. CTMD Folding Runs at 286 and 307 K. It is compu-
tationally prohibitive to obtain reversible folding-unfolding of
Beta3s by CTMD at low temperature. Therefore, 750 CTMD
folding runs at 286 K and 250 at 307 K were performed for
comparison with REMD. Starting conformations were chosen
uniformly distributed over the denatured state ensemble in the
REMD segments at 286 and 307 K (see section IIE for definition
of the native basin). Folding is defined by all-atom rmsd e2.5
Å from the snapshot in the center of the folded node in the
REMD sampling at the respective temperature, as identified by
the leader algorithm.40 Therefore, a folding event is defined
through the same structural constraints in both the CTMD
folding runs and REMD. The CTMD simulations were stopped
upon folding or after 10 µs, even if the folded state was not
reached because of the large computational cost (about 300 days
on a 200-CPU cluster). Note that 164 out of the 750 and 28 out
of the 250 CTMD runs at 286 and 307 K, respectively, did not
fold within 10 µs. Nevertheless, the 10 µs could be included in
the cumulative folding time distribution f(t) ) ∫t

∞ p(τ)dτ, because
f(t) is the probability that a folding event requires at least
time t.

D. The Markov State Model of Beta3s. It is necessary to
coarse-grain the snapshots because each conformation is visited
only once; in other words, any trajectory per se is nothing but
a long string of coordinate sets. There are several meaningful
ways for clustering individual coordinate sets in the trajectory
to obtain coarse-grained microstates (nodes is used synony-
mously in this paper), and different ones are likely to be most
useful for different types of analysis. For a structured peptide
like Beta3s or a �-hairpin, rmsd and secondary structural coarse-
graining are obvious possibilities.22,23,41 The coarse-graining used
in this work is the leader algorithm based on the all-atom rmsd40

with a cutoff of 2.5 Å. Note that nodes in the ETN with only
one or two neighbors (i.e., one incoming and/or one outgoing
neighbor) were grouped to their outgoing neighbor. This

Figure 4. Temperature dependence of rates to exit enthalpic basins.
(A) Unfolding rates estimated by Monte Carlo runs on the ETN of the
CTMD simulations (squares) and the ETN of the NC from individual
REMD temperatures (triangles). The estimates for the Arrhenius
constant Ea/R (eq 1), which is used to scale the kinetics at different
temperatures, can be extracted from the linear fit of unfolding rates.
(B) Exiting rates from the Ns-or2 basin. (C) Exiting rates from the Cs-
or basin. Activation enthalpy values to exit individual basins are similar,
justifying the use of only one Arrhenius constant in the ETNA approach.
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regrouping is justified because the future of such nodes within
a trajectory is completely determined, that is, no information is
erased through their regrouping. Upon rmsd coarse-graining and
regrouping, the following numbers of nodes were found: 4183
(at 286 K), 11 611 (307 K), 26 719 (330 K), and 38 445 (355
K). These nodes are the states of the Markov state model (i.e.,
the ETN), and the lagtime was set to ∆t ) 20 ps. Figure 3
contains a comparison of folding dynamics from the CTMD
simulations and from the corresponding Markov state model at
330 K. There is a very good agreement for the overall dynamics,
as well as for folding distributions from various metastable
states, indicating that the Markov assumption holds.

E. The Arrhenius Fit. As explained in section IIC, the
parameter Ea/R for the fit of the Arrhenius plot can be calculated
from unfolding rates at different temperatures (Figure 4). The
simplest way to obtain rates is by estimating them from the
ETN of a CTMD simulation. Unfolding rates were extracted
as the average time the system spends in the folded state before

exiting from it, where the folded state is defined from the cFEP
of the considered temperature by cutting at the first significant
barrier in the profile (Figure 5).27,28 Unfolding rates extracted
with this procedure are shown as squares and fitted by the solid
line in Figure 4a, from which the slope Ea/R ) 6730 K was
extracted.

It is also possible to approximate unfolding rates directly from
the REMD data. This approach can be especially useful if
equilibrium or unfolding simulations are too expensive, for
example, for large systems or if the unfolding barrier is very
high. The procedure to estimate the rates is the same as for
CTMD with the only difference that the ETN is constructed
from REMD (and not from CTMD) data and only the NC can
be used. Figure 4a contains the rates estimated on the CTMD
and REMD ETNs, where the slope Ea/R ) 9640 K is obtained
by fitting the latter. Figure S2 in Supporting Information shows
that the main results obtained by ETNA are robust with respect
to the type of simulations used to extract the value of Ea/R,
implying that the REMD data is sufficient and no costly CTMD
simulations to estimate unfolding rates are needed.

Interestingly, rates to exit other enthalpic basins can be fitted
with similar Ea/R (Figure 4b,c), which means that the differences
in activation energy to leave enthalpic basins of Beta3s are
relatively small. Therefore, the approximation of using the
activation energy for unfolding as a representative barrier to
leave any enthalpic basin of the system is valid in the application
of the ETNA procedure to Beta3s.

F. cFEPs from REMD Data at Individual Temperatures.
The profiles from the ETN at each of the four lowest REMD
temperatures are shown in Figure 5. These cFEPs represent only
the NCs of each ETN, and include the indicated portions of the
sampled conformational space. A comparison of the same
profiles with the results from CTMD simulations at 330, 355,
and 382 K shows a remarkable similarity up to the first

Figure 5. Identification of enthalpic basins for Arrhenius scaling. At each value of the temperature, the cFEP of the NC is shown by solid lines
with ∆G values on the right y-axis. The percentage values in parentheses represent the statistical weight of the respective NC. The plot of mft as
a function of the relative partition function ZA/Z is shown with dotted lines, and the selection of the enthalpically stabilized part of the ETN is
indicated by perpendicular lines. The criterion was to include as many enthalpic minima as possible by cutting at the point (crossing of perpendicular
lines) where the roughness of the cFEP indicates insufficient sampling, which is often the case in entropically stabilized regions. At 286 and 307
K, all nodes of the NC were included, whereas only a subset was used at 330 and 355 K to remove entropic noise (see text for explanation). The
mft cutoffs were chosen at 125 ns (330 K) and 55 ns (355 K). Interestingly, these cutoff values correspond roughly to the folding times observed
in the CTMD simulations.

Figure 6. Folding rates from CTMD equilibrium simulations (330,
355, 382 K) and folding runs (286, 307 K) calculated by exponential
fitting of the cumulative folding time distribution. There is a clear anti-
Arrhenius transition above 355 K, and therefore sampling at higher
temperatures was not included in the ETNA analysis.
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significant barrier (Supporting Information, Figure S6), which
indicates that the ETN from REMD sampling contains indeed
the correct connectivity information.

At 286 and 307 K the main contribution originates from the
native basin (with a weight of 60.6 and 54.3%, respectively).
At higher temperatures the native state shrinks. Only 37.8, 16.8,
and 1.3% remain native at 330, 355, and 382 K, respectively.
Thus, even though the absolute size of the NC decreases for
temperatures above 307 K, more non-native basins belong to
the NC with increasing temperature.

G. Removal of Entropic Effects. Beta3s is known to spend
about one-third of its time in an entropic region at 330 K, that
is, in a non-native region with heterogeneous structures stabi-
lized mainly by entropy.27 Even in a 20 µs equilibrium
simulation at 330 K, this entropic region suffers from incomplete
sampling and the majority of the nodes is visited only once or
a few times.15,23 The entropic fraction increases dramatically at
higher temperatures. The insufficient sampling of these regions
introduces large errors to the ETN. Therefore, most parts of
the entropic regions were ignored for calculations on the ETNs
and only the well-sampled portion, corresponding to the
enthalpic basins, was used to be consistent with the Arrhenius
equation, which is valid for enthalpic barriers. Figure 5 shows
how this selection was carried out for different temperatures
with the help of the information from the cFEPs. At 286 and
307 K, no entropic contribution is present and all nodes were
considered. At 330 and 355 K, the cFEPs (solid lines in Figure
5) show pronounced minima which represent the enthalpic
basins. After the last enthalpic basin along the ZA/Z coordinate,
the cFEPs are clearly entropy-dominated, as can be seen from
their rough shape which indicates insufficient sampling. All
nodes above the threshold indicated in the profiles were
discarded. The removal of these regions at high temperature
does not bias the scaling of the kinetics by ETNA from high to
low temperature, since a very small part of the free-energy
surface is entropic at low temperature. In addition, temperatures
higher than 355 K were not used in the application of the ETNA

procedure to Beta3s, because there the folding rate shows a clear
anti-Arrhenius transition according to Figure 6, that is, TA (see
section IIA) was chosen as 355 K.

H. Free-Energy Basins. All significantly populated free-
energy basins with enthalpic stabilization could be determined from
different ETN components. cFEPs from various basins that belong
to different components at 286 and 330 K are given in Supporting
Information, Figures S4 and S5, respectively. States at different
temperature are considered to correspond to each other if the most
populated DSSP secondary structure string43 (first column in Table
1) is the same. This comparison ensures that the bottom of the
corresponding basins contain similar conformations, but it clearly
does not imply that the basins are completely identical and such
an assumption is not used anywhere in this work. Populations
extracted from the cFEPs are presented in Table 1. At 330 K the
thermodynamics can be compared to those from a 20-µs equilib-
rium CTMD simulation. The results are in high agreement, except
for the Ch-curl1 enthalpic trap, which was visited only once in the
CTMD trajectory and therefore has a large error. The high
agreement between CTMD and REMD thermodynamics, both
extracted by the cFEP approach, is not trivial because the cFEP
method is based on the information of the equilibrium transitions
between states, whereas REMD samples the correct ensemble of
conformations, but only local transitions. Therefore, the use of
cFEPs is only possible if transitions at constant temperature are
sampled, as it is the case here because the REMD swapping
frequency was chosen lower than the saving frequency of confor-
mations.

I. Folding Time Estimates from REMD. The cumulative
folding time distribution from nodes outside the native basin at
286 K is shown in the top left panel of Figure 7. The red control
distribution from the 750 CTMD folding runs can be fitted between
1 and 10 µs with e-t/7.76µs. Within the same interval, folding kinetics
extracted from REMD with the ETNA procedure scale almost
identically as e-t/7.78µs. As a comparison, if only the non-native part
of the NC is used, that is, if the Arrhenius-scaling is not applied,
the ETN of REMD would suggest a folding time of roughly 0.7

TABLE 1: Comparison of Populations and mft Values from Individual Basins Extracted from REMD Simulations by ETN(A)
and the Corresponding Values Obtained by CTMDa

weight (%) mft (ns)

sec. str. string name NCb REMD CTMD REMD CTMD

330 K
-EEEESSEEEEEESSEEEE- Native yes 37.8 37.1
-EEEESTTEEEEESSEEEE- Ns-or1 yes 1.9 2.2 115 106
--EEESSSEEEEESSEEEE- Ns-or2 yes 3.6 2.7 126 109
--EESSSEEEEEESSEEEE- Ns-or3 yes 1.8 1.4 113 105
-EEEESSEEEEESSSEEEE- Cs-or yes 5.3 5.3 101 109
---SSGGG---EESSEETT- Ch-curl1 no 2.5 0.6 175 (4.2%)c 263
---SSGGG-EESSTTTTEE- Ch-curl2 no 1.4 1.2 NAd 201

