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ABSTRACT: Program to engineer peptides (PEP) is a build-up approach for
ligand docking and design with implicit solvation. It requires the knowledge of
a seed from which it iteratively grows polymeric ligands consisting of any type of
amino acid, i.e., natural and/or nonnatural from a user-defined library. At every
growing step, a genetic algorithm is used for conformational optimization of the
last added monomer in the rigid binding site. Pruning is performed at every
growing step by selecting sequences according to binding energy with
electrostatic solvation. PEP is applied to three members of the caspase family of
cysteine proteases using Asp at P1 as seed. The optimal P4–P2 peptide recognition
motifs and variants thereof are docked correctly in the active site (backbone
root-mean-square deviation< 0.9 Å). Moreover, for each caspase, the P4–P2
sequences of potent aldehyde inhibitors are ranked among the 15 hits with
the most favorable PEP energy. © 2001 John Wiley & Sons, Inc. J Comput
Chem 22: 1956–1970, 2001

Keywords: ligand docking; structure-based design; genetic algorithm; implicit
solvation; peptidomimetics

Introduction

C omputer-aided structure-based ligand design
is a multidisciplinary and challenging re-

search topic with broad applications in medicine
and biotechnology. It is concerned with the predic-
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tion of chemically reasonable compounds that are
expected to bind strongly to key regions of biolog-
ically relevant molecules (e.g., enzymes and recep-
tors) of known three-dimensional structures so as to
inhibit or alter their activity. Despite significant pro-
gresses in computational approaches for ligand de-
sign and efficient evaluation of binding energy,1 – 3

novel procedures for ligand design are required.
This is motivated by the genome projects4 – 6 and
the ever increasing number of protein targets for

Journal of Computational Chemistry, Vol. 22, No. 16, 1956–1970 (2001)
© 2001 John Wiley & Sons, Inc.



STRUCTURE-BASED LIGAND DESIGN

drug design that are being characterized function-
ally and structurally by major advances in both
experimental methods for structure determination
and high-throughput homology modelling.7

This article describes a computational approach
for the structure-based docking and design of pep-
tidic ligands consisting of natural and/or nonnat-
ural amino acids. Ligands are grown from a seed
by iteratively adding amino acids to the actual con-
struct. The seed and the last added fragment can
be any type of chemical entity, whereas the remain-
ing monomers must have an amino group (primary
or secondary) and a carboxyl group. The search in
chemical space is performed by a build-up approach
that employs all of the residue topologies of a user-
defined library. At every growing step, a genetic
algorithm is used for conformational optimization
of the last added monomer inside the binding site
of a rigid target protein. The approach presented in
this article makes use of an implicit solvation model
to efficiently rank the designed peptides according
to their binding energy in solution, and to select se-
quences for further growing. It is implemented in
the program PEP (program to engineer peptides)
and applied to three enzymes of the caspase family.

The main disadvantage of any growing proce-
dure is inherent to its sequential approach. The
success of any growing step depends largely on
the previous step(s), and the current step has no
knowledge of the growing step(s) that will follow.
In addition, growing must be restricted both at the
sequence and conformation levels to avoid combi-
natorial explosion. Optimal binding modes for each
sequence are required to correctly rank different
sequences. The correct docking and rank ordering
are important because only a limited number of
sequences are kept for further growing. Determin-
ing the best binding mode for a given peptide is
not an easy task because it may not always corre-
spond to the minima of the same peptide when it
is part of a longer sequence. PEP performs a dead-
end test to check for the feasibility of elongation.
Furthermore, during dihedral angle optimization of
the nth residue PEP also allows for partial rigid
body rotation of the nth residue with respect to the
(n − 1)th residue, which is important for two rea-
sons. First, it provides the growing algorithm with
an effective way to do small corrections on peptide
backbone orientations that are not optimal for fur-
ther growing. Second, partial rigid body rotation is
used to overcome the geometrical restrictions due
to the use of fragments with rigid bond lengths and
angles. This allows the algorithm to reproduce X-
ray structure binding modes that contain nonideal

bond geometries, and that would otherwise be out
of reach.

Caspases are cysteine proteases that drive the
intracellular pathways leading to apoptosis and
pro-inflammatory cytokines activation.8 As for most
proteases, the substrate-binding cleft of caspases
can be subdivided in a number of subsites, each
consisting of residues important for the recogni-
tion of the substrate. These subsites are referred to
as Sn, Sn−1, . . . , S1, S′

1, . . . , S′
m and the catalytic cys-

teine is placed between the S1 and S
′
1 position.

The corresponding substrate residues are referred
to as Pn to P

′
m, with the scissile bond between P1

and P
′
1. Caspases have a near absolute specificity

for peptides with an aspartic acid at P1. Using a
combinatorial approach with positional scanning
of synthetic tetrapeptidyl-aminomethyl coumarin
derivatives, Thornerberry and coworkers explored
the S4–S2 subsite occupancy.9 Based on S4 subsite
preferences, they subdivided the caspases into three
substrate specificity groups. Group I consists of cas-
pase 1, 4, and 5 with a preference for aromatic amino
acid residues in the P4 position; group II contains
caspases 2, 3, and 7 with a near absolute specificity
for Asp in P4; and finally, group III includes cas-
pases 6, 8, 9, and 10 with a preference for Leu, Val,
Ile, and Asp at P4. P4 substrate preferences were
confirmed in another study that also investigated P1
and P′

1 specificities.10 PEP is applied to three cas-
pases (1, 3, and 8) that are representative of the three
groups. Using the Asp at P1 as a seed, PEP finds
the correct binding mode for the P4–P2 tripeptide se-
quences of the recognition motifs. Furthermore, for
each of the three caspases the P4–P2 sequence of one
or more known aldehyde inhibitors is reproduced
among the 15 better scoring PEP hits. This repre-
sents a successful search in the space of the 8000
tripeptides consisting of natural amino acids.

