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ABSTRACT: The free energy of the transition state (TS) between two nodes of an ergodic Markov state model (MSM) can be
obtained from the minimum cut, which is the set of edges that has the smallest sum of the flow capacities among all the possible
cuts separating the two nodes. Here, we first show that the free energy of the TS is an ultrametric distance. The ultrametric
property offers a way to simplify the MSM in a small number of states and, as a consequence, meaningful rate constants (free
energy barriers) for the simplified MSM can be defined. We also present a new definition of the cut-based free energy profile
(cbFEP), which is useful to check for the existence of a state for which the equilibration is much faster than the time to escape
from it. From our analysis, a parallelism emerges between the minimum cut (maximum flow), and transition state theory (TST)

or Kramers’ theory.

Bl INTRODUCTION

An N-state kinetic process can be formalized with a system of
N rate equations—namely, the master equations—describing
the system as a random process governed by the exponential
distribution.”> The N? rate constants appearing in the
equations are supposed to be known, and the physics behind
them is described by mainly two theories: transition state
theory (TST)> and Kramers’ theory.* Both of them define the
rate constants from assumptions regarding the dynamics of the
process. Being not the same theory, TST and Kramers’ theory
use different definitions, but it is crucial for the objective of our
work to note that the two theories share some assumptions
and that, in both of them, the definition of rate constant
satisfies certain properties. In particular, we focus our attention
on the meaning of “state” and the formal definition of the rate
constant. TST has its origin in statistical mechanics, and
with “state”, it means a region of configuration space, namely, a
subset of spatial coordinates usually in the neighborhood of an
energy potential minimum. For example, in a two-state process
one state is the native state, the other is the so-called unfolded
state." The former is described as a set of configurations around
a potential minimum, while the latter includes all of the
remaining configurations. In Kramers’ theory, since the original
paper on the diffusion model of chemical reactions,® the model
consists of a classical particle (namely, the reaction coordinate)
trapped in a one-dimensional potential well and subjected to a
frictional force. Kramers asked for the rate of escape of the
particle from the well. Hence, in both these theories, the term
“state” indicates a finite region of the configuration space in the
neighborhood of an energy minimum.

Assuming to divide the system in two states A and B, where
B contains all of the phase space not occupied by A (Figure 1),
in both TST and Kramers’ theory, the definition of the rate
constant k, 5, between the initial state A and the final state B, is
defined as the ratio k43 = Z, 3/Z,, where Z, is the partition
function of the initial state. The quantity Z, 5 depends only
on the boundary dividing the states A and B but not on the
direction; that is, Z, 5 = Zp 4. TST and Kramers’ theory differ
from each other in the physical interpretation of the quantity
Z,p. TST introduces the existence of a transition state (TS)
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between states A and B, and defines Z,p as the partition
function of the TS. Kramers’ theory instead characterizes the
rate k, 5 to escape from state A by the flux of particles that
pass through the bottleneck separating A and B.»> Many
approaches have been developed to calculate the flux;* one
of them involves the calculation of the average time that the
system needs to leave the domain of attraction for the first
time. The key points here are the general properties of Z, 5,
namely, the dependence only on the boundary region and
its independence on the direction, and the physical inter-
pretations of it.

In describing the kinetics of protein folding by means of
ergodic Markov state models (MSMs),*™'? a natural def-
inition of “state” and of "rate constant” emerges, and it is the
objective of the present work to show how these two con-
cepts could be defined from a cut-based free-energy analysis
of the MSM.

To divide the phase space in states, it is most appropriate to
identify the cut that maximizes the free energy of the TS
between two nodes. Such a choice is of wide range applicability,
indeed proving to be useful in protein folding dynamics'® and
in spin models of magnetic domains.'* We show here that the
free energy of the TS defines an ultrametric distance, which
results in an automatic procedure to reduce the MSM, usually
consisting of thousands of nodes, into few states. The proposed
procedure could be seen as a community algorithm optimized
for networks describing the protein folding free-energy
landscape, because it is based on the definition of the free
energy of the TS, i.e, the kinetics of the process. The procedure
results in a reduced MSM whose states are a collection of nodes
belonging to the original MSM. The number of transitions
between the states (of the reduced MSM) are then used to
calculate the free energy of the TS and the activation free
energy between them, similar to a previous approach based on
transitions observed during molecular dynamics."®> The main
goal of the present paper is not to solve problems such as lack
of sampling or time scales overlapping; instead, our purpose is
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Figure 1. Schematic illustration of the main concepts. (Left) Schematic representation of a MSM consisting of eight nodes grouped in three states
emphasized by different colors. The cut (A,B) (labeled by the scissor symbol) separates state A, of probability r,, from the rest, and the cut value
Qu,p is the flow through the cut (A,B). (Right) Graphical representation of the cut-based free energy profile (cbFEP) related to the MSM on the left.
The cut (A,B) separates the profiles at the first peak, where the values G, 5, AG,p, and 7, indicate the free energy of the TS, the activation free

energy, and the mean time to escape from state A, respectively.

to extend the language of the mincut maxflow method applied
to the kinetics of conformational transitions. In particular, we
prove that, in the framework of finite Markov chains, the cut-
based free energy of the TS defines an ultrametric distance on
the set of states of a generic ergodic MSM that does not need
to satisfy the detailed balance condition. Moreover, here, we
present an alternative definition of the cut-based free-energy
profile (cbFEP)'® useful to check for the existence of a
metastable state, being it easily comparable with other analysis
of MSMs, such as mean exit time and mixing time.

Given the minimum cut (A,Bli,j) between nodes i and j, the
cut-based quantity Q, 5 (see below) naturally fulfills both the
mathematical properties and the physical interpretations of the
above-mentioned quantity Z, 5. By definition, Q4 5 is dependent
only on the cut (A,B), and, thus, Q,5 = Qg4 represents both
the flow through the cut and the partition function used to
calculate the free energy of the TS G, p. It is straightforward to
define the rate constant as

Qa,B

kA, B=
A

where 7, is the probability of finding the system in state A
(my = Y ieam;)- We will show that such definition is meaningful only
if the system satisfies restricted conditions, namely, the mean
time to escape from a state must be much longer than the time
needed to equilibrate inside the state, and we present a way to
check the validity of this assumption. Then, in similarity with
the Van’t Hoff—Arrhenius law, the activation free energy, AG, p,
can be defined as

AGA,B =—1In kA,B = GA,B - GA

where G, is the free energy of state A (defined as G, = —In 7,
given in units of kzT).

We observe here that, by means of the cut-based free-energy
definition, two distinct observables relating to states kinetics are
derived: the free energy of the TS between the reference state
and the remaining part of the phase space, and the free energy
of activation in order to escape from the reference state. Note
that the two quantities are different, and they become closer as
the probability 7, to find the system in state A increases toward

unity.
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In the following sections, we present the theory behind the
cut-based analysis. We show that the free energy of the TS
defines an ultrametric distance between nodes, and how this
property motivates the partition of the entire phase space in a
few number of states. We then present the standard procedure
to derive a Markov process in continuous time from the
reduced MSM, obtaining, in this way, the master equation of
the system. The rate constants appearing in the master
equation are then compared with the mean escape time from
the states in the original MSM, giving a strong criterion in order
to establish the degree of approximation involved in the
reduction procedure. This comparison is indeed related to the
assumption of separated time scales for the system to
equilibrate inside a state and to escape from that state; this
assumption is at the base of both TST and Kramers’ theory.
Finally, we guide the reader along the entire cut-based analysis
of a propaedeutic example and we conclude with an application
to a MSM generated by molecular dynamics of the reversible
folding of a structured peptide.

B CUT FREE ENERGY AS METRIC DISTANCE

Assumptions and Definitions. Let P be the transition
matrix defining an ergodic Markov chain'” and G be the
associated directed graph (G = (V,E), where V and E are the
set of nodes and edges, respectively). Given the steady state
of the chain (7 = zP), the rate probability between nodes
iandj is

9 = ;P
Ergodicity implies that the conservation law }7.q; = }’.q; holds
for every node i:

X=X mhj=mY Bj=x

Zj qji = Zl

Any partition of the node set V'in two disjoint subsets A and B
(AUB=V,ANB =2 and AB # @) defines a cut C = (A,B)
on the graph G,"®" the cut-set of which is the subset of edges
Cup = {(ij) € Eli € Ajj € B}. Weighting every edge (ij) € E

ﬂjpji = |:71'P:|i =T
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by the value gy, the cut-value Q,p is defined as the sum of the
weights:

B= ZCAIB 9

In the following, we make use also of expressions as “Q,p is
the flow going from A to B” or “Q,p is the flow through the
cut (A,B)”. The free energy of the TS between sets A and B is
defined as G, 5 =
system, the symmetry property holds, namely, for every cut
(A,B), it is true that Qu3 = Qg4 and so G5 = Gp,. With the
objective of interpreting the argument of the logarithm in the
above definition as a probability, we may say that it is the
probability to observe on the Markov chain P a transition from

- InQAlB.13 As proved below, for an ergodic

a node in A to a node in B at a certain time, without
conditional knowledge about which subset the initial node
belongs to:

Z1€A & Z]EB P - Z;E% qij = QA,B

Given two nodes i and j, we denote with the symbol (4,Bli;) a
generic cut such that i € A and j € B. Q4 p;;; then indicates the
flow through the cut (A,Bli,j). Many such cuts are possible (as

many as the number of bipartitions of V, such that i and j are
not in the same subset) and we indicate with QA pi; the minimum
of the associated cut values:

le,BIi,j = min{Qy pj; i}
The free energy of the TS between two nodes is then defined as

GT B|1] —In QA Bli,j

with the additional convention that G,;Bh-,i = 0. For the sake of
brevity, we choose not to indicate the bipartition in subsets A and
B and simply write G;f =-In QJ An observation here is approp-
riate: no subset of nodes of V represents the TS between nodes i
and j.

Ultrametricity. Here, we show that the free energy of the
TS between any two nodes i and j ( G; ) is an ultrametric
distance on the set of nodes V. In other words, we must show
that G;f satisfies the following three conditions (Vij € V):

(1)

Gfi=0
To prove this property, it suffices that G; FO0ifi#j
(G = 0 is true by definition). This is implied by the
fact that for every cut (A,B) performed on a graph
associated to a Markov chain, it is true that C, 5 # E, and
so Qup # 1.
)

ifandonlyif i=j

The symmetry property is a consequence of the
conservation law Vi € V: Z,-qi,- = Z;‘%‘o and of the fact
that G,} corresponds to the cut with the minimum flow.
First, we show that, for every cut (A,B), it is true that
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Qup = Qpa where Qg is the cut value of (B,A).

Remembering that a cut is a bipartition of V, we have
Yiea 2j 95 = Ziea (zjeA % + 2jes qij)

= Yiea A
z}%A %+ Z'e B

ZieA Zj qji = ZieA (ZjeA qji + zjeB qji)
= 21€A + Zl

JEA ql’ jEB qll
From the conservation law, it follows that Y, Yq;

Yiea Zﬂ,«o which directly implies

= i€EA g.. =
Q4,8 Zj-eB 9 Z;EB =Qpa

because

ZIEA

L= A
jEA ql] Z 16 q]’
Finally, from the above equality, if (A,Blij) is the cut with
the minimum flow from A to B, then the cut (B,Alj,i) has

the minimum flow in the opposite direction.

(3)
T ~Ff
G; < max{Gl.k, ij}

The strong triangle 1nequality is a consequence of the
fact that, in deflmng G,}, we make use of the minimum
cut value, Q ABiij» in the set of all the possible ones. By the
properties of the logarlthm, the triangle inequality
becomes the inequality Q,] > mm{Qlk, le} Given the
cut C = (ABlij) associated with Q} i there are two
mutually exclusive possibilities for the third node k: k € A
or k € B. In the case that k € A, the cut C is also a cut (A,BI
kj) and the associated cut value satisfies at
T= ; =of
Qyj = Qu Bik,j = Min{Qr g} = Q;
That being so, in the case k € A, the triangular inequality is
equivalent to the logical function

1.
QzQf; OR  QjxQy

In order to show that the logical disjunction is true,
it suffices that the arguments are not both false. If
by hypothes1s, they are both false (namely, Q} < Q,q
and Ql] < Q} are both true) then we have a reduc-
tion ad absurdum: Ql} < Qk} negates the inequality Q,}
Qk] already proven. This ensures the strong triangle
inequality stated above in the case k € A. In the case k €
B, the reasoning is entirely similar, and we omit the
proof.

The second and third properties, namely, G = GJr and GJr <
max{le,Gk]}, are the formalizations of the followmg two
observations. First, the free energy of the TS between two
nodes is not dependent on the system direction. However the
system goes from i to j, or from j to i, it must overcome the
same free energy of the TS. Note that such property assumes
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ergodicity but does not assume the detailed balance (even if
detailed balance is expected to be fulfilled in equilibrium
molecular dynamics™). Second, forcing the system to go from i
to j, passing through k, cannot result in a lower free energy of
the TS, regardless of the node k. In other words, the strong
triangle inequality ensures that the only possible triangles are
either isosceles with a small base or equilateral. This property
could be better understood by remembering that, in the
mathematical framework that we are using here, the TS is
always a phase space region that acts like a ring (the cut) dividing
the entire conformational space into two disjointed subsets. It is
straightforward that the TS cannot be a simply connected region,
and the choice to force the system to go from i to j passing
through k cannot avoid crossing the minimum cut between
i and j.

Applications: Disconnectivity Graphs, Reduced Markov
Chains, and Escape Time. Ultrametricity is a relatively
new concept in physics as well as in biology. A detailed review
of its applications® shows how, despite their abstractness,
ultrametric distances are of wide-range usability. Here, we are
interested in the possibility of subdividing the entire network in
subsets of nodes, called states, such that the simplified picture
still depicts the original kinetics quantitatively. In partlