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We have recently introduced a multistep extension of the greedy algorithm for modularity optimization. The
extension is based on the idea that merging l pairs of communities �l�1� at each iteration prevents premature
condensation into few large communities. Here, an empirical formula is presented for the choice of the step
width l that generates partitions with �close to� optimal modularity for 17 real-world and 1100 computer-
generated networks. Furthermore, an in-depth analysis of the communities of two real-world networks �the
metabolic network of the bacterium E. coli and the graph of coappearing words in the titles of papers coau-
thored by Martin Karplus� provides evidence that the partition obtained by the multistep greedy algorithm is
superior to the one generated by the original greedy algorithm not only with respect to modularity, but also
according to objective criteria. In other words, the multistep extension of the greedy algorithm reduces the
danger of getting trapped in local optima of modularity and generates more reasonable partitions.
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I. INTRODUCTION

The coarse-grained organization of many real-world net-
works manifests itself in a natural divisibility of the vertices
into modules �or communities�. A community is a set of ver-
tices that are more connected among each other than with
vertices of other communities. Community structure has
been reported for social networks �1,2�, metabolic networks
�3–5�, and protein-folding networks �6–10�. Several proce-
dures have been developed to partition a network into mod-
ules. Often applied are techniques that rely on the optimiza-
tion of a scoring function called modularity �11�. This
assessment function compares the fraction of edges within a
module with its expectation value in the case of randomly
connected vertices with equal degree sequence. The modu-
larity is defined as

Q = �
i=1

NC � I�i�
L

− � di

2L
�2	 , �1�

with I�i� being the weights of all edges linking vertices of
community i, di the sum over all vertex degrees in module i,
L the total edge weight, and NC the number of communities.
The optimization of modularity has been proven to be a
NP-hard problem �12�. Thus, heuristic techniques such as
extremal optimization �13�, simulated annealing �4�, and the
greedy algorithm �14� have been developed and applied to
find partitions with high modularity. Because of the global
character of modularity �i.e., in Eq. �1� the connectivity and
degree of each community are compared with the edge
weight of the whole network�, it has been shown that mod-
ules smaller than a certain scale cannot be resolved �15�. In
other words, small communities are amalgamated with oth-

ers instead of being detected autonomously. A higher-
resolution variant of modularity, called localized modularity,
addresses the limit on the detectable community size �5�.

Recently, we have introduced a multistep extension of the
greedy algorithm �MSG� and combined it with a simple
vertex-by-vertex refinement procedure �vertex mover �VM��
�16�. The essential idea of the MSG algorithm is to promote
the simultaneous merging of several pairs of communities to
prevent premature trapping in a local optimum of modularity.
Given an appropriate choice of the step width l, the
MSG-VM algorithm finds partitions with high modularity in
short running time. Our implementation of the MSG-VM
algorithm �16,17� has the same scaling behavior as the effi-
cient version of the greedy algorithm �18�, which has the
smallest complexity among the commonly used community-
detection algorithms �19�. Note that the running time of both
the MSG-VM algorithm �16� and the greedy algorithm �18�
is O�DL log N� with L, N, and D the number of edges, ver-
tices, and the depth of the dendrogram describing the com-
munity structure, respectively. For a sparse network with L

N and D
 log N, the scaling is essentially linear
O�Nlog2 N�.

In this paper, we derive an empirical formula for predict-
ing optimal l values—i.e., values of the step width that yield
a modularity very close to the highest value achievable by
the MSG-VM algorithm. Furthermore, for two real-world
networks having each an inherent partition into substruc-
tures, we compare the community structures identified by the
original greedy and the MSG-VM algorithm. These real-
world examples are the metabolic network of E. coli and the
graph of coappearing words in the titles of publications co-
authored by Martin Karplus, the most cited theoretical chem-
ist. The inherent substructures of the former are the meta-
bolic pathways, while the inherent substructure of the
network of Karplus’ paper titles are the sets of words pre-
dominantly used in research subfields in theoretical and com-
putational chemistry. These two examples illustrate that the
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MSG-VM algorithm detects the underlying substructures
more accurately than the original greedy algorithm.

