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I. INTRODUCTION

Atomistic molecular dynamics (MD) simulations are widely
used for Boltzmann-weighted (i.e., equilibrium) sampling of the
phase space of biological macromolecules.1 In principle, MD
simulations of length significantly longer than the process of
interest should generate a molecular “movie” at very high spatial
and temporal resolution. In practice, because of themany degrees
of freedom in the (poly)peptide chain and the related complexity
of the free energy surface it is very challenging to sample the
conformational space of proteins and even peptides by standard
MD techniques, which have an inherently “slow” time step of
about 1�5 fs. At low temperatures, MD simulations can get
trapped in the starting basin. At elevated temperatures, on the
other hand, the accessible phase space increases enormously so
that not all possible conformations are visited. A number of
simulation techniques have been introduced to enhance the
sampling of the conformational space.2�8 At the same time,
the availability of hundreds to thousands of processors has been
exploited by intrinsically parallel jobs like distributed com-
puting9,10 and loosely coupled MD simulations.11 Because of
the significant time-scale gap between the actual protein folding
process (microseconds to seconds) and simulation length
(nanoseconds), it is not possible to extract folding kinetics
directly from distributed computing simulations.10,12

Markov chain models have been used to determine transition
probabilities between coarse-grained states. These states (or
more precisely clusters of MD snapshots) usually range in
number between 100 and 1000, and have been derived from
multiple short MD runs13�16 or from long trajectories with
multiple folding and unfolding events.17 One advantage of
Markov state models is that they can be used to combine
(short) independent MD simulations for extracting information

on processes whose time-scale is longer than the one of the
individual MD runs.13,18�20 A potential disadvantage is that the
sampling of phase space by multiple, independent short runs can be
affected by a statistical bias.21 Such bias is easily understood
considering that the starting nodes are selected following a prob-
ability distribution which is different from the Boltzmann-weighted
distribution. Under the assumption that the transition probabilities
between coarse-grained states, which are conditional probabilities of
local transitions, are sampled correctly, the bias can be removed by
calculating the steady state of theMarkov chain. For the steady state
calculation, the Markov chain must be ergodic,22 in other words it
must be irreducible (from any state the system can reach every
other state) and aperiodic (there are no states which show up at a
fixed period of time). Markov chains derived from multiple MD
trajectories are usually not ergodic. The nonergodicity is a
consequence of the sampling by multiple (short) runs, e.g., most
initial and final conformations act as sources and sinks, respec-
tively, which make the Markov chain nonirreducible.

Here we show that an automatic procedure for the identifica-
tion of the largest ergodic component from a nonirreducible
directed network (shown schematically in Figure 1) is able to
remove the statistical bias which is typical of MD sampling by
multiple short trajectories. The procedure used here is based on
a theorem23 that expresses the possibility to subdivide every
directed graph (the terms “network” and “graph” are used as
synonyms) in its irreducible components, the largest of which is
likely to be the most relevant. The method has several advan-
tages: first, it does not require any parameter; second, it translates
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ABSTRACT:Multiple independent molecular dynamics (MD)
simulations are often carried out starting from a single protein
structure or a set of conformations that do not correspond to a
thermodynamic ensemble. Therefore, a significant statistical
bias is usually present in the Markov state model generated by
simply combining the whole MD sampling into a network
whose nodes and links are clusters of snapshots and transitions
between them, respectively. Here, we introduce a depth-first
search algorithm to extract from the whole conformation space network the largest ergodic component, i.e., the subset of nodes of
the network whose transition matrix corresponds to an ergodic Markov chain. For multiple short MD simulations of a globular
protein (as in distributed computing), the steady state, i.e., stationary distribution determined using the largest ergodic component,
yields more accurate free energy profiles and mean first passage times than the original network or the ergodic network obtained by
imposing detailed balance by means of symmetrization of the transition counts.
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the problem of obtaining an irreducible network in the search for
the minimum number of links to be removed to obtain irreduci-
bility; third, several computational implementations already exist.
Herewe use the algorithmpresented byTarjan,23whichmakes use
of a depth-first search in the graph and thus is very efficient.

