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The conformation space of a 20 residue antiparallel B-sheet peptide,
sampled by molecular dynamics simulations, is mapped to a network.
Snapshots saved along the trajectory are grouped according to secondary
structure into nodes of the network and the transitions between them are
links. The conformation space network describes the significant free energy
minima and their dynamic connectivity without requiring arbitrarily
chosen reaction coordinates. As previously found for the Internet and the
World-Wide Web as well as for social and biological networks, the
conformation space network is scale-free and contains highly connected
hubs like the native state which is the most populated free energy basin.
Furthermore, the native basin exhibits a hierarchical organization, which is
not found for a random heteropolymer lacking a predominant free-energy
minimum. The network topology is used to identify conformations in the
folding transition state (TS) ensemble, and provides a basis for under-
standing the heterogeneity of the TS and denatured state ensemble as well

as the existence of multiple pathways.
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Proteins are complex macromolecules with many
degrees of freedom. To fulfil their function they
have to fold to a unique three-dimensional structure
(native state). Protein folding is a complex process
governed by non-covalent interactions involving
the entire molecule. Spontaneous folding in a time-
range of microseconds to seconds' can be reconciled
with the large amount of conformers by using
energy landscape analysis.>™* The main difficulty of
this analysis is that the free energy has to be
projected on arbitrarily chosen reaction coordinates
(or order parameters). In many cases, a simplified
representation of the free-energy landscape is
obtained where important information on the non-
native conformation ensemble and the folding TS
ensemble are hidden. Moreover, the possible
transitions between free-energy minima cannot be
displayed in such projections, which hinders the
study of pathways and folding intermediates. The
characterization of the free-energy minima and the
connectivity among them, i.e. possible transitions
between minima, for peptides and proteins is still a

Abbreviations used: RMSD, root-mean-square
deviations; TS, transition state; TR, trap; FS, folded state.
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challenging problem despite the fact that several
elegant approaches have been proposed.”

In the last five years, many complex systems, like
the World-Wide Web, metabolic pathways, and
protein structures have been modeled as net-
works.® ! Intriguingly, common topologlcal
properties have emerged from their organization.'
The conformation space of a short two-dimensional
lattice polymer chain has been mapped to a
network where a link between two nodes indicates
the 1nterconver51on in a single Monte Carlo move of
the chain."® A description of the potential energy
landscape without the use of any projection has
been given in terms of networks for a Lennard-
Jones cluster of atoms."

Here, we use complex network analysis'? to
study the conformation space and folding of
beta3s, a designed 20 residue sequence whose
solution Conformatlon has been investigated by
NMR spectroscopy ®> The NMR data indicate that
beta3s in aqueous solution forms a monomeric (up
to more than 1 mM concentration) triple-stranded
antiparallel B-sheet (Figure 1, bottom) in equi-
librium with the denatured state.' We have
previously shown that in implicit solvent'® molecu-
lar dynamics simulations beta3s folds reversibly
to the NMR solution conformation, irrespective of
the starting conformation.'”'® We consider

0022-2836/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
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Figure 1. The beta3s conformation space network. The size and color coding of the nodes reflect the statistical weight w
and average neighbor connectivity k,,, respectively. White, cyan, and red nodes have k,,, <30, 30<k,,,<70, and k,,,> 70,
respectively. Representative conformations are shown by a pipe colored according to secondary structure: white stands
for coil, red for a-helix, orange for bend, cyan for strand and the N terminus is in blue. The variable radius of the pipe
reflects structural variability within snapshots in a conformation. The yellow diamonds are folding TS conformations
(TSE1, TSE2, see the text for details) characterized by a connectivity /weight ratio k/2@w > 0.3, a clustering coefficient
C<0.3, and 60<k,, <80. This Figure was made using visone (www.visone.de) and MOLMOL* visualization tools.

conformations sampled by molecular dynamics
simulations and the transitions between them as
the network nodes and links, respectively. The
network analysis allows us to identify the topo-
logical properties that are common to both beta3s,
which folds to a unique three-dimensional struc-
1>1% and a random heteropolymer which lacks

a single preferential conformation like the native
state despite the fact that it has the same residue
composition as beta3s. These properties include the
presence of several free-energy minima and highly
connected conformations (hubs). On the other
hand, a hierarchical modularity® in the proximity
of the native state is peculiar of a folding sequence.
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Model and Methods

Molecular dynamics simulations

The simulations and part of the analysis of the
trajectories were performed with the program
CHARMM.*' beta3s was modeled by explicitly
considering all heavy atoms and the hydrogen
atoms bound to nitrogen or oxygen atoms
(PARAM19 force field.?') A mean field approxi-
mation based on the solvent-accessible surface was
used to describe the main effects of the aqueous
solvent on the solute.'® The two parameters of the
solvation model were optimized without using
beta3s. The same force field and implicit solvent
model have been used recently in molecular
dynamics simulations of the early steps of ordered
aggregation,” and folding of structured peptides
(a-helices and B-sheets) ranging in size from 15 to 31
residues,'®'”* as well as small proteins of about 60
residues.”** Despite the absence of collisions with
water molecules, in the simulations with implicit
solvent the separation of time-scales is comparable
with that observed experimentally. Helices fold in
about 1 ns,* B-hairpins in about 10 ns*® and triple-
stranded B-sheets in about 100 ns,18 while the
experimental values are ~0.1 us, > ~1ps* and
~10 ps,"® respectively. Recently, four molecular
dynamics simulations of beta3s were performed at
330 K for a total simulation time of 12.6 ps.'” There
are 72 folding events and 73 unfolding events, and
the average time required to go from the denatured
state to the folded conformation is 83 ns. The 12.6 pus
of simulation length is about two orders of
magnitude longer than the average folding or
unfolding time, which are similar because at 330 K
the native and denatured states are almost equally
populated.’ For the network analysis the first
0.65 us of each of the four simulations were
neglected so that along the 10 us of simulations
there are a total of 5X10° snapshots because
coordinates were saved every 20 ps. The sequence
of the random heteropolymer is a randomly
scrambled version of the beta3s sequence with the
same residue composition. It was simulated for 2 ps
and 10° snapshots were saved. The conditions for
the molecular dynamics simulations, i.e. force field,
solvation model, temperature, and time interval
between saved snapshots were the same for both
peptides.

Construction of the protein folding network

To define the nodes and links of the network the
secondary structure was calculated® for each snap-
shot (Cartesian coordinates of the atomic nuclei)
saved along the molecular dynamics trajectory.
A “conformation” is a single string of secondary
s’cructure,28 e.g., the most populated conformation
for beta3s (FS in Figure 1) is:

-EEEESSEEEEEES SEEEE-
There are eight possible “letters” in the secondary
structure “alphabet”:

”H", ”G”, ”I”, //E// ”B", ”T”, ”S", aI‘ld ”_”,
standing for o-helix, 319 helix, m-helix, extended,
isolated B-bridge, hydrogen bonded turn, bend, and
unstructured, respectively. Since the N and C-
terminal residues are always assigned an “-"*®a
20 residue peptide can, in principle, assume
8'®~10'® conformations. Conformations are nodes
of the network and the transitions between them are
links. A weight @ is assigned to each node to take
into account the free-energy of each conformation
and is equal to the number of snapshots with a
given secondary structure string. The statistical
weight w of a node is equal to w = @w/N, where N is
the total number of sna1:5)shots in the simulation (N
is equal to 5 10° and 10° for beta3s and the random
heteropolymer, respectively). Considering all the
conformations visited during a microsecond-scale
simulation can yield to a computationally intract-
able network size. For this reason we used for the
network analysis the 1287 conformations of beta3s
with significant weight (@ > 20 per conformation).
Two nodes are connected by an undirected link
(and called neighbors) if they either include a pair
of snapshots that are visited within 20 ps or they are
separated by one or more conformations with less
than 20 snapshots each. For the 2 ps of the random
heteropolymer, a threshold of @ >4 was used, so
that w>4X10"° as in the beta3s network. The
choice of a threshold value is somewhat arbitrary
but the network properties are robust for a large
range of threshold values (see Supplementary
Material).