II. METHODS

A. Multistep greedy and vertex mover algorithms

The MSG algorithm optimizes modularity by an iterative
procedure in which multiple pairs of communities are
merged at each iteration. This multistep approach is a signifi-
cant extension with respect to the original greedy algorithm
�14�, in which only the pair of communities that improves
modularity most is merged in each iteration. A pseudocode
description of the MSG algorithm is

Initialization:
Each vertex is a community;
Calculate matrix �Q whose elements are the modularity
changes upon merging of module pair �i , j�;
Iteration:
while pair �i , j� with �Qij �0 exists do

for all triplets �i , j ,�Qij� of �Q, parsed w.r.t. decreasing
�Qij and increasing �i , j�
do

if ��Qij � 0 in best l values in �Q - matrix

i and j unchanged in iteration
�

then
MergeCommunities�i , j�

end if
end for

end while
Algorithm 1: Flowchart of the MSG procedure. Details of

the efficient merge of two communities and the calculation
of the modularity change matrix are presented in �16�.

Note that the step width l influences the number of
merged pairs �but is not necessarily identical to it�; further-
more, l is kept constant during an MSG run �for more details,
the reader is referred to the original publication �16��.

Applied upon convergence of the MSG algorithm the VM
procedure improves modularity by “adjusting” misplaced
vertices. The VM procedure parses the vertex list in ascend-
ing vertex degree and index order and checks for each vertex
whether a reassignment to one of the neighboring communi-
ties yields a modularity improvement �16�.

B. Networks

All networks in this article are treated undirected and un-
weighted.

1. Real-world networks

The real-world networks are the same as in �16� and are
listed in Table I. Sociological applications are included with
the Zachary karate club example �20�, the conference graph
of college football teams �21�, the graph of jazz groups with
common musicians �2�, the network of mutual trust �PGP-

key signing� �27,28�, the collaboration network �coauthor-
ships in cond-mat articles� �1�, and the graph of costarring
actors in the IMDB database �31�. Network applications in
biochemistry are covered by the graph of metabolic reactions
in the nematode Caenorhabditis elegans �22� and the bacte-
rium Escherichia coli �3� as well as two different data sets
describing the protein-protein interactions in Saccharomyces
cerevisiae �budding yeast� �24,25� with labels “PPI” and
“yeast.” Linguistic applications are covered by the Word As-
sociation network �29� and the graph of the coappearing
words in titles of publications �co�authored by Martin Kar-
plus �16,17� who has the third highest h factor �33� among
chemists �34�. From computer science the internet routing
network �26� and the graph of WWW pages �30� are in-
cluded. The effects of disconnected graphs are considered by
including the full network as well as its largest connected
component �LCC�.

2. Computer-generated networks

A total of 1100 computer-generated networks were used
for an in-depth assessment of the empirical formula for the
prediction of optimal values of l �Table II�. The networks in
GN1,2,3 consist of 128 vertices organized in four equally
sized communities �21�. The cohesion of the vertices within
a module is controlled by a parameter called zout which de-
termines the average number of edges connecting vertices of
different modules. To consider clearly formed and loosly
coupled modules the zout parameter is chosen uniformly from
the second smallest to the highest value. Among the sets
GN1,2,3, the number of edges is varied to assess the effect of
different values of average degree.

The remaining test cases are larger networks, which have
no imposed community structure and a heterogeneous distri-
bution of the vertex degrees and community sizes �confer
Table 1 in the supplementary material �32��. A recent study,
published after the submission of this work, has emphasized
the importance of this heterogeneity for testing community-
detection algorithms on severe benchmarks �35�. To foster a
“spontaneous” formation of modules a vertex degree distri-
bution is imposed. The network is generated by choosing a
number of vertices at random �uniform distribution�, assign-
ing edge end points to each vertex according to the degree
distribution and joining the edge endpoints at random. To
examine the effect of different degree distributions, an expo-
nential distribution is used for the networks in SED �small
networks with exponential degree distribution� and a linear
distribution is imposed on the networks in SLD and LLD. All
networks in LLD have at least 300 vertices. After generation,
the networks in SED, SLD, and LLD are projected onto the
largest connected component and treated as unweighted.