This paper is structured as follows. The Theory section
presents the principles of Markov state models derived from
MD sampling, the procedure for the extraction of the largest
ergodic component, and an analytical formula of the dependence
of the statistical bias on the number of simulations, their length,
and the fundamental matrix associated with the transition matrix.
In the Examples section, the kinetics obtained by extraction of
the largest ergodic component are compared with the broadly
used imposition of detailed balance by simple symmetrization of
the matrix of transition counts. It is shown that for multiple short
trajectories, the statistical bias cannot be removed by imposing
detailed balance which results in wrong statistics. In contrast, the
largest ergodic component yields free energy profiles and mean
first passage times that better reflect the kinetics than the results
obtained by detailed balance imposition. The Conclusion sum-
marizes the main points of this work.

II. THEORY

A. Markov State Models from Multiple MD Simulations.
We consider the frequent case of m independent molecular
dynamics or Metropolis Monte Carlo runs for which it is
convenient to introduce the abbreviation m-trj instead of the
more generic term trajectory. More precisely, with m-trj we
intend the m symbolic trajectories obtained usually by a cluster-
ing procedure of the whole sampling.24

We assume that the system being studied is ergodic and can be
formalized as a finite homogeneous Markov chain. Thanks to the
ergodic hypothesis, we can use Birkhoff’s theorem25 to extract
from them-trj the transition matrix P associated with theMarkov
chain. If the m-trj is long enough, the transition probabilities will
converge. Here, we assume to obtain such convergence, or at
least to obtain it in a certain subspace of interest of the system
phase space. Indeed such transition probabilities are local, i.e.,
they are conditional probabilities and therefore not affected by an
incomplete sampling of the phase space.
Given anm-trj, we use naïve definitions, namely the maximum

likelihood estimates,21 for the probability distribution pi over the
nodes set {i}, the transition probabilities Pij between nodes, and
the transition rates qij. Let start by defining qij as the number of
one step transitions if j observed in them-trj, normalized by the

total number of transitions. From qij we derive pi = ∑jqij, so that
∑ipi = 1. Finally, the transition probabilities are the conditional
probabilities Pij = qij/pi. Note that, if pi > 0 for every node i, P is by
definition a right stochastic matrix, i.e., a square matrix whose
rows consist each of non-negative real numbers that sum up to 1:
∑jPij = ∑j(qij)/(pi) = 1.
In general, given an m-trj, the Markov chain P obtained with

the above definitions is not ergodic. Because of the finite sampling,
one or more segments of the m-trj act as attractor(s) so that the
directed graph associated with the chain is not irreducible. We
stress that the non irreducibility of the chain could be a solvable
problem which is easily fixed by considering that such attractors
are contained in the statistically less informative part of the
sampling, so that they can be discarded without any significant
loss of statistics. In essence, we are concerned with the statistical
bias of which every m-trj is affected. In other words, the choice of
starting point(s) of the m 1-trj does not reflect the correct
probability distribution over the nodes. To remove such bias, we
need an equilibration procedure, namely we calculate the steady
state π of the Markov chain, the state that satisfies the equation
π = πP.22 Only ergodic chains possess one and only one steady
state, the entries of which are all positive. Thus, we need to retrieve
an ergodic chain from them-trj before calculating the steady state.
B. The Largest Ergodic Component.The problem of how to

obtain an irreducible graph from a nonirreducible one does not
have a straightforward solution, because the problem itself is not
well-defined. In other words, given a directed graph, many
different irreducible graphs can be generated from it. A common
solution, due to its simplicity, is to impose detailed balance by
symmetrizing the count matrix, i.e., defining qij

db = qji
db = (qij þ

qji)/2, which corresponds to including the counts that would
have been obtained by the time-reversed simulations.21,26 The
symmetrization of the count matrix introduces an error which is
larger the larger the difference between the actual sampling and
the equilibrium sampling is (see below). In other words, impos-
ing detailed balance directly to the nonergodic graph renders
impossible the removal of the statistical bias connected to the m-
trj. We suggest to obtain ergodicity from the collected transitions
without modifying their statistical nature, i.e., we advise against the
insertion of spurious transitions as in the symmetrization of the count
matrix. Instead, we suggest to remove the minimum amount of links to
obtain an irreducible directed graph. We prefer to remove instead of
insert links in order to affect the statistics as little as possible.
With the above task in mind, i.e., removing the minimum

amount of links for generating an ergodic graph, we make use of
following graph theory theorem.27 Given a directed graph G =
(V,E), whereV andE are the sets of vertices and edges, it is possible
to define an equivalence relation on V such that two vertices v and
w are equivalent if there is a path from v tow and a path fromw to v.
Let Vi, i:1, ..., n, the n distinct equivalence classes, defining Gi =
(Vi,Ei), where Ei = {(v,w)∈E|v,w∈Vi}, one can prove that
• each Gi is strongly connected (irreducible)
• noGi is a proper subgraph of a strongly connected subgraph
ofG (a proper subgraph ofG is a subgraph which contains at
least one and not all the edges of G)