286 K
-EEEESSEEEEEESSEEEE- Native yes 60.6
-EEEESTTEEEEESSEEEE- Ns-or1 yes 3.1 705 2030
--EEESSSEEEEESSEEEE- Ns-or2 no 2.8 6330 (98.0%) 3170
--EESSSEEEEEESSEEEE- Ns-or3 no 0.5 6370 (100%) 6690
-EEE-STTEEEESSSEEE-- Cs-or no 0.7 13100 (96.4%) 970
---SSGGG---EESSEETT- Ch-curl1 no 7.5 8820 (4.4%) 5260
---SSGGG-EESSTTTTEE- Ch-curl2 no 4.0 NAd 7170

a The basins were identified with the cFEP approach and the DSSP secondary structure string43 is the most frequent in the basin. b Several
non-native basins at 330 K are in the native component (NC) of REMD, whereas the NC at 286 K consists of only the native basin and Ns-or1.
Note that the ETN or ETNA procedures were used for basins in the NC or outside of it, respectively. All folding times were extracted from the
fit of the respective cumulative folding time distribution. c Values in parentheses are the fraction of snapshots to which a folding time could be
assigned by ETNA. d The Ch-curl2 basin was disconnected from the NC at all temperatures and therefore it is not possible to estimate its mft.
Abbreviations: Ns-or, N-terminal strand out of register and folded C-terminal hairpin; Cs-or, C-terminal strand out of register and folded
N-terminal hairpin; Nh-curl, curl-like conformation with folded N-terminal hairpin; Ch-curl, curl-like conformation with folded C-terminal
hairpin.
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µs and therefore underestimates the real folding kinetics by 1 order
of magnitude. Note that the ETNA procedure is able to scale only
folding times from a fraction of all snapshots outside of nodes from
the NC, because if no NC-node from the network of a temperature
between T1 and TA is visited before the replica continues to T >
TA (see section IIE), all snapshots of the previous T1 segment are
ignored. At 286 K only 20.5% of the snapshots from nodes outside
the NC could be assigned a folding time with ETNA. This result
implies that the scaling of even a small fraction of folding kinetics
is sufficient to yield correct overall rates.

At 330 K (Figure 7, bottom left), the CTMD kinetics were fitted
for values up to 600 ns with e-t/158ns, while the ETNA-scaled times
are only moderately faster (e-t/143ns). The folding times for
trajectories starting from the ETN (i.e., only considering the NC)
are distributed as e-t/134ns, thus unlike at 286 K, the application of
the Arrhenius-based scaling of rates from different temperatures
has almost no effect at 330 K. Similar cumulative folding time
distributions are obtained by ETN and ETNA because at higher T
the non-native regions of the NC are significantly populated, which
reduces the effect of the Arrhenius scaling. According to Figure
7, the NC-ETN at 355 K and even the one at 307 K are sufficient
to reveal approximately correct folding rates. Note that, since
folding times from high temperatures are used to scale rates at
low temperatures with ETNA, the availability of correct folding
times from at least one higher temperature is necessary to obtain
correct folding kinetics at low temperature.

In addition to overall folding time distributions, kinetics from
individual basins were estimated at 286 and 330 K (Table 1).
For basins belonging to the NC at the respective temperature,
it is not necessary to use Arrhenius scaling to estimate folding

times because values of mft can be calculated directly on the
NC. In contrast, the mft of basins not belonging to the NC have
to be evaluated with the Arrhenius approach. Because of the
assignment of folding times to individual snapshots with ETNA,
often even only a portion of all snapshots belonging to nodes
of a basin can be scaled. This problem is severe in the case of
Ch-curl1, for which less than 5% could be assigned a folding
value. In such a case, the folding time estimate is very inaccurate
and it can be helpful to plot the cumulative folding time
distribution. The latter does not contain all details of the folding
kinetics, but is in return less sensitive to noise and statistical
errors than plain distributions.42 Therefore, the exponential fit
to the former was used to estimate the folding kinetics from all
basins (Supporting Information, Figure S5).