III. RESULTS

It is helpful to recall here that L is the number of edges
and lopt is the value of the step width that yields the highest
MSG-VM modularity �among all tested values of step
width�. The MSG-VM algorithm is applied on each real-
world network using every integer l�min
5000,L�. The
modularity values before and after the VM application are
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recorded. For the computer-generated networks all integer
values l�10�L have been tested �the �L scaling is rational-
ized in the next subsection�.

A. Dependence of l on network properties

The correlation between the optimal step width lopt and
several topological properties was calculated. The following
properties or powers thereof were used: number of vertices
and edges, highest degree, average degree, standard devia-
tion of degree, average of power 1, 2, or 3 of the clustering
coefficient, and average and standard deviation of the differ-
ences in clustering coefficient values or degree of linked ver-
tices. The highest correlation was observed for �L �0.7728,
correlation coefficients of other properties are listed in the
supplementary material �32��.

This empirical result is consistent with the �L dependence
of the number of communities yielding maximal modularity
as recently demonstrated for one class of networks �15�. In
fact, a close inspection of the MSG algorithm shows that the
step width l determines the number of communities formed
during the first 1%–5% of the iterations �the number of it-
erations is strongly dependent on the network topology�.
Each module in the final solution has to be nucleated as early

as possible and therefore l to be chosen according to the
expected number of communities.

1. Optimal prefactor for computer-generated networks

To determine the prefactor � in the �L-scaling law the
computer-generated networks introduced in Sec. II B 2 are
examined first. This choice is due to their multitude �1100
networks� and their lack of overlapping condensed structures
�i.e., few �almost� complete subgraphs sharing vertices� as
consequence of the construction principle. First, we observe
that for 97 of the 1100 networks the MSG-VM modularity
does not depend on l. Further, for each value of � the
MSG-VM modularity is averaged over all networks of the

same type Q̄MSG−VM���= 1
NS

�i�S
QMSG−VM

i ����Li��
maxl(QMSG−VM

i �l�) , where S is the
type of networks, NS is the number of networks of type S, �.�
is the floor function, and Li is the number of edges in net-
work i. All � profiles peak for 0.2���0.3 and show a
similar behavior �Fig. 1�. The � profiles averaged over all
computer-generated networks peak at �=0.251. �It is legiti-
mate to consider the average because for each � the histo-

gram of
QMSG−VM

i ����Li��
maxl(QMSG−VM

i �l�) �i indexing the network realizations�
follows an unimodal distribution with an additional peak at

TABLE I. Properties of real-world networks and comparison of MSG-VM runs using l as in Eq. �2� or
picked at random. The column “Qopt” lists the maximal value of modularity obtained by running MSG-VM
for all values of l smaller than min
5000,L� �where L is the number of edges�. The column “Qpred” lists the
MSG-VM modularity obtained using Eq. �2� to determine the step width. The columns “�Qrand�” and
“�Qrand

l�1.5�L�” show the expectation value for the MSG-VM modularity when six values of l are picked
randomly from a uniform distribution in the range 1� l�min
5000,L� and 1� l�1.5�L, respectively. The
expectation value is estimated by averaging, over 1000 samples, the highest modularity obtained using six
values of l �details are given in Sec. VII of the supplementary material �32��. Six values of l are picked
randomly for each sample because six values were used to determine Qpred: the four values of l calculated by
Eq. �2� and the two integers adjacent to the best of these four. Values of �Qrand� and �Qrand

l�1.5�L� higher than the
corresponding Qpred are in italics. The acronym LCC stands for “largest connected component.”