The properties of the network are robust also
with respect to the length of the simulation time and
the definition of the nodes. The topological proper-
ties are independent from simulation lengths if one
considers more than 2 ps. The correlation between
statistical weight and connectivity, as well as
power-law behavior of the connectivity distri-
bution, and 1/k behavior of the clustering coef-
ficient distribution (see below) are essentially
identical after 2 ps, 4 ps, and 10 ps. As an example,
the exponent of the power-law is 2.0 for the beta3s
networks based on 2 ps, 4 pus and 10 ps of simulation
time. Defining nodes by grouping snapshots
according to root-mean-square deviations (RMSD)
in coordinates of C*-CP atoms yields the same
overall properties, i.e. power-law distribution of the
links (with a scaling factor v of 2.2) and 1/k tail of
the clustering distribution. Grouping snapshots
according to secondary structure motifs does not
require the use of an arbitrarily chosen RMSD
cutoff, and is able to capture the fluctuations of
partially structured conformations.*®

Evaluation of Py q

The TS ensemble can be defined as the set of
structures which have the same probability of
folding (Pfis) or unfolding in_trajectories started
with varying initial conditions.*® For each putative
TS conformation, the probability to fold before
unfolding was calculated by 100 very short
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Table 1. Energetic comparison of folded and denatured state

(EY (AFP
Folded state (FS)
-EEEESSEEEEEESSEEEE- —7.6 0
-EEE-STTEEEEESEEEE- —8.6 0.1
-EEEESSEEEEE-STTEEE- —8.4 0.5
-EEE-STTEEEE-STTEEE- —9.2 0.7
Helical conformations (HH)
- - -HHHHHHHHHHS------ 0.9 3.1
-HHHHHHHHHHHHS - ----— —-1.9 3.3
- - -HHHHHHHHHHTT----- 0.7 35
---HHHHHHHHHH------- 0.5 3.7
-HHHHHHHHHHHHTT----— —0.8 3.7
--TT--HHHHHHHHHHHHH - —0.8 3.8
Curl-like trap (TR)
---SSGGG-EEE-STTTEE- —7.8 3.4
---SSSS--EEE-STTTEE- —-7.0 35
---S-GGG-EEE-STTTEE- —-9.3 3.7
---SSGGG-EEE-SGGGEE- —-9.6 3.7
---SSTTT-EEE-STTTEE- —84 3.7

The free-energy of conformation i is F;=—kgT log(w;), where w; is the probability along the trajectory to find the peptide in the

conformation i.
? Average effective energy.

? Free-energy relative to the most populated conformation. All values are in kcal /mol. The conformational entropy of the peptide is
equal to ({(§) — F)/T. Note that the curl-like traps are entropically penalized with respect to the native state.

trajectories at 330 K started from ten snapshots
within a node. The only difference between the ten
runs was the seed for the random number generator
used for the initial assignment of the atomic
velocities. A trajectory was considered to lead to
folding (unfolding) if it visits first structures with a
fraction of native contacts Q>22/26 (Q<4/26)."”
The 33,381 snapshots with Q>22/26 have a distri-
bution of the pairwise C* RMSD peaked at 1.1 A
(see Supplementary Material).

Results and Discussion

To study the conformation space network of
polypeptides we concentrate on the analysis of
topology, i.e. on the study of the connectivity
between different conformations, leaving for a
later study the analysis of transition rates. We
have investigated the network topologies of several
peptides but, here, we focus on beta3s and the
random scrambled version of it. Additional details
can be found in the Supplementary Material, where
the network properties of another structured pep-
tide and a glycine homopolymer are presented.