Methods

GROWING PROCEDURE

The aim of PEP is to construct peptides from
one or many user-selected starting positions (seeds)
by iteratively adding amino acids in conformations
that interact most favorably with the residues in
the receptor binding site. The default number of
sequences kept at each growing step is 10. Within
the approximation that chemical entity and orienta-
tion of a monomer are not affected by the succes-
sive monomers, the search is exhaustive, because at
each step of growing every amino acid in the user-
defined topology library is attached to the actual
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FIGURE 1. Schematic representation of one cycle of
growing in PEP. Each ligand is represented by a box
containing two fields that indicate the ligand sequence
and status (gray background). A number in the status
field corresponds to the ligand final ranking according to
its binding energy in solution. Serine (S) is used as seed.
The fragment library contains five amino acids
(Y: tyrosine, V: valine, I: isoleucine, L: leucine,
W: tryptophan), and two dipeptide sequences are kept
for the next growing cycle. Dead-end testing is illustrated
by the rejection of ligand SY, although it is ranked
number one. The two best scoring and nondead-end
ligands are selected for the next cycle of growing. They
correspond to sequences SV and SI, which are ranked
two and four, respectively. A detailed illustration of the
dipeptide SW conformational population ranking and
filtering is shown (bottom left). Each SW structure is
represented by a box containing two fields that indicate
the conformation number and ranking according to total
energy in vacuo (light gray background). In the GA, the
conformational population size is 100. Conformations
that are discarded upon filtering are identified by
dark-gray backgrounds. The best remaining SW
conformation used for the final ligand ranking is shown
with a black background. The small size of the fragment
library and the small number of grown peptides are used
for the sake of illustration clarity and do not correspond
to the actual values used in this study.

construct (Fig. 1). The topology library contains the
atom types, atomic partial charges, covalent bonds,
and a list of rotatable dihedrals for each amino acid.
Because it is computationally prohibitive to evalu-
ate protein and ligand desolvations during the GA
(genetic algorithm) optimization, the in vacuo total
energy (intermolecular plus intramolecular) of the

last added monomer is optimized by the GA, while
most of the already grown ligand is kept rigid. The
conformations of the last added monomer are then
ranked according to their in vacuo energy, and filters
are applied (as described below) to discard residues
with internal hydrogen bonds, and rotamers that
would lead to further growing in a forbidden direc-
tion.

After all the amino acids of the topology library
have been minimized, the binding energy in so-
lution is calculated for the best rotamer of each
residue, and only the highest scoring sequences are
retained for the next level of growth. The program
then tests if the latter are dead ends, i.e., if there
is no space for further growing, or elongating them
will lead only to poor interactions with the receptor.
The latter case usually happens when the peptide
grows away from the receptor surface. To test this,
an alanine is attached to the peptide candidate and
GA minimized. The corresponding sequence is kept
if the in vacuo binding energy of the alanine min-
imum conformation is better than a given energy
cutoff (a cutoff value of −10 kcal/mol is used in the
applications presented here). The in vacuo binding
energy is a good indicator of the quality of the in-
teractions between the last added amino acid and
the protein: an amino acid conformation has an un-
favorable van der Waals energy contribution when
it bumps into the protein while its binding energy is
very small in absolute value when it grows away
from the binding site. This procedure is then re-
peated on the second growth level; each amino acid
in the library is attached to each of the 10 dipeptide
sequences retained from the first step, minimized,
and then scored. Successive growth levels, there-
fore, generate peptides that are lengthened by one
residue. The procedure terminates when the user-
defined peptide length is reached. The output data
provided by PEP include residue sequences, ener-
gies, and atomic coordinates of the peptide in the
PDB format.

DEGREES OF FREEDOM DURING GROWING

PEP uses amino acid templates in which the
amine can be either primary or secondary (Fig. 2A).
This includes L- and D-residues, as well as non-
standard amino acids and peptoids (N-alkylated
peptides). The purpose of the acetyl and amide end
groups is twofold: to provide the polar groups for
intermolecular hydrogen bonds and to take into
account some of the conformational restriction ex-
perienced by individual amino acids when they are
connected in a polypeptide chain.11 The seed and
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FIGURE 2. (A) Amino acid template used by PEP. G2
indicates the substituent position on the template amino
group. G1 can be of any type, without size limitation.
(B) Illustration of the flexibility in PEP during the growing.
A fully flexible valine is grown from an alanine. Alanine
can be either the seed, or a residue positioned during
the previous growing cycle. Covalent bonds that are
broken upon growing are indicated by a scissor symbol.
Rotatable bonds are marked with circular arrows. In
addition to the valine internal flexibility, the alanine ψ
dihedral (circular dashed arrow) is also flexible during
the valine conformational optimization. Cartesian
coordinate frame used for partial rigid body rotation are
drawn with dashed lines. The peptide region affected by
the partial rigid body rotation is delimited by a gray
background rectangle. (C) Illustration of the directionality
filtering. Two rotamers of the added residue are shown.
The CH2—C bond defines the direction of the rotamer
and is indicated by a short arrow. Track points are
symbolized by black squares. The range of allowed
growing directions is indicated by a gray pie slice that is
centered on the vector (dashed arrow) whose orientation
is determined by the two closest track points
(see Methods section for details).

the last monomer are, however, not restricted to
amino acids and can be any molecule. The side
chain and backbone rotatable bonds of the last
added residue are flexible during the conforma-
tional optimization. Additionally, the backbone ro-
tatable bond of the previous residue, which is the
closest to the currently minimized amino acid, is
also flexible (Fig. 2B). For α-amino acids, this cor-
responds to ψ and φ when growing in the N to C
and C to N direction, respectively.