Network Ref. Vertices Edges �L�

MSG-VM with
Optimal l

MSG-VM with
l from Eq. �2�

MSG-VM with
Random l

lopt /�L Qopt Qpred �Qrand� �Qrand
l�1.5�L�

Zachary Karate Club �20� 34 78 0.34 0.398 0.398 0.391 0.398
Metabolic E. coli �3� 443 586 0.25 0.816 0.816 0.813 0.816
College Football �21� 115 613 0.04 0.603 0.595 0.579 0.596
Metabolic C. elegans �22� 453 1899 4.80 0.450 0.447 0.439 0.445
Jazz �2� 198 2742 10.81 0.4451 0.4447 0.4451 0.4448
Email �23� 1133 5451 0.76 0.575 0.575 0.564 0.574
Yeast �PPI, LCC� �24� 2552 7031 0.42 0.706 0.705 0.693 0.702
M. Karplus �16,17� 1167 13423 0.79 0.316 0.311 0.306 0.311
PPI S. cerevisiae �LCC� �25� 4626 14801 1.40 0.545 0.544 0.531 0.543
PPI S. cerevisiae �25� 4713 14846 1.40 0.546 0.546 0.532 0.545
Internet �26� 11174 23409 1.82 0.625 0.619 0.615 0.618
PGP-key signing �27,28� 10680 24340 0.28 0.878 0.876 0.873 0.876
Word Association �LCC� �29� 7204 31783 0.40 0.541 0.536 0.528 0.536
Word Association �29� 7207 31784 0.54 0.540 0.537 0.527 0.536
Collaboration �1� 27519 116181 0.45 0.748 0.746 0.743 0.744
WWW �30� 325729 1117563 2.87 0.939 0.936 0.937 0.937
Actor �31� 82583 3666738 1.27 0.543 0.536 0.537 0.539
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1.0 originating from the degeneracy of lopt
i .� Excluding the

additional peak, the highest normalized modularities are still
observed for 0.2���0.3. Remarkably, the degeneracy of
lopt
i �i.e., the number of networks with QMSG−VM

i ����Li��
=maxl(QMSG−VM

i �l�)� is highest for 0.18���0.26. A
leave-N-out procedure �confer supplementary material �32�
for details� provides evidence that �=0.251 would have been
�close to� optimal also for another selection of networks. The
application of the MSG-VM algorithm with step width
�0.251�L� yields 97.6% of the highest MSG-VM modularity
averaging over all computer-generated networks �98% if me-
dian is calculated�.

2. Comparison of empirical formula with random
selection of step width

If a step width value is selected at random among
l�min
L ,5000� �all tested values�, the MSG-VM algorithm
is expected to yield 93.4% of the highest MSG-VM modu-
larity on average over all computer-generated networks �the
expectation value is equal to the arithmetic mean over all
QMSG−VM�l� values�. An in-depth analysis �details given in
the supplementary material �32�� shows that lopt�1.5�L for
92.6% of all computer-generated networks. If a step width
value smaller than 1.5�L is chosen at random, the expecta-
tion value of the MSG-VM modularity raises to 95.9% of its
highest value �average over all computer-generated net-
works�. Thus, the empirical formula l=0.251�L performs
4.3% better �of a maximum of 6.6%� than a value of step
width picked at random if all tested values are considered. If
the reduced test set l�1.5�L is used, the empirical formula
performs 1.7% better than a value of step width picked at
random �4.1% maximal improvement�. More precisely, for
85.5% of the networks the MSG-VM modularity with
l=0.251�L is higher than the one with l picked at random
and the average improvement for these networks is 2.4%.

To account for limited sampling the prefactor �=0.25 is
assumed to be optimal for the computer-generated networks
�the prefactors 0.251 and 0.25 can be considered identical as

the real to integer conversion yields the same value of l for
networks with L�106�.