The subgraphs Gi are called the strongly connected (or
irreducible) components of G. We note that the subdivision in
equivalence classes is unique, so we do not need any parameter to
obtain the strongly connected components. Moreover, the condi-
tion of minimal removal of links is satisfied by the second point,
namely the subgraphs Gi are the largest possible components.

Figure 1. Schematic illustration of the procedure described in this paper.
Left: The largest subset of nodes that yields an ergodic network (green) is
extracted from the whole sampling (red and green). In this way, it is
possible to remove the statistical bias, which is usually introduced by
multiple independent trajectories. Right: The free energy profile of the
largest ergodic component (green) is much closer to the actual profile
(black) than the profile obtained considering the whole sampling (red).
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Figure 2 shows an example of a directed graph with two strongly
connected components.
Hopefully, the largest strongly connected component covers the

most relevant part of the original graph. It will be shown in the
results that the larger is the sampling, the smaller is the number of
links to be removed to obtain the largest strongly connected
component. Assuming the largest strongly connected component
is aperiodic, as is always the case for complex networks describing
free energy surfaces of peptides and proteins,24,28 it is also the largest
ergodic component. Finally, we emphasize that such procedure is
not a community detection algorithm,29�31 it simply solves thewell-
definedmathematical problem regarding the subdivision in strongly
connected components of a generic directed graph.
The theorem enunciated above has been employed in

different computer algorithms. Here, the algorithm published
by Tarjan is used.23 It is based on a depth-first search procedure
in the graph which is very efficient. For the largest network in
the examples mentioned below (network of example A with
3652 nodes and 18948 links) the Tarjan algorithm requires less
than one second on a 3 GHz commodity processor. In general,
it requires O(V,E) space and time, namely the algorithm needs
space bounded by k1V þ k2E þ k3, where k1, k2, and k3 are
constant.
C. The Statistical Bias.To illustrate the origin of the bias, it is

useful to formulate an analytical formula of the deviation from
the stationary distribution. In the following, P is the transition
matrix associated with an ergodic Markov chain C. We remem-
ber that from anym-trj it is possible to generate an ergodic chain
C bymeans of the Tarjan algorithm, which, as mentioned above,
extracts the strongly connected components from the directed
graph drawn following the m-trj. The matrix P we are looking
for will be the one associated with the ergodic chain C
generating the largest irreducible component. In general, the
chain C consists of several trajectories of different length
extracted from the original m-trj, which all together draw an
irreducible directed graph.
Given the chain C, we calculate the transition rates qij, the

probability distribution pi, the transition matrix P and the
steady state π. The latter is the solution of π = πP, and in this
work it is calculated iteratively by means of pn = pn�1P until
convergence is reached. The relevant question is:How does the
difference π� p depend on the sampled m-trj? This question can
be formalized for each node i using the transition rates qij as
follows:

∑
j
qij ¼ ki þ ∑

j
qji

Here the index runs over the nodes. The quantity ki is the

difference between the outgoing and ingoing flow of the node i
and is caused by the finite length of the m 1-trj. Of course the
total sum must be zero:

∑
i
ki ¼ ∑

ij
qij � ∑

ij
qji ¼ 1� 1 ¼ 0

Note that for equilibrated transition rates we expect ki = 0 "i,
i.e., the flow conservation law ∑jqij = ∑jqji. This can be easily seen
by defining qij by means of the steady state π, i.e., qij

eq = πiPij,
so that

∑
j
qeqij ¼ ∑

j
πiPij ¼ πi∑

j
Pij ¼ πi

∑
j
qeqji ¼ ∑

j
πjPji ¼ ½πP�i ¼ πi

In other words, the presence of ki 6¼ 0 requires the determination
of the steady state to have an unbiased statistics.
With the naïve definitions of the probability distribution over

the nodes (p0i = ∑jqij) and the entries of the transition matrix P
(Pij = qij/p0i) derived from the chain C, we are able to prove the
following equality for pm = p0P

m:

lim
mf ¥

pm ¼ p0 � lim
mf ¥ ∑

m

n¼ 0
kPn

Proof. From equation ∑jqij = ki þ ∑jqji, we have

p0i ¼ ki þ ∑
j
p0j Pji ¼ ki þ p1i

or, without the index

p0 ¼ kþ p0P ¼ kþ p1

So, we can write

p1 ¼ p0 � k
p2 ¼ p1P ¼ p0P� kP ¼ p1 � kP ¼ p0 � k� kP
p3 ¼ p2P ¼ p0 � k� kP� kP2

l

pm ¼ p0 � ∑
m � 1

n¼ 0
kPn

taking the limit, given that P is ergodic, we briefly write

π � p¥ ¼ p0 � ∑
¥

n¼ 0
kPn

Summingup, the differencewe are looking for isπ� p0 =�∑n = 0
¥ kPn.

The equation indicates that the series ∑n = 0
¥ kPn converges. To

appreciate this point we rewrite the result in terms of the
fundamental matrix32 associated with the transition matrix P:

Z ¼ Iþ ðP� P¥Þ þ ðP2 � P¥Þ þ 3 3 3 ¼ ðI� Pþ P¥Þ�1

Observing that

lim
nf ¥

½kPn�i ¼ ∑
j
kj½P¥�ji ¼ πi∑

j
kj ¼ 0

we can now rewrite the series in the form

π ¼ p0 � ∑
¥

n¼ 0
kPn ¼ p0 � kZ

Figure 2. Example of a directed graph with two strongly connected
components emphasized by different colors.
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Moreover, we could rewrite the equality π = p0 � kZ sep-
arating the different factors involving the sampledm-trj. Let k~i be
the difference in outgoing and ingoing transitions in the node i,m
the number of 1-trj of which the chain C if formed and s the total
number of transitions observed; then we note that ∑i|k~i| E 2m
and ki = k~i/s. Extracting m we define λi � k~i/m, then we have
∑i|λi|e 2 and the equality becomes π = p0� (m/s)λZ. Thus, the
difference π � p0 depends on distinct factors:
1 The multiplicative term m/s shows that π � p0 increases
with the number m of 1-trj and decreases with the total
length s of them, as expected. Note that s/m is the mean
number of steps per 1-trj.

2 The vector λ� k~/m depends on the initial and final nodes of
the m 1-trj and it is influenced by the choice of starting
nodes. For example, in the exotic case of multiple runs each
of them starting and ending at the same node, λ is the null
vector and there is no bias, whatever m is.

3 The shape of the visited free energy surface, which affects
the fundamental matrix Z.

Some observations are needed. In the case of am-trj consisting
of few long simulations, the ratiom/s is small and, as expected, p0

is a good approximation ofπ. Vice versa, for am-trj of many short
runs, the mean number of steps per simulation is small (m/s big)
and the steady state calculation could be significant. Only for a
choice of starting nodes that exactly follows the probability
distribution at equilibrium π, the term λZwill have entries nearly
equal to zero, so tomake p0 a good approximation ofπ. Summing
up, for multiple trajectory analysis of many short runs, typical of
parallel and distributed computing, that start always from the
same conformation or from different conformations of unknown
distribution, the steady state π offers the correct statistics.
Let us now compare π with the statistics resulting from the

detailed balance imposition. The probability distribution over the
nodes obtained by count symmetrization is stationary because

∑
j
p db
j P db

ji ¼ ∑
j
p db
j

q db
ji

p db
j

¼ ∑
j
q db
ij ¼ p db

i

The stationary probability vector pi
db differs from the stationary

distribution π as follows:

p db
i ¼ ∑

j
ðqij þ qjiÞ=2 ¼ ðp0i þ p1iÞ=2 ¼ p0i � ki=2

¼ πi þ ½kZ�i � ki=2

It is crucial to note here that the difference between pi
db and π

strongly depends on the sampledm-trj. Thus, there are situations
for which imposing detailed balance by simple count symme-
trization is not appropriate, particularly when them-trj consists of
many short runs like in parallel and distributed computing as will
be shown in the next section.

III. EXAMPLES

In this section, we illustrate the usefulness of the automatic
procedure to extract the largest ergodic component, which is a
subset of nodes whose transition matrix corresponds to an
ergodic Markov chain. The protein used is a simplified-sequence
variant of protein G17 which is sampled by implicit solvent33 MD
at 330 K. First, the ∼220000 snapshots saved every 20 ps along
the MD simulations are clustered by CR rmsd and a threshold of
3.5 Å using the leader-algorithm as implemented in
WORDOM.34,35 The clustering yields 3683 nodes, and there
are 27742 links between them. The transition matrix associated
with the 3683 clusters is ergodic as detailed balance condition
was imposed. This transition matrix and associated stationary
distribution are referred to as the “model” in the following. The
cut-based free energy profile (cFEP)36 and conformational space
network24 of the model are shown in Figure 3.

The transitionmatrix of themodel is used to generate them-trj
sampling, i.e., to propagate m (short) trajectories of a random
walker, which emulatem independentMD runs. Every step of the
random walker represents a time interval of 20 ps because of the
saving frequency of the MD simulations from which the network
is extracted. Four examples of m-trj are discussed. They differ in
the choice of the starting node(s), the number of random walker
trajectories m, and/or the length l = s/m of each trajectory (see
Table 1 for details). Using the naïve definitions it is straightfor-
ward to determine [Pdb]ij� qij

db/pi
dbwhich is the transitionmatrix

derived imposing detailed balance by symmetrization of the
count matrix. The transition matrix derived from the chain C
associated with the largest ergodic component is [PC]ij � qij

C/pi
C

where qij
C is the number of one step transitions if j observed in

Figure 3. Free energy surface of the model system used as benchmark.
The sampling was obtained by implicit solvent MD simulations of a
simplified-sequence variant of protein G at 330 K17 for which a CR rmsd
coarse-graining with 3.5 Å cutoff resulted in 3683 clusters, i.e., nodes of
the network (see text). (Top) cFEP of the model. The free energy F is
given in kcal/mol in all cFEPs in this work. (Bottom) The network
representation was generated by the Fruchterman�Reingold force-
directed algorithm.39 The 27742 links between pairs of node represent
MD transitions at 20 ps saving frequency. The coloring reflects the main
basins, red and blue, which have been identified by plotting the cFEP
separately from their representative node. The collection of green nodes
could be furthermore divided in three smaller basins. The white nodes
are unassigned, i.e., at free energy barriers. The black node at the barrier
is the starting node of example D.
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the chainC and pi
C = ∑jqij

C. Therefore, [PC,eq,db]ij� qij
C,eq,db/pi

C,eq,db

is the transition matrix derived imposing detailed balance on the
equilibrated transition rate probabilities qij

C,eq = πiPij
C, where π is

the steady state of the chain C, i.e., π = πPC.
For each example, we calculate the cut-based free energy profile

(cFEP)36 using the most probable node as reference and the mean
first passage time (mfpt) as progress coordinate.37 The analysis
focuses on the differences between the straightforward (but in

most case inappropriate) count symmetrization (Pdb) and the
steady state of the largest ergodic component (PC,eq,db).
A. Distributed Computing. Example A is an m-trj consisting

of m = 10000 very short (l = 10) random walkers, which is the
equivalent of 2 μs of sampling by implicit solvent MD, starting at
nodes selected randomly (Table 1). Note that the 200 ps length
of each walker corresponds to an explicit water MD time scale of
about 2�20 ns (i.e., 10 to 100 longer38) because of the lack of

Figure 4. Network representation of the sampling in each of the four examples A to D. The nodes visited by them-trj are in cyan or magenta if they are
inside or outside the largest ergodic component, respectively. The white nodes were not visited by them-trj and the black node is the starting node except
for example A which used almost all nodes as starting nodes. The details of the four examples are given in Table 1.

Table 1. Examples of m-trj Analysisa

sampling % visited phase spaceb

example m l (μs) starting node total in largest erg. comp. % discarded samplingc

A 10 000 10 2 random 99 (3652) 80 (2791) 18

B 1000 500 10 most pop. 86 (1868) 75 (1664) 1

C 1000 200 4 most pop. 73 (1356) 68 (1283) 0.5

D 1000 200 4 at the barrier 78 (1940) 76 (1817) 0.001
aThe first five entries of each row list the name of the example, the number of random walkersm (i.e., number of emulatedMD runs), the length of each
run l, the total sampling, and the starting conformation(s), respectively. Note that the starting conformation of each of the 10000 runs of example A is
drawn randomly from the 3683 nodes of the model, whereas it is a single node for examples B, C, and D. bThe visited phase space is the sum of the state
probabilities of themodel over the states visited by them-trj. The number of nodes visited is in parentheses. cThe discarded sampling is the percentage of
randomwalker steps that is not included in the largest ergodic component. For examples B, C, andD it is much smaller than the difference of the values in
the two preceding columns because the discarded sampling concerns a part of phase space not sampled enough to reach its correct probability.
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friction in the implicit solvent MD simulations.17 Since the
starting nodes are chosen uniformly and not according to the
distribution of node size, the initial ensemble does not reflect the
Boltzmann distribution, which is often the case in distributed
computing.10,12 A total of 18% of random walker steps (i.e., 18%
of the m-trj sampling) are outside of the largest ergodic compo-
nent identified by the Tarjan algorithm (in less than 1 s). A
comparison of the networks colored according to the individual
free energy basins (Figure 3) and according to the largest ergodic
component (Figure 4A) indicates that most of the discarded
sampling lies outside of the most populated basin and is located
in the region of the free energy surface colored in blue in Figure 3.
This part of sampling concerns the second largest irreducible

component, which could be connected with the largest one by
means of further sampling at the barrier between the red and the
blue basins.
The symmetrization of the count matrix of the whole m-trj

sampling yields a free energy profile very different from the
model and too large mfpt values of the nodes within the most
populated basin (Figure 5A, red curves). Because of the very
short length of the random walker trajectories (1/l� m/s = 0.1)
and the choice of the starting nodes (shape of the λ vector),
steady state calculation is expected to be necessary. Despite the
18% loss of m-trj sampling due to the extraction of the largest
ergodic component, the transition matrices PC with the steady
state and PC,eq,db yield very good approximations of the main

Figure 5. Free energy profiles and mfpt values of examples A, B, C, and D. The top and bottom parts of each of the four panels show the cFEP plotted
using as reaction coordinate the relative partition function ZA/Z (ref 36) and mfpt (ref 37), respectively. Note that to improve resolution the cFEPs
plotted as a function of mfpt include only the range up to 3000 steps, i.e., 60 ns. The vertical arrows above the ZA/Z cFEPs indicate the relative partition
function value corresponding to mfpt =60 ns. The cFEP plotted as a function of ZA/Z illustrates barrier heights and locations as obtained by different
transition matrices, while the cFEP with mfpt as reaction coordinate allows the direct comparison of the mfpt values. As shown in the legend of panel B,
individual cFEPs are colored as follows: Black for the original transitionmatrix Pwith probability distribution pi = ∑jqij and transition rate probabilities qij;
red for the naïve symmetrization of the transition counts, resulting in the transition matrix Pdb with probability distribution pi

db = ∑jqij
db, where qij

db = qji
db =

(qijþ qji)/2; green for the largest ergodic component PC with naïve definitions of pi
C and qij

C; magenta for PC with the steady state π and qij
C,eq; yellow for

PC,eq,db with qij
C,eq,db = (qij

C,eq þ qji
C,eq)/2 and pi

C,eq,db = ∑jqij
C,eq,db. The comparison of Pdb (red) and PC,eq,db (yellow) is useful to analyze the statistical bias.
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barrier on the cFEP and mfpt values. Moreover, their cFEPs are
essentially identical. The position of the barrier on the x-axis
corresponds to the statistical weight of the most populated basin.
The shift of the barrier by about 18% in the cFEPs of PC and PC,eq,db

with respect to the original model is consistent with the result
of the aforementioned network-coloring comparison, i.e., that
the steps of the walkers not included in the largest ergodic
component are mainly located outside of the most populated
basin. Note however that the barrier height is preserved. Both of
these findings are further illustrated by a transformation of the

reaction coordinate (i.e., rescaling of the relative partition function)
in the cFEP plot (Figure 6A).
Since a significant fraction of nodes is lost upon extraction of

the largest ergodic component, it is somewhat surprising that
mfpt values and cFEP profiles up to the first barrier are very
accurate. There are two main reasons for these observations.
First, both mfpt and cFEP are calculated using the transition
probabilities and the equilibrium distribution, which are not
affected by the bias introduced by multiple trajectory sampling.
Second, the relaxation kinetics inside a free energy basin depends
only on the profile of the basin up to the barrier to leave the basin.
B. Influence of Simulation Length. Examples B and C arem-

trj composed of m = 1000 random walkers starting always at the
most populated node of the model. They differ in the length of
each walker trajectory which is l = 500 (resulting in a total of 10
μs sampling) and l = 200 (4 μs sampling) in examples B and C,
respectively. As in example A, PCwith the steady state and PC,eq,db