Conformation space network of a structured
peptide

The conformation space network and relevant
structures of beta3s are shown in Figure 1. The
group of nodes at the bottom of Figure 1 (red nodes)
represents the native state basin (FS). The native
basin is connected to a wide region of nodes with
significant native content (cyan circles in the middle
of Figure 1). Although many heterogeneous routes
can be taken to reach the folded state (in agreement
with lattice simulations),so'31 most of the folding

events have common structural features that define
two average folding pathways. The less frequented
average pathway'® (see the density of transitions in
Figure 1, bottom right) consists of conformations
that have the N-terminal hairpin formed while the
C-terminal strand is mostly unstructured with non-
native hydrogen bonds at the turn (TSE1 in Figure
1). The second and most frequented average path-
way includes conformations with a well formed
C-terminal hairpin while the N-terminal strand is
disordered (TSE2 in Figure 1), namely it can be out-
of-register or mostly unstructured. It is interesting
to note that the same two folding pathways were
observed experimentally for a 24 residue peptide
with the same folded state as beta3s.** Furthermore,
multiple folding pathways have recently been
detected by kinetic analysis of a B-sandwich
protein.??

The denatured state ensemble is very hetero-
geneous and includes high-enthalpy, high-entropy
conformations (e.g. the partially helical confor-
mations, denoted HH in Figure 1) but also low-
enthalpy, low-entropy conformations (e.g., the curl-
like trap, TR). The former are loosely linked clusters
of conformations with similar secondary structure
(see Table 1) which are characterized by an
unfavorable effective energy (sum of peptide
potential energy and solvation energy) and fluctu-
ating unstructured residues (e.g. the terminal of the
helix shown on top left of Figure 1). On the contrary,
low-enthalpy, low-entropy traps form tightly linked
clusters with almost identical secondary and ter-
tiary structure, favorable effective energy (similar to
the one of the native structure, see Table 1) and no
fluctuating residues (e.g. Figure 1, top right). Taken
together, these results indicate that FS is entropi-
cally favored over low-enthalpy conformations like
TR, i.e. FS has more flexibility than TR. A possible
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Figure 2. Correlation between the statistical weight w
and the connectivity k for beta3s. The connectivity can be
fitted to logz(w) (with a correlation coefficient of 0.88,
continuous line) indicating a deviation from a purely
diffusive dynamics where k~w. The correlation and the
fit are calculated over all nodes of the network but in the
Figure logarithmic binning is applied to reduce noise.

explanation is that the C-terminal carboxy group is
involved in four hydrogen bonds in TR (with the
backbone NH groups of residues 4-7), whereas both
termini undergo rather large fluctuations in FS. In
addition, a more favorable van der Waals energy in
TR is consistent with a denser packing in TR than
in FS. Entropically favored structures (like FS) are
destabilized by lowering the temperature. Hence,
there should be a temperature (not accessible to
conventional MD simulations) where the system
becomes frustrated and a glass-like scenario
emerges.

Note that the network description of non-native
conformations is more detailed than the one
obtained by projecting the free energy surface on
progress variables (e.g. based on fraction of native
contacts). In such projections, for low values of the
fraction of native contacts structures as diverse as
helices and the curl-like conformations mentioned
above are not distinguished. Even the ensemble
with half of the native contacts is heterogeneous
and hard to classify. Using as reaction coordinate
the RMSD (with respect to a given structure) or the
radius of gyration is even less selective. Only when
a clever combination of variables is used is it
possible to have a more detailed description of the
free-energy landscape. The network description of
the conformation space gives a synthetic and
systematic view of all the possible conformations
accessed by the system and their transitions. By
considering the statistical weight of the nodes a
thermodynamical description of the system is
obtained.