3. Application to real-world networks

In comparison to computer-generated graphs, real-world
networks are endowed with more condensed substructures.
Therefore, a different scaling behavior than for the computer-
generated networks is possible. To improve statistics and re-
duce spurious effects due to vertex-labeling artifacts �a value
of step width yields a high MSG-VM modularity as it profits
exclusively from the “right” parsing of the vertices�, 100
copies of the smallest 10 real-world networks are created
with permuted vertex labelings �details are presented in the
supplementary material �32��. For each copy the influence of
l is tested as described in Sec. III. Except for the College

Football and Email networks all Q̄MSG−VM profiles �confer
Sec. III A 1 for the definition� averaged over the scrambled
variants are observed to peak for values of step width equal
or very close to

l = ���L� �� = 0.25,0.5,0.75,1� �2�

�supplementary material �32��. The MSG-VM modularity de-
viates at most by 1.47% from the maximal value �Table I�.
Moreover, for 13 of the 17 networks the deviation is smaller
than 0.94%. In comparison to the effect of permuted vertex
labels this deviation is of the same order of magnitude and
thus negligible �details given in the supplementary material
�32��.

To further assess the predictive power of Eq. �2�, the
MSG-VM modularity obtained with l as in Eq. �2� is com-
pared with a random selection of the step widths. Because of
the real to integer conversion induced by the floor function,
an integer adjacent to ���L� might be optimal. Therefore, not
only the four values of step width as in Eq. �2� are tested, but

TABLE II. Properties of computer-generated networks. The net-
works in the GNi �Girvan-Newman� sets �i=1,2 ,3� possess an im-
posed four community structure where zout controls the average
number of edges connecting two different modules �21�. For the
networks of type SED �small networks with exponential degree
distribution�, SLD �small networks with linear degree distribution�,
and LLD �large networks with linear degree distribution� a degree
distribution has been prescribed to foster the formation of
communities.

Type
No. of

realizations Vertices Edges Remarks

GN1 100 128 1024 zout=3–16
GN2 100 128 512 zout=2–8
GN3 100 128 2048 zout=2–32
SED 300 11–976 10–19247 Exp. deg. distr.
SLD 200 19–3777 43–78741 Linear deg. distr.
LLD 300 309–4278 1523–342940 Linear deg. distr.
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FIG. 1. �Color online� Dependence of QMSG−VM on the �L pref-
actor � for the computer-generated networks. The averages are
taken separately for each type of computer-generated networks. The
vertical black line denotes �=0.25, which is the value suggested in
Eq. �2�. The parameter range for � has been discretized to multiples
of 0.001 to simplify the calculations.
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also the two integers adjacent to the best of them. For a fair
comparison the same number of trials is allowed in the ran-
dom experiment. For 14 out of 17 networks the MSG-VM
modularity value with l as in Eq. �2� is higher or equal than
for the corresponding random experiment �Table I�. There-
fore, one can conclude that the empirical formula �2� yields a
step width that results in �close to� optimal modularity, and
therefore only six runs of the MSG-VM algorithm are re-
quired.

B. Quality of MSG-VM network partition

Previously, the performance of the MSG-VM algorithm in
optimizing modularity has been shown on 19 real-world net-
works �16�. Here, an in-depth analysis of two examples pro-
vides evidence that the MSG-VM algorithm gathers vertices
in groups that represent substructures �identified by other
means� more accurately than the greedy algorithm.

1. Metabolic network of E. coli

The network of metabolic reactions in the bacterium
E. coli is extracted from the KEGG database �data set “Es-
cherichia coli K-12 MG1655”� with additional refinement by
Ma and Zeng �3� and projected on the largest connected
component. Furthermore, chains of vertices with degree 1 or
2 are reduced to one single vertex �to reduce spurious effects
of unnaturally splitted chains�. Each vertex is assigned to
between zero and eight out of 11 metabolic pathways with an
average of 1.51�0.99.

Eleven communities are identical in the MSG-VM parti-
tion �which consists of 19 communities and has Q=0.816�
and the partition obtained with the greedy algorithm �20
communities, Q=0.811�. To assess the quality of pathway
detection, we employ the measure P=�i

Pi

Ni
�adopted from

�5��, with Pi the number of vertex pairs in community i that
share at least one pathway and Ni the number of pairs of
vertices with equal community affiliation. The MSG-VM
partition has PMSG−VM=0.60, which is better than the parti-
tion obtained with the original greedy algorithm �Pgreedy
=0.58�. The improved pathway identification is illustrated by
an excerpt of the network in Fig. 2 �vertices in the 11 mod-
ules which are identical in both partitions are removed for
visibility reasons�. Two central pathways �classification ac-
cording to KEGG database� are highlighted by colored areas.
In the MSG-VM solution the vertices of each pathway be-
long to separate modules except for “�S�-Malate.” This me-
tabolite has more connections to vertices assigned to the
“Amino Acid Metabolism” than to those of the “Carbohy-
drate Metabolism” �the “TCA cycle” is associated to the lat-
ter� and thus, a separation is meaningful. On the other hand,
the metabolites misclassified by the original greedy algo-
rithm are “2-Oxo-glutarate” �B�, “3-Carboxy-hydroxypropyl-
ThPP”�A�, and “Oxalosuccinate”�C�. The last two belong
only to the “TCA cycle” pathway, whereas “2-Oxo-glutarate”
is part of several pathways and therefore can also be attrib-
uted to other communities. Furthermore, the separation of
the blue vertices in the “Valine, Leucine, Isoleucine Biosyn-
thesis” pathway is peculiar as the overlapping pathway “pan-
tothenate and CoA biosynthesis” is contracted to one vertex
�the vertex right to “F” and “G”�. The metabolites “F” and
“G” are the educts in the “pantothenate and CoA biosynthe-
sis” pathway. If a unique assignment has to be made, an
attribution to the “Valine, Leucine, Isoleucine Biosynthesis”
pathway is more reasonable. The last differences of the
greedy partition to the MSG-VM solution are “Succinate”
�D� and “Fumarate” �E� which are as “�S�-Malate” �a� part of
multiple different metabolic processes and therefore may be
attributed to multiple pathways. To summarize, of eight as-
signments differing between MSG-VM and original greedy

FIG. 2. �Color online� Clusterization of the metabolic network of E. coli and accuracy of pathway identification. Two exemplary
pathways as taken from the KEGG database �36,37� �pathways MAP00020 for “TCA cycle” and MAP00290 for “Valine, Leucine, Isoleucine
Biosynthesis”� are highlighted by the colored areas. An excerpt of the network is shown here while the full network is in the supplementary
material �32�. The misassigned vertices are indicated by letters; they are a= �S�-Malate for MSG-VM, and for the original greedy:
A=3-Carboxy-1-hydroxypropyl-ThPP, B=2-Oxoglutarate, C=Oxalosuccinate, D=Succinate, E=Fumarate, F=2-Oxoisovalerate, and G
=Valine.
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algorithm �in the excerpt of the network shown in Fig. 2�,
none was misplaced by the MSG-VM algorithm, whereas the
greedy algorithm misplaced two metabolites �two further ex-
amples of incomplete detection of pathways by the original
greedy algorithm are shown in the supplementary material
�32��.

2. Network of words in titles of Karplus’ publications

Martin Karplus is one of the most productive and most
cited chemists �78091 citations as of 3 July 2008�. As second
example we analyze the community structure of the graph of
words coappearing in the titles of the 719 publications
coauthored by Karplus between 1947 and 2004 �16,17�. The
words with highest degree in the five largest �according to
number of words� communities are shown in Table III.

The following two examples provide evidence for the su-
periority of the MSG-VM partition �11 communities, Q
=0.316� with respect to the partition obtained by the original
greedy algorithm �18 communities, Q=0.264�. The words
“reaction” �degree 212�, “hydrolysis” �73�, “rate” �69�, “en-
zyme” �57�, “catalysis” �54�, and “kinetics” �54� are appro-
priately grouped in a single community by the former, while
they are spread in the four largest �according to the number
of words� communities by the latter. Another example of
superiority of the MSG-VM partition is the community with
the words “molecule” �159�, “atom” �91�, and “bond” �87�,
which are spread over the three largest communities by the
greedy algorithm. These two examples show that the main
advantage of the MSG-VM algorithm is that the simulta-
neous emergence of several communities hinders the spuri-
ous coalescence into few large communities observed for the
original greedy algorithm.

IV. CONCLUSIONS

The performance of the MSG procedure, a multistep ex-
tension of the greedy algorithm, was analyzed on 1100

computer-generated networks of heterogeneous sizes and de-
gree distributions and 17 real-world networks. Several pow-
ers of topological properties �e.g., average degree, clustering
coefficient, etc.� were tested as prediction formulas for the
optimal step width l. The empirical formula l= ���L� �L total
edge weight; �=0.25,0.5,0.75,1� outperforms all others and
yields a higher modularity value than a random picking of
the step width for 85.5% of the computer-generated networks
and 14 of 17 real-world examples. For these 14 real-world
networks, the modularity optimized by MSG-VM algorithm
using only six values of l �l1= �0.25�L�, l2= �0.5�L�,
l3= �0.75�L�, l4= �1.0�L�, and l5,6= lmax�1 with lmax the step
width among l1,. . .,4 that yields the highest modularity� is
larger than 99% of the highest value achievable by exhaus-
tive testing of all step widths �i.e., 1� l�L�. This deviation
is on the order of the fluctuations observed when the parsing
order of the vertices is changed. In addition, for 92.6% of the
computer-generated and 13 of 17 real-world networks the
optimal value of the step width is smaller than 1.5�L.

To assess the quality of the community identification two
real-world examples �the network of metabolic reactions in
E. coli and the graph of coappearing words in titles of pub-
lications coauthored by M. Karplus� were examined in-depth
and the modular structure obtained from the application of
the MSG-VM and greedy algorithms was compared. For the
metabolic network the original greedy algorithm splits two
exemplary pathways �“TCA cycle” and “Valine, Leucine,
Isoleucine Biosynthesis”� in multiple parts with seven mis-
placed vertices. Two of these vertices are not part of another
pathway and therefore are wrongly assigned by the original
greedy algorithm. For the MSG-VM solution only one me-
tabolite is misplaced which can be attributed to the three
pathways in which this metabolite is involved. Furthermore,
an objective criterion �the conditional probability that two
vertices in the same module share at least one pathway� sup-

TABLE III. The five largest communities as identified by the MSG-VM algorithm in the network of
words in the titles of M. Karplus’ papers. These five communities account for 81% of the vertices in the
network. Unspecific words �e.g., “study” and “theory” with degree 291 and 234, respectively� were taken into
account for the clusterization, but are not listed in this table.

Rank Vertices

Most frequent words Number of titles
with any of the

words in community DescriptionDegree Word

1 220 407 Protein 442 Molecular dynamics �of proteins�
318 Simulation
269 Molecular-dynamics

2 184 290 Structure 330 Three-dimensional structures
123 Peptide

97 Inhibitor
3 162 269 Model 335 Molecular modelling,

molecular mechanics178 Energy
169 Function

4 162 159 Molecule 306 Quantum mechanics,
free-energy calculation154 Free-energy

144 Potential
5 116 212 Reaction 205 Chemical reaction, kinetics,

and solvation154 Solution
101 Solvation
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ports these exemplary observtions. For the “M. Karplus” net-
work the partition obtained by the original greedy algorithm
has three very large modules in which words of distinct re-
search fields are inappropriately mixed. Moreover, subsets of
words belonging to the same topic are erroneously split �e.g.,
“atom,” “molecule,” and “bond” are split in the three largest
modules�. On the other hand, the MSG-VM procedure more
accurately groups subsets of words belonging to individual
research topics.

In conclusion, the MSG-VM algorithm is one of the fast-
est and most accurate procedures for modularity optimization
currently available because it scales as O�N log2 N� for a
sparse network �N the number of vertices� �16�. Therefore, a
single run is faster than previously published approaches

�19�, and only six independent runs are required using Eq.
�2� to determine the step width �17�.
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