Similarly, the statistics harvested for individual basins from
the 286 K CTMD folding runs are relatively low, because
starting points of the 750 runs were distributed over all basins.
Nevertheless, deviations between folding times from individual
basins obtained with REMD or CTMD might originate from
low statistics, yet the values lie within the same order of
magnitude. The exception is Cs-or at 286 K, which exemplifies
the main caveat of the ETNA approach. The Arrhenius equation
approximates only the enthalpic contribution of barriers. There-
fore, the folding time scaling of entropically stabilized regions
of the free-energy landscape is not valid. Because of the
considerable entropic stabilization of the Cs-or basin, which was
reported earlier27 and emerges also from a comparison of its
statistical weight at 286 K (0.7%) and 330 K (5.3%), the scaling
of the folding time at 286 K overestimates by 1 order of
magnitude the mft from the CTMD simulations (Table 1).

Figure 7. The cumulative folding time distributions f(t) ) ∫t
∞ p(τ)dτ extracted from REMD using the ETNA approach (black) or only from the

NC of the ETN (blue) are compared to the reference CTMD data (red). p(τ) is the probability density of the folding time distribution. The CTMD
data at 286 and 307 K were extracted from 750 and 250 folding simulations, respectively, and started from the unfolded state ensemble. At 330 and
355 K, equilibrium CTMD simulations of 20 and 10 µs, respectively, were performed to compare the folding time distribution to the REMD
approach. The CTMD and ETNA curves at all temperatures are in remarkable agreement. The use of only the NC of the ETN at 286 K yields a
folding time that is faster by a factor of 10, whereas for temperatures of 307 K or higher the use of the Arrhenius scaling (ETNA) and only the NC
(ETN) are almost identical to the CTMD results.
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IV. Conclusions

ETNA (equilibrium transitions network and Arrhenius scal-
ing) is a procedure to extract kinetics from REMD simulations.
At each of the REMD temperatures, the procedure makes use
of the network whose nodes and links are the clustered snapshots
and the transitions observed in the short REMD segments,
respectively. These networks consist usually of a component
that includes the native state and several disconnected compo-
nents. An essential element of ETNA is the use of the Arrhenius
equation for scaling mean folding times of nodes at temperature
values higher than the temperature of interest. In this way,
folding times at the latter temperature can be estimated for the
nodes that are not connected to the native component. The use
of the Arrhenius equation is the main difference between the
ETNA procedure and a previously published approach based
on the distribution of the kinetic energy.19

There are three conditions to apply the ETNA procedure.
First, each component must fulfill the properties of a Markov
state model. Second, the REMD segments should be long
enough (i.e., the temperature-swapping frequency low enough)
to allow for local transitions to take place at constant temperature
in REMD, so that the ETN components at each REMD
temperature are locally indistinguishable from the ETN obtained
by a long CTMD simulation. Third, it is assumed that the scaling
in terms of the Arrhenius equation is appropriate, that is, the
free-energy basins are mainly enthalpic, so that the mean folding
rate of a node is essentially identical to the corresponding rate
constant for the entire basin. However, folding rates from
different basins do not necessarily have to be identical and an
adaptive scaling approach might be derived in the future.

ETNA was applied to extract folding kinetics at low tem-
perature from a REMD simulation of Beta3s, a three-stranded
antiparallel �-sheet peptide of 20 residues. Beta3s is a chal-
lenging test system because of its complex denatured state,
which consists of several enthalpic traps, a basin with fluctuating
helical conformations, and a heterogeneous entropic region at
temperature values close to the melting temperature. Notably,
overall folding rates of Beta3s and folding times from mainly
enthalpic non-native basins are estimated correctly by ETNA.
Moreover, the folding time of about 8 µs at 286 K is in
agreement with NMR data (4-14 µs at 283 K).30

We plan to apply ETNA to extract folding kinetics of small
proteins simulated by REMD with an efficient and accurate
implicit solvent model.44 Moreover, ETNA can be employed
to investigate the kinetics of other biologically relevant processes
like large conformational transitions involved in enzyme or
receptor functions.
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