X-ray structures often contain bond lengths/
angles that deviate significantly from their ideal val-
ues. Minimization is used to obtain a structure that
corresponds to a minimum in the force field. This
is, however, not possible, because PEP uses residues
with optimal bond lengths and angles that are kept
constant throughout the growing procedure. The ac-
cessible search space is, therefore, limited to ideal
covalent geometries. This restriction combined with
the ruggedness of the energy function, originating
mainly from the van der Waals term, may prevent
PEP from finding the correct binding mode. Back-
bone bond angle deviations are particularly critical
because they influence the space that is accessi-
ble for growing. To improve sampling, PEP allows
partial rigid body rotation of the last added pep-
tide around the three axis of a Cartesian reference
frame centered on the Cα of the previous residue
(Fig. 2B). Partial rigid body rotation allows to com-
pensate in part for the fixed covalent angles, and
provides a mean to access growing directions that
otherwise would be out of reach. Moreover, com-
bined with the additional rotatable bond mentioned
above, it prevents the growing direction from being
restricted to the optimal orientation of the termi-
nal N-methyl amide group at the previous growing
step. Although more conformational space could be
sampled by allowing for nonideal covalent angles,
partial rigid body rotation is much more efficient be-
cause it adds only three degrees of freedom. In the
present implementation, the rigid body rotation is
restricted to ±8 degrees, and the energy term of the
covalent angles around the Cα atom at the center of
the Cartesian frame (Fig. 2B) is neglected.

GENETIC ALGORITHM FOR LIGAND
CONFORMATIONAL SEARCH

A GA is a stochastic optimization method that
mimics the process of natural evolution by ma-
nipulating a population of data structures called
chromosomes.12, 13 Starting from an initial randomly
generated population of chromosomes, the GA re-
peatedly applies two mutually exclusive genetic
operators, one-point crossover and mutation, which
yield new chromosomes (children) that replace ap-
propriate members of the population.

Data Structure in Chromosomes

Amino acids can have many rotatable bonds.
It, therefore, takes too long to perform an exhaus-
tive conformational search, unless a large increment
angle is used. This, however, usually leads to poor
results because of the ruggedness of the energy
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landscape due to the van der Waals term. In the
GA used in PEP, each chromosome contains so-
called genes that encode the values of the angles
of rotation around the rotatable bonds of the added
residue, the ψ or φ dihedral angle of the preceding
residue, and three angles that define the rigid body
orientation of the added residue. A chromosome
of N + 4 genes, therefore, encodes the orientation
and the conformation of a residue with N rotatable
bonds. The rotatable bond genes are binary encoded
in a string of six bits that describes an integer value
between 0 and 64. This integer value is linearly
rescaled to a real number between 0 and 2π with a
theoretical resolution of 5.6 degrees. The genes that
encode partial rigid body rotation are binary en-
coded in a string of four bits that corresponds to an
integer value between 0 and 16. This integer value
is rescaled to a real number that ranges from −8
to +8 degrees, and that corresponds to the angle dif-
ference between the current and the initial residue
orientation around the corresponding axis. Small
rigid body rotations up to 8 degrees are, therefore,
performed in both directions around the three rigid
body axis of rotation. The theoretical rigid body ori-
entation accuracy is 1 degree.

Fitness Scaling and Parent Selection

Both genetic operators (see below) are applied
to parent chromosomes randomly selected from the
existing population with a bias toward the fittest.
This selection is analogous to spinning a roulette
wheel with each member of the population hav-
ing a slice of the wheel that is proportional to its
fitness. The emphasis on the survival of the fittest
introduces an evolutionary pressure into the algo-
rithm, and ensures that over time the population
should move toward the minimum conformation(s).
The chromosomes are first ordered by decreasing
energies. To avoid premature convergence, linear
normalization is used for the chromosome fitness
values. A constant value is assigned to the last chro-
mosome in the list and the remaining fitness values
are increased linearly. In the present application,
100 chromosomes were used, the worst chromo-
some was assigned a fitness value of 500, and the
increment was 10. This corresponds to a selection
pressure of 1.5 (the selection pressure represents
the relative probability that the best individual will
be chosen as a parent compared with the average
individual). Because, as mentioned above, the prob-
ability of selection is proportional to the fitness, the
chromosome with the most favorable energy has
a three-time (1500/500) larger probability to be se-

lected as a parent than the chromosome with the
poorest energy, irrespective of the absolute values
of the energy. The parameters used in fitness scaling
were chosen after preliminary test runs but have not
been systematically optimized.

Genetic Operators

One-point crossover is a binary operator that cre-
ates two new chromosomes by swapping two seg-
ments of two parent chromosomes after a randomly
selected gene. Mutation is a unary operator that
leads to a new chromosome by randomly flipping
the bits of selected genes of the parent chromosome.
The crossing over and mutation operators are mutu-
ally exclusive, meaning that either one or the other
of these operators can be applied during the gener-
ation of a new chromosome, but not both. At each
reproduction event, the operator is chosen using the
roulette wheel method so that mutation and cross-
ing over are selected with a chance of 80 and 20%,
respectively. These parameters are also used in a
GA method for flexible ligand docking developed
by others.14 Once the mutation operator has been
selected for a given chromosome, each of its genes
has three chances out of 10 to be mutated.

Evolution of the Population

The selection of the members of the population
that should be replaced by new chromosomes is a
crucial step. To avoid premature convergence it is
very important to keep structural diversity. Hence,
the nicheing method13 is modified such that both
the energy difference and the conformational sim-
ilarity are taken into account to determine if a given
member of the population should be replaced by a
new chromosome (Fig. 3). Each new chromosome is
tested for similarity with the energy sorted popula-
tion, starting from the best ranking member, until
a similar chromosome is found. Two chromosomes
are considered similar if all their genes have a dis-
similarity score that is smaller than the dissimilarity
cutoff. For two given genes, the dissimilarity score
is obtained by dividing the difference of their en-
coded values by the difference of their extrema
values (360◦ for a rotatable bond). The dissimilar-
ity score therefore ranges from 0 to 1, 0 being the
score obtained by two identical genes. If a similar
chromosome is found in the population, it is re-
placed by the new chromosome only if the energy of
the new one is more favorable. Otherwise, the new
chromosome is discarded. If no similar chromosome
is found in the population, the dissimilarity cutoff
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FIGURE 3. Schematic representation of one cycle of
conformational optimization by the GA with emphasis on
the chromosome replacement algorithm. Both parent
and children populations have a size of N. Variable
assignment are symbolized by “:=”. Conditional
statements are enclosed by diamonds.

is linearly increased until a similar chromosome is
found. The whole procedure is repeated until all the
new chromosomes have been tested. The initial dis-
similarity cutoff and increment values were 0.001
(0.36 degrees) and 0.05 (18 degrees), respectively.
The very small initial value is necessary to discard
identical conformations originating from the mating
event.

GA Parameters

For each GA conformational optimization, a pop-
ulation of 100 chromosomes was used and 1500
cycles were performed. At each GA cycle, 100 new
chromosomes were generated for a total of 1.5 × 105

conformations tested during the overall GA opti-
mization. These parameters yielded good conver-
gence after preliminary docking runs on HIV-1
aspartic protease, tyrosine kinase and the three cas-
pases. Using the 20 standard amino acids, the grow-
ing of a tetrapeptide requires 620 GA runs and
9.3×107 energy evaluations ([20+(3×200)]×1.5×105

where the number in brackets is the sum of the
GA optimizations performed at the first and three
subsequent growing steps, and the 200 originates
from 10 kept sequences times 20 residues). Of the
9.3 × 107 energy evaluations required by the design
of tetrapeptides, 620 include full electrostatic sol-
vation while the remaining ones use the distance
dependent dielectric function (see below).

TOTAL ENERGY IN VACUO AND BINDING
ENERGY IN SOLUTION

During the conformational optimization by the
GA [point (2) in Fig. 1], the sum of the intraligand
and intermolecular energies is calculated for each
new conformation of the flexible amino acid. The
total energy consists of the following contributions:

Etotal = Einterm
vdW +Einterm

elect, rdiel +Eligand
vdW +Eligand

elect, rdiel+Eligand
strain

(1)

The last three terms approximate the intraligand en-
ergy of the flexible amino acid, which consists of the
van der Waals (Eligand

vdW ), electrostatic (Eligand
elect, rdiel), and

the strain energy (Eligand
strain ). The latter contains only

the dihedral terms, because the bond lengths and
angles are kept constant. These energy contribu-
tions are calculated explicitly for each appropriate
set of ligand atoms. The receptor–ligand interac-
tion energy is described by the first two terms,
where Einterm

vdW and Einterm
elect, rdiel are the intermolecu-

lar van der Waals and Coulombic energy, respec-
tively. Because the receptor is rigid, both energy
terms are mapped on look-up tables to improve
the efficiency.15 The solvent screening effect is ap-
proximated by the distance dependent dielectric
model. The desolvation penalty is neglected dur-
ing conformational optimization by the GA because
of computational efficiency. All of the energy para-
meters used in the applications presented here are
taken from CHARMm22 (MSI Inc., San Diego) but
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any other force field with explicit dihedral, Coulom-
bic, and van der Waals terms could be used.

At each growing step, the best binding modes ob-
tained by the conformational optimization of each
sequence are ranked according to their binding en-
ergy in solution [point (5) in Fig. 1], where the
electrostatic energy is evaluated within the contin-
uum electrostatic approximation:16 – 18

�Gbinding = �Ginterm
vdW +�Ginterm

elect, sol +�Greceptor
elect, desolv

+ k�Gligand
elect, desolv +�Gligand

entropy (2)

It is assumed that the ligand–receptor vdW inter-
action energy (�Ginterm

vdW ) accounts for all the non-
electrostatic contributions to the binding energy.19

The sum of the receptor desolvation (�Greceptor
elect, desolv),

screened intermolecular interaction (�Ginterm
elect, sol), and

ligand desolvation (�Gligand
elect, desolv) represents the dif-

ference in electrostatic energy in solution upon
binding of a ligand to a receptor. The desolvation
of the receptor is the electrostatic energy differ-
ence upon binding of an uncharged ligand to a
charged receptor in solution. It is calculated by nu-
merical integration of the energy density of the
electric field. For this integration, the electric dis-
placement of every partial charge of the receptor is
approximated by the Coulomb field and the energy
density is discretized over a 3D grid.18 The screened
ligand–receptor interaction and the desolvation of
the ligand are evaluated using the generalized Born
approximation.16, 18, 20 A scaling factor of k = 0.6 is
applied to the ligand desolvation term to take into
account the fact that the desolvation is smaller for a
residue that is part of a larger ligand.21

�Gligand
entropy is a penalty term that represents the loss

of entropy when ligand side chain rotatable bonds
are frozen upon binding to the receptor

�Gligand
entropy = c

∑

i

6 − ni

4
(3)

where c = 1.0 kcal/mol and n is the number of
heavy atoms covalently bound to the two atoms at
the center of the quartet, for example, n = 2 in bu-
tane and n = 4 in 2,3-dimethylbutane. The index i
runs over all side chain rotatable bonds of the lig-
and.
�Gbinding does not contain the dihedral term be-

cause it is not possible to directly compare the strain
for different sequences.

CONFORMATIONAL FILTERING

The genetic algorithm is used to minimize the
vacuo energy of the conformation of the last added

residue. It is, however, designed to keep popula-
tion heterogeneity, and therefore produces clusters
of conformations that correspond to local minima.
In cases where multiple binding modes are found,
it is very difficult to predict which one should be
used for the next growing step, especially when they
have similar energies. Moreover, the global mini-
mum conformation of the last added residue may
not correspond to the lowest energy in the con-
text of a longer peptide. This is a clear limitation
of the growing approach. This problem, however,
arises mostly with residues that do not make strong
interaction with the binding site surface, and is
well illustrated by the S3 pocket of the three cas-
pases investigated in this study. S3 contains an Arg,
which is usually involved in a hydrogen bond or
salt bridge with the side chain of the ligand that
fills the pocket. Additionally, the ligand backbone
is hydrogen bonded to the protein. PEP finds two
binding modes for apolar residues in P3. The first
one corresponds to the backbone binding mode
found in the X-ray structure, whereas in the second
mode, the peptide backbone carbonyl is hydrogen
bonded to the Arg. The second mode has the most
favorable energy in vacuo and binding energy in so-
lution, and is, therefore, selected by PEP. A similar
problem arises when polar residues are placed in
hydrophobic pockets. The binding mode that con-
tains an intraligand hydrogen bond has a more
favorable energy than its counterpart, which in-
teracts only weakly with the pocket surface. The
obvious solution would be to keep the best en-
ergy conformation for each residue binding mode,
but this would lead to an intractable number of se-
quences/conformations to be grown.

Two filters are, therefore, applied on the final con-
formations found by the GA to find out the most
suitable conformational minima for the following
growing step. The first filter discards residue con-
formations that contain one or more intraresidue
hydrogen bonds. These have favorable in vacuo en-
ergies mainly because of the internal energy contri-
butions. The second filter is a two-step procedure
used to screen rotamers according to their abil-
ity to be grown in a specific direction. First, in a
preprocessing step PEP is used to dock a known
peptidic ligand in the protein binding site. The re-
sulting Cα atom coordinates define a path that is
used to filter peptide rotamers during ligand de-
sign. For every designed sequence, the vector that
defines the growing direction is given by the two
atoms that are the closest to the flexible part in the
next growing cycle (Fig. 2C). For α-amino acids, this
corresponds to the Cα and carbonyl carbon atoms
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when growing in the N to C direction, and the Cα

and nitrogen atoms when growing from C to N.
Their two closest path points make up a direction
vector that defines the peptide growing direction.
The angle between the two vectors is calculated, and
the rotamer is discarded if the angle absolute value
is above a given angle cutoff. In the present study,
a cutoff value of 60 degrees was used. It should be
clear that this procedure does not filter out rotamers
according to their position in the binding site, but re-
stricts only the direction of the growing. A large part
of the binding site is, therefore, still accessible for
design. Hence, the direction vectors and dead-end
test are complementary and not redundant because
the former influences the overall orientation of the
peptide backbone whereas the latter is used to for-
bid specific cul-de-sac regions in the binding site or
growing completely out of it. Moreover, no bias is
introduced because the directions are generated au-
tomatically by the program.

SYSTEM SETUP

The entries 1IBC, 1CP3, and 1QDU were down-
loaded from the PDB database.22 1IBC is the
2.73-Å resolution X-ray structure of the human
cysteine protease interleukin-1β converting en-
zyme (caspase 1), complexed with the tetra-
peptide inhibitor acetyl-Trp-Glu-His-Asp-aldehyde
(Ac-WEHD-CHO).23 1CP3 is the 2.3-Å resolution
X-ray structure of the human cysteine protease
apopain (caspase 3), complexed with the tetrapep-
tide inhibitor acetyl-Asp-Val-Ala-Asp fluoromethyl
ketone (Ac-DVAD-fmk).24 1QDU is the 2.80-Å res-
olution X-ray structure of the human cysteine
protease caspase 8, complexed with the peptidic
inhibitor benzyloxycarbonyl-Glu-Val-Asp-dichloro-
methylketone (Z-EVD-dcbmk).25 For all structures
water molecules and inhibitor were removed. Hy-
drogen atoms were added to the three systems and
minimized with the CHARMM program.26

COMPUTATION TIMES

Growing tripeptides using the 20 natural amino
acids requires about 20 h on a 550-MHz PentiumIII
processor, while docking a single sequence takes
less than 10 min. For the caspase applications, multi-
ple PEP runs were performed in parallel on a cluster
of PCs running the Linux operating system.

Results and Discussion

The enzymes of the caspase family represent an
interesting test case for PEP, because comprehen-
sive substrate specificity data are available9 and
inhibition constants (Ki) of a number of reversible
inhibitors (mainly tetrapeptide aldehydes, ketones,
and nitriles) have been measured.27 – 30 Furthermore,
several X-ray structures of caspase/inhibitor com-
plexes have been determined.23 – 25, 30, 31 The aim of
the present study was to investigate the PEP ability
to find the relevant binding modes of high-affinity
inhibitors and to determine the preferred P4–P2

recognition motifs of caspases. The latter is a par-
ticularly challenging test case for any energy-based
ligand design approach because both the caspase
binding site and preferred peptide recognition mo-
tifs contain several charged side chains. For groups
with formal charges, the continuum electrostatic
approximation used by PEP for sequence ranking
shows the largest deviation from finite-difference
Poisson calculation.18

First, docking runs were performed with the
optimal recognition motifs, i.e., the sequences Ac-
WEHD, Ac-DEVD, and Ac-LETD for caspases 1, 3,
and 8, respectively. The Asp residue at P1 from the
X-ray structure was used as starting seed and the
P4–P2 sequences were grown in the C to N direc-
tion. Growing in the opposite direction (N to C)
using the P4 residue as seed (design of P3–P1) is also
possible but was not attempted, as the backbone of
residue P1 would bump into the protein because
of the covalent bond with the catalytic cysteine. In
preliminary docking runs without the partial rigid
body rotation, PEP was not able to reproduce the
binding mode of Ac-WEHD in caspase 1. For each
sequence, 20 docking runs with partial rigid body
rotation were then performed with different ini-
tial random number values for the GAs. Binding
modes were clustered according to backbone atom
positions. For the three enzymes, the backbone con-
formation found by PEP with the highest frequency
overlaps the inhibitor backbone in the X-ray struc-
ture.

For the search in sequence space (design), the Cα

coordinates of the highest scoring docked confor-
mation of the aforementioned peptide recognition
motifs were used to define the direction of grow-
ing. The same seed as for the docking runs [Asp(P1)]
was used. On each of the three enzymes 15 PEP
runs unrestricted in sequence space were performed
with different initial random number values for the
GA. A library containing the topologies of the 20
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naturally occurring amino acids was used at each
growing step. To analyze the results one has to
consider that the GA performs a stochastic search;
hence, the most favorable sequences are those that
are generated in many runs and with a good bind-
ing energy in solution. If a given sequence is gen-
erated by PEP n times, it can assume up to n
different conformations, when m growing runs are
performed (n ≤ m). Usually, most of the conforma-
tions of a given sequence are very similar among
each other, which indicates that the GA search in
conformational space reaches convergence. The se-
quences generated by PEP are first sorted according
to the highest occurrence and then by the binding
energy in solution averaged over the n conforma-
tions. A few of the sequences with low occurrence
can have a very favorable relative binding energy.
Yet, the fact that these sequences are not grown
completely in most runs indicates that they have a
poor average binding energy. It is, therefore, nec-
essary not only to perform multiple PEP runs in
parallel but also to rank the sequences according
first to occurrence and then average binding energy.
Tables I, II, and III contain sequences that were gen-
erated most often in the GA runs for caspases 1, 3,
and 8, respectively. Docking and growing runs per-

formed on the three enzymes are discussed in detail
in the following sections.

CASPASE 1

Docking of the Optimal Peptide Recognition
Motif (WEHD)

Eighteen of the 20 conformations of Ac-WEHD
generated by PEP have the correct backbone ori-
entation (Fig. 4A). The 18 backbone conformations
of Ac-WEH (Asp at P1 is neglected because it was
used as seed) have an average RMSD from the X-
ray structure of 0.88 Å. The four hydrogen bonds
observed in the X-ray structure between the peptide
backbone and caspase 1 are reproduced. These in-
volve the NH of Asp(P1) and the CO of Ser 339, the
backbone polar groups of Glu(P3) and Arg341, and
the acetyl oxygen and the imidazole of His342. The
binding mode of the His(P2) side chain differs sig-
nificantly from its X-ray structure counterpart. The
all atom RMSD from the X-ray structure averaged
over the 18 conformations is 1.99±0.25 Å and 1.07±
0.12 Å with and without the His(P2) side chain, re-
spectively. PEP places the imidazole side chain in
a cleft formed by the side chains of Pro177, His237,
and Arg341. The Coulombic interaction between the

TABLE I.
P4–P2 Sequences Designed by PEP in Caspase 1.

Sequence

P4 P3 P2

Occurrencea Relative Binding Energyb Backbone RMS Deviationc

(%) (kcal/mol) (Å)

W D Td 80 0.0 0.67
W D L 80 1.8 0.57
N D T 80 2.7 0.89
D D T 80 3.6 0.80
H D T 80 3.6 1.00
F D T 80 3.7 0.82
N D L 80 4.0 0.85
F D L 80 4.0 0.89
G D T 80 4.2 0.73
H D L 80 4.4 0.89

Among the 200 final sequences in each of the 15 PEP runs, 31, 33, and 18 sequences were found in 12, 11, and 10 runs, respectively.
Residues in optimal substrate sequences are indicated in bold.9 The P4–P2 optimal recognition motif of caspase 1 is WEH9 and the
aldehyde inhibitor Ac-WEHD-CHO has a Ki of 56 pM.29

a Percentage of PEP runs (out of 15) that generated a given sequence.
b Binding energy averaged over all conformations of a given sequence. The energy values are relative to the one of the most favorable
sequence.
c Backbone RMS deviation from the X-ray structure. For each sequence, the conformation with the best energy was used to calculate
the RMS deviation.
d Peptide shown in Figure 4B.
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TABLE II.
P4–P2 Sequences Designed by PEP in Caspase 3.

Sequence

P4 P3 P2

Occurrencea Relative Binding Energya Backbone RMS Deviationa

(%) (kcal/mol) (Å)

W E Vb 93 0.0 0.58
F E H 93 0.5 0.57
W E Hc 93 1.3 0.70
F E V 93 1.6 0.57
H E V 93 1.9 0.53
H E H 93 2.0 0.43
Y E H 93 2.1 0.77
Y E V 93 2.5 0.52
N E V 93 3.2 0.53
Q E H 93 4.9 0.86

Among the 200 final sequences in each of the 15 PEP runs, 38, 40, and 20 sequences were found in 14, 13, and 12 runs, respectively.
The P4–P2 optimal recognition motif of caspase 3 is DEV,9 and the aldehyde inhibitor Ac-DEVD-CHO has a Ki of 230 pM.29

a See caption of Table I.
b Peptide shown in Figure 4D.
c The aldehyde inhibitor Ac-WEHD-CHO has a Ki of 2 µM for caspase 3.29

imidazole nitrogen and Arg341 favors this binding
mode over the interaction with the hydrophobic S2

pocket observed in the X-ray structure. This is sup-
ported by a docking run performed with a higher
dielectric constant (4rij, where rij is the interatomic
distance), which yielded the correct orientation of
the His(P2) side chain. The Glu(P3) side chain is po-
sitioned correctly, and its salt bridge with Arg341
is reproduced. The Trp(P4) side chain is placed in

the S4 pocket and overlaps its X-ray counterpart. It is
interesting to note that PEP finds the correct binding
mode of Trp(P4) and Glu(P3), despite the misplaced
side chain of His(P2) at the first growing step.

Design of Tetrapeptide Inhibitors

The best PEP hit is shown in Fig. 4B and the 10
P4–P2 sequences with the highest occurrence and

TABLE III.
P4–P2 Sequences Designed by PEP in Caspase 8.

Sequence

P4 P3 P2

Occurrencea Relative Binding Energya Backbone RMS Deviationa

(%) (kcal/mol) (Å)

R E T 100 0.0 0.85
V E Tb 100 0.5 0.75
T E T 100 0.8 0.74
Q E T 100 1.2 0.79
V E I 100 1.4 0.64
L E T 100 1.6 0.84
G E T 100 1.6 0.87
I E Tc 100 2.0 0.79
V E V 100 2.0 0.68
N E I 100 2.1 0.60