yield similar cFEPs and mfpt values. Importantly, PC and PC,eq,db

approximate correctly the original model in example B but not in
example C (Figures 5B and 5C), which reflects that the simula-
tion length plays an important role particularly when all runs start
from the same structure. The network illustrations and cFEPs
show that the l = 500 walkers have sufficient time to jump over
themain barrier and visit other basins besides themost populated
one (example B, i.e., Figures 4B and 6B) while the l = 200 walkers
do not leave the main basin (example C, i.e., Figures 4C and 6C).
C. Influence of Starting Structure. Examples C and D are m-

trj composed of m = 1000 random walkers each of l = 200 steps,
which is the equivalent of 4 μs of sampling by implicit solvent
MD. These two examples differ in the starting structure which, as
mentioned above, is the most probable node of the model in
example C (Figure 4C), and a very low-populated node at the top
of the main barrier, i.e., the barrier to escape from the most
probable basin, in example D (Figure 4D).
The stationary distribution of the largest ergodic component

and the associated transitionmatrices PC and PC,eq,db yield amuch
better approximation of the main barrier on the cFEP and mfpt
values than Pdb (Figure 5C,D). Moreover, the mfpt values are
more accurate in example D than C which is consistent with the
location of the starting node. Notably, using the stationary
distribution, the sampling generated by starting at the main
barrier yields the most accurate mfpt values of the four examples
(compare magenta and yellow profiles with black profile in
Figure 5D). In striking contrast, for the nodes within the most
populated basin the simple symmetrization of the count matrix
(Pdb) in example D (Figure 5D) yields mfpt values that are
significantly larger than the model, which is another indication of
the error related to naïvely considering the transitions of the
time-reversed simulations.

IV. CONCLUSIONS

Distributed computing and massively parallel computers have
fostered the sampling of (small) protein conformational space by
multiple, independent MD runs. The individual MD simulations
are usually much shorter, particularly in distributed computing,
than the time-scales associated with relevant conformational
transitions, like protein folding and protein/protein association.
As a consequence, the sampling obtained by independent MD
runs is usually biased because of the short length of each run and/
or the choice of the starting conformation(s).

Figure 6. Stationary distribution on the largest ergodic component
extracted from the m-trj of examples A, B, C, and D, yields the same
cFEP of the main free energy basin as the original model. For a direct
comparison, a rescaling of the ZA/Z reaction coordinate is applied to the
cFEP calculated using the PC,eq,db transitionmatrix. More precisely, given
for the original model pA = ∑ipi for all nodes i in the main basin (whose
range is 0 e ZA/Z < 0.7), and pA0 the same quantity for the other
transition matrices, a coordinate transformation is applied to the x-axis
by means of a rescaling factor C = pA/pA0 for the pi values of the m-trj.
Note that the rescaling is possible because the cFEP is invariant with
respect to any continuous invertible transformation of the reaction
coordinate.40 The colors of the cFEPs are explained in the legend of
Figure 5.
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In the present work, the statistical bias of multipleMD trajectories
is formulated by an analytical expression that describes the depen-
dence on the length of the trajectories, the choice of the starting con-
formation(s), and the underlying free energy surface.More precisely,
an analytical formulation is given for the difference between the
stationary distribution (or steady state) and the probability distribu-
tion obtained by simple symmetrization of the count matrix.

An automatic procedure is introduced for extracting the largest
irreducible component from the whole conformational space
network, or more precisely, the largest subset of nodes of the
network whose associated transition matrix reflects an ergodic
Markov chain. From the latter, the stationary distribution can be
determined and used for calculating mfpt values and cFEP. The
algorithm by Tarjan for the determination of the irreducible
components is very efficient (linear on the number of nodes and
links). Its application to four examples ofMDsampling bymultiple
short trajectories shows that the stationary distribution on the
largest ergodic component of the original network yields more
accurate mfpt values and cFEPs than the naïve symmetrization of
the count matrix. Thus, Tarjan’s algorithm could be combined to
network and cFEP analysis to search for weakly sampled regions of
conformational space between two (or more) strongly connected
components. This information could be very useful for improving
an initial sampling by further MD simulations.

The automatic procedures for extracting the largest ergodic
component and for determining the stationary distribution have
been implemented in WORDOM.35
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