The high correlation between the statistical
weight of a node and its number of links (Figure
2) shows that the most connected nodes are also
low-lying minima on the free-energy landscape.
This indicates that the conformation space network
describes the significant free energy minima and
their dynamic connectivity, without projection,
where highly populated nodes are minima of free-
energy and the set of nodes densely connected to
them make up the basins of such minima. The
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Figure 3. Average neighbor connectivity k,,, plotted as a
function of the statistical weight for the 1287 nodes of
beta3s (A) and for the 2658 nodes of the random
heteropolymer (B). k,, of node i is the average number
of links of the neighbors of node i. The yellow diamonds
are folding TS conformations (see also Figure 1 and the
text) characterized by a connectivity/weight ratio
k2@ > 0.3, a clustering coefficient C <0.3, and 60 <k;,,, <80.

connectivity can be fitted to log?(w), which indicates
that the dynamics is not diffusive (see Figure 2).

Folding and network topology

The average neighbor connectivity k,,, of beta3s
(Figure 3A), i.e. the average number of links of the
neighbors of a given node, is rather heterogeneous,
highlighting the presence of different connection
rules in different regions of the network. This is not
the case for the random heteropolymer (Figure 3B),
whose basins have organization and statistical
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Figure 4. Topological properties of conformation space
networks. Red and blue data points are plotted for beta3s
and a random heteropolymer, respectively. For a direct
comparison, the connectivity k is normalized by the
average connectivity (k) of each network. Logarithmic
binning is applied to reduce noise. A, The connectivity
distribution P(k) is the probability that a node (confor-
mation) has k links (neighbor conformations). The straight
line corresponds to a power-law fit y=x"" on the tail of
the distribution with y=2.0. B, The clustering coefficient
C describes the cliques of a node. For node i it is defined
as C; = 2n,/k;(k; — 1), where k; is the number of neighbors
of node i and n; is the total number of connections
between them. Values of C are averaged over the nodes
with k links. The straight line corresponds to a power-
law fit y=x""' on the tail of the distribution of beta3s.
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weight similar among each other as previously
found for most homopolymers Note that for
beta3s the native state is well discriminated by k;,,,
(red nodes in Figure 1 and top band in Figure 3A).

The connectivity distribution of conformation
space networks shows a well pronounced power-
law tail P(k)~k™Y with y=2.0 for both beta3s
and the random heteropolymer (Fi igure 4A) as
well as another structured peptide®* and homo-
glycine, i.e. (Gly)z (see Supplementary Material).
The power-law is due to the presence of a few
largely connected “hubs” while the majority of the
nodes have a relatively small number of links.*
This behavior has been 3prev1ously observed for
several blologlcal social® and technological net-
works,” which in the literature take the name of
scale-free networks. In terms of free energy this
means that only a few low lying minima are present
but they act as “hubs” with a large number of routes
to access them.

The average clustering coefficient C is a measure
of the probability that any two neighbors of a node
are connected. beta3s and the heteropolymer have C
values of 0.49 and 0.28, respectively. These values
are one order of magnitude larger than random
realizations of the two networks with the same
amount of nodes and links. The native basin of
beta3s includes the nodes with the largest number
of links of the network. These nodes give rise to the
1/k tail of the clustering distribution (Flgure 4B), i.e.
an inherently hierarchical organization®® of the
conformations in the native basin of beta3s. Such
organization is not apparent for the non-native
region of beta3s and the random heteropolymer.
Note that the power-law scaling of the connectivity
distribution can be considered as a general property
of free-energy landscapes of polypeptides, whereas
a hierarchical organization of the nodes reflects a
pronounced free-energy basin of attraction (like the
native state).

Transition state ensemble

As mentioned above, folding is a complex
process with many degrees of freedom involved
and it is difficult (or even not possible) to define a
single reactlon coordinate to monitor folding
events.”’®® Hence, it is very difficult to isolate
transition state (TS) conformations from equili-
brium sampling. The TS conformations are saddle
points, i.e. local maxima with respect to the reaction
coordinate for folding and local minima with
respect to all other coordinates. For this reason,
we identified the nodes with a high connectivity/
weight ratio k;/2w> 0.3 and low clustering coeffi-
cient value C; as putative TS conformations. The
former criterion guarantees that these nodes are
accessed and exited, most of the time, by a different
route, i.e. they can be directly reached from different
conformations of the network space. The low
clustering coefficient value guarantees that the
neighbors of these conformations are likely to be
disconnected. These two conditions are necessary

0.0
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Figure 5. Correlation between P¢,q and average
neighbor connectivity kn,. Three nodes used as a negative
control (low connectivity/weight ratio and/or high
clustering coefficient but similar fraction of native
contacts) are shown with open circles.

but not sufficient because they do not distinguish
folding TS conformations from saddle points
between unfolded conformations. Since the folding
TS conformations are linked to both nodes in the
native state (having large number of links) and in
the denatured state (small/intermediate number of
links), we speculated that folding TS conformations
should have values of the average neighbor
connectivity k,, within a certain range. For nodes
with high connectivity/weight ratio and low
clustering coefficient, a remarkable correlation of
0.89 was found between the average neighbor
connectivity k,, and Pgyq (Figure 5), which is the
probablhty of a given conformation to fold before
unfoldmg ? A Pto1q value close to 0.5 is expected for
conformations on top of the folding TS barrier™ and
the correlation suggests that network properties can
be used to predict folding TS conformations. These
are shown in Figures 1 and 3A with yellow
diamonds. As discussed above, two main average
folding pathways are observed. The less frequent
one is characterized by a TS ensemble of confor-
mations with the first hairpin in a native form
(residues 1-13) and a bend corresponding to the
second native turn (residues 14 and 15). The
C-terminal residues form a straight structure with
almost no contacts, either native or non-native. The
second average pathway shows a TS with the
second native hairpin formed (residues 7-20) and
a bend corresponding to the first native turn
(residues 5 and 6). Such a symmetrical behavior is
presumably due to the simplicity and symmetry of
the native conformation as well as the symmetry in
the sequence (sequence identity of 67% between the
two hairpins). The folding TS conformations of
beta3s form a heterogeneous ensemble with C*
RMSD within contributing structures between 3 A
and 6A. In contrast to previous molecular
dynamics studies in which progress variables
based on fraction of natlve contacts were used to
describe TS conformations,'”* the network proper-
ties yield a description of the folding TS ensemble
(Figure 1) which does not depend on the choice of
reaction coordinates. Interestingly, the folding TS
conformations of beta3s have about one-half of the
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native contacts formed but this is not a sufficient
criterion (Table S1 in Supplementary Material).
Moreover, there is no correlation between the
fraction of native contacts and the probability of
folding. As a control, Py q values smaller than 0.15
were obtained for five nodes with an average
fraction of native contacts similar to the folding TS
conformations but low connectivity/weight ratio
and/or high clustering coefficient.

Conclusions

Complex network theory was used to analyze the
conformation space of a structured peptide and that
of a random heteropolymer of the same residue
composition. Four main results have emerged. First,
as it was already observed for a variety of networks
as diverse as the World-Wide Web and the protein
interactions in a cell, the conformation space
network of polypeptide chains is a scale-free
network (power-law behavior of the degree distri-
bution). Second, the native basin of the structured
peptide shows a hierarchical organization of con-
formations. This organization is not observed for
the random heteropolymer which lacks a native
state. Third, free energy minima and their connec-
tivity emerge from the network analysis without
requiring projections into arbitrarily chosen reac-
tion coordinates. As a consequence, it is found that
the denatured state ensemble is very heterogeneous
and includes high-entropy, high-enthalpy confor-
mations as well as low-entropy, low-enthalpy traps.
Fourth, the network properties were used to
identify TS conformations and two main average
folding pathways. It was found that the average
neighbor connectivity k,,, correlates with Pgyq, the
probability of folding. Ps.q is computationally very
expensive to evaluate. Hence, it will be important to
generalize this result by analyzing other structured
peptides, which is work in progress in our research
group. In conclusion, the network analysis seems to
be particularly useful to study the conformation
space and folding of structured peptides including
the otherwise elusive TS ensemble.
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