Among the 200 final sequences in each of the 15 PEP runs, 55, 33, and 80 sequences were found in 15, 14, and 13 runs, respectively.
The P4–P2 optimal recognition motif of caspase 8 is LET.9
a See caption of Table I.
b Peptide shown in Figure 4F.
c The aldehyde inhibitor Boc-IETD-CHO has a Ki of 1 nM for caspase 8.29, 30
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FIGURE 4. (A) Ac-WEHD tetrapeptide docked by PEP in the active site of caspase 1 (thick cylinders; atoms of
carbon, oxygen, and nitrogen are colored in white, red, and blue, respectively). The substrate X-ray structure
(Ac-WEHD-CHO) is shown in magenta, and hydrogen bonds are indicated by green dotted lines. (B) same as (A), with
the Ac-WDTD tetrapeptide designed by PEP. (C) Ac-DEVD tetrapeptide docked by PEP in the active site of caspase 3.
The substrate X-ray structure (Ac-DVAD-fmk) is shown in magenta. (D) Same as (C), with the Ac-WEVD sequence
designed by PEP. (E) Ac-LETD tetrapeptide docked by PEP in the active site of caspase 8. The substrate X-ray structure
(Z-EVD-dcbmk) is shown in magenta. (F) Same as (E), with the Ac-VETD sequence designed by PEP. (A–F) The solvent
accessible surface of the enzyme is shown in yellow, and caspase residues involved in hydrogen bonds are shown in
thin lines colored by atom type.
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most favorable energy are listed in Table I. They
contain Thr and Leu at P2, Asp at P3, and mainly
residues with aromatic side chains at P4, with a clear
preference for Trp. It has been shown experimen-
tally that Thr at P2 belongs to the recognition mo-
tif, whereas peptides with Leu(P2) show relatively
weak substrate activity.9 No experimental results
for caspase 1 inhibitors with Leu at P2 are avail-
able. Visual inspection reveals that the S2 pocket
is less pronounced compared to its counterpart in
caspases 3 and 8. The P2 side chain is, therefore,
more exposed to solvent, which penalizes large hy-
drophobic residues. The PEP solvation model used
for ligand ranking does not include a penalty for ex-
posed hydrophobic residues unless they desolvate
polar regions of the protein, and this might explain
the occurrence of Leu at P2 in the PEP sequences.
Asp(P3) is found in active sequences, although Glu
is slightly better at this position. Aromatic residues
are clearly favored at P4 in optimal tetrapeptide
recognition motifs.9 The PEP sequences 1 (WDT),
and 6 (FDT) correspond to optimal peptide motifs
for caspase 1.

CASPASE 3

Docking of the Optimal Peptide Recognition
Motif (DEVD)

Nineteen of the 20 conformations of Ac-DEVD
generated by PEP have a backbone binding mode
that overlaps the Ac-DVAD inhibitor X-ray struc-
ture (Fig. 4C). The 19 backbone conformations of
Ac-DEVD have an average RMSD from the X-ray
structure of 0.48 Å. The five inhibitor backbone hy-
drogen bonds observed in the X-ray structure are
reproduced: one between the NH of Asp(P1) and
the CO of Ser205, two between the backbone po-
lar groups of Glu(P3) and Arg207, and two between
the oxygen of the acetyl group at the N terminus
and Ser209. The hydrophobic pocket S2 is filled by
the Val(P2) side chain, and the Glu(P3) makes a salt
bridge with Arg207. Although the orientation of the
Glu(P3) side chain cannot be confirmed by the in-
hibitor X-ray structure, which contains a Val at P3,
it is most probably correct because a similar salt
bridge is observed for Glu(P3) in both the caspase 1
and caspase 8 X-ray structures. Finally, Asp(P4) re-
produces the binding mode of its counterpart in the
X-ray structure, and accepts hydrogen bonds from
the side chains of Asn208 and Trp214, and the back-
bone NH of Phe250. It is important to note that
PEP correctly docks the tetrapeptide Ac-DEVD in a
structure of caspase 3 from a complex with a differ-
ent inhibitor (Ac-DVAD).

Design of Tetrapeptide Inhibitors

The 10 P4–P2 sequences designed by PEP with the
highest occurrence and most favorable energy are
listed in Table II, and the best is shown in Figure 4D.
They contain Val and His at P2, Glu at P3, and
aromatic side chains at P4. This is consistent with
the experimentally determined recognition motif
at P2 and P3. On the other hand, substrate speci-
ficity data indicate that caspase 3 is highly specific
for Asp at P4.9 This discrepancy is probably due
to the approximations inherent to the continuum
electrostatics model used for sequence ranking. The
difference in electrostatic energy between Asp(P4)
and Trp(P4) is only −0.4 kcal/mol (��Ginterm

elect, sol =
−15.2 kcal/mol, ��Gligand

elect, desolv = 17.8 kcal/mol,
��Greceptor

elect, desolv = −3 kcal/mol), although Asp at P4

is hydrogen bonded to Asn208, Trp214, and Phe250.
This does not balance the van der Waals interaction,
which is less favorable (��Ginterm

vdW = 4 kcal/mol)
for Asp(P4) than Trp(P4). It is important to note that
the Asp(P1) position used as seed for the growing
procedure is taken from the X-ray structure of a
tetrapeptide that shows only low substrate activ-
ity. Nevertheless, starting from this nonideal seed,
PEP ranks the optimal recognition motif (DEVD) as
number 14, and proposes a binding mode that is in
agreement with the available X-ray structure.23, 25

CASPASE 8

Docking of the Optimal Peptide Recognition
Motif (LETD)

The 20 conformations of Ac-LETD generated by
PEP have the correct backbone orientation (Fig. 4E).
The average value of the backbone RMSD from the
X-ray structure is 0.89 Å. As observed in the X-ray
structure, the tetrapeptide Ac-LETD docked by PEP
forms an antiparallel β-sheet interaction that in-
volves Thr (P2) and Glu(P3), and the backbone polar
groups of residues Ser339 and Arg341, respectively.
PEP places the Thr(P2) side chain in the S2 pocket,
which is occupied by the Val side chain in the Z-
EVD inhibitor in the X-ray structure.25 The Glu(P3)
side chain reproduces the double salt bridge (with
Arg341 and Arg177) observed in the X-ray structure,
and the Leu(P4) side chain fills the rather hydropho-
bic S4 pocket. As for caspase 3, it is important to
underline that PEP finds the correct binding mode
of the recognition motif Ac-LETD using a confor-
mation of caspase 8 from a complex with Z-EVD,
a rather different inhibitor.
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Design of Tetrapeptide Inhibitors

The 10 designed P4–P2 sequences with highest
occurrence and best energy are listed in Table III.
They contain Thr, Ile, and Val at P2, Glu at P3, and
different residue types at P4. These results are in
agreement with the known optimal recognition mo-
tifs of caspase 8, which have Thr, Leu, and Ile at P2,
strict specificity for Glu at P3, and a rather promis-
cuous S4 pocket.9, 29 It is striking that the optimal
recognition motif is reproduced by 2 of the 10 de-
signed sequences, namely Ac-VETD (Fig. 4F) and
Ac-LETD, which rank number 2 and 6, respectively.
Moreover, apart from the blocking group the PEP
sequence 8 corresponds to the known aldehyde in-
hibitor Boc-IETD-CHO, which has a Ki of 1 nM for
caspase 8.29, 30

Conclusions

The build-up approach implemented in PEP
allows searching in ligand conformational space
(docking) and chemical space (design). Docking is
performed by a genetic algorithm that is able to
find ligand binding modes that are very similar
to their counterparts observed in X-ray structures.
The search in chemical space is exhaustive within a
library of amino acids specified by the user. The abil-
ity of PEP to correctly dock (within 0.9 Å backbone
RMSD) the peptide recognition motifs was shown
on three members of the caspase family of enzymes.
The design of P4–P2 sequences yielded known cas-
pase inhibitors among the top 15 PEP hits.

There are three advantages of PEP with respect
to previous build-up procedures.11, 32, 33 First, PEP
uses a library of residue topologies without any
predefined structural information. Hence, the con-
formational optimization in PEP is not restricted to
the discrete space of a library of low energy confor-
mations. A predefined library of conformers might
not contain the correct conformation of monomers
with many internal degrees of freedom.11 Second,
sequences are ranked by PEP according to both their
binding energy and their ability to be further grown.
The latter is checked by a procedure that consists
in elongating the current sequence with an alanine,
and discarding it if the minimized alanine binding
energy is worse than a given cutoff. This is impor-
tant, because a partially grown sequence, especially
if optimally buried, may not allow further growing.
Third, partial rigid body rotation of the last added
monomer is used in PEP at each growing cycle to
increase the accessible space. This is useful, because

the growing direction defined by a suboptimal ori-
entation of monomer n − 1 may prevent monomer n
from optimally interacting with the protein binding
site.

Although PEP allows an exhaustive, though dis-
crete, search in chemical space at each growing step,
further growing is restricted to a relatively small
number of sequences to avoid combinatorial explo-
sion. The correct ranking of the sequences is, there-
fore, of utmost importance. In PEP sequences are
ranked according to a binding energy that includes
solvent effects in a continuum approximation.16 Test
runs performed on caspases and other enzymes us-
ing the in vacuo energy without solvation yielded
a large and unrealistic number of charged residues
in the top ranking PEP hits (Budin and Caflisch,
unpublished results). Hence, the solvation energy
used in PEP is useful for the ranking of differ-
ent peptide sequences. Although the results are
much better than using an in vacuo energy function,
the approximations used in the implicit solvation
model (Coulomb field approximation, generalized
Born formula) yield an error that can be rather
large for functional groups with formal charges.
This results in the relatively poor ranking of Asp(P4)
compared to Trp(P4) in the S4 pocket of caspase 3.
Another source of error in the PEP energy is the
crude approximation of the energy of the free lig-
and. The contribution of the free receptor cancels
out. On the other hand, taking into account the
ligand reference state, which is important for de-
sign but not for docking, is currently beyond the
limits of routine calculations, because it includes
finding the most probable conformations in solvent
and averaging with the correct Boltzmann weights.
Structure-based ligand design is essentially the ex-
tension of the docking problem into chemical space.
In docking, part of the systematic error due to the
approximations inherent in the force field cancels
out. This is not so when evaluating and comparing
the binding affinity of different molecules (design).
When the search space is very small, for example,
docking a mainly rigid fragment into a rigid protein,
a simple empirical scoring function might suffice.
This is not the case for docking into a flexible pro-
tein or for ligand design. In general, the larger the
space to be sampled, conformational and eventu-
ally also chemical space, the more accurate has to be
the energy function even for a qualitative ranking of
candidate ligands.3

The main limitation of PEP is the necessity of an
anchor fragment correctly placed in the target bind-
ing site. The seed is usually obtained from the X-ray
structure of a known inhibitor complexed with the
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target. It can be used to design novel sequences as
demonstrated on caspase 3 where PEP is able to
predict sequences of potent inhibitors starting from
the Asp(P1) binding mode of a weak inhibitor. To
reduce the influence of the seed position, we are cur-
rently investigating a new procedure where partial
rigid body motion and internal flexibility of the seed
is allowed during the conformational optimization
of the first added monomer (first growing cycle).
Preliminary results on the insulin receptor tyro-
sine kinase show that PEP finds the correct binding
mode of the ligand when rigid body translations up
to 0.5 Å and rotations up to 20 degrees are allowed
to the seed. Although this procedure does not com-
pletely solve the issue of the seed, it greatly reduces
the influence of its initial placement on the success
of the growing procedure.

The protein rigidity is another limitation in the
current version of PEP. There is a large amount
of experimental evidence, mainly crystal structures,
which show that the uncomplexed and ligand
bound conformation of the binding site might dif-
fer substantially.34, 35 Typical rearrangements due to
ligand binding include rotation and displacement
of side chains36 but also the relative motion of en-
tire domains constituting the binding site (e.g., p38
MAP kinase37). It is clear that some protein side
chain flexibility should be allowed during confor-
mational optimization of the ligand, at least for the
hydroxyl groups of the serine, threonine, and ty-
rosine side chains, because their conformation is
usually not specified by the X-ray structure and
must, therefore, be assigned when hydrogens are
added. Further versions of PEP will try to address
this issue.

In principle, PEP can be expanded to grow any
type of linear compounds consisting of monomers
provided that their chemical structure (atom types,
partial charges, covalent bonds, and rotatable
bonds) can be defined in a topology library. We are
currently trying to extend PEP into a more general
combinatorial ligand design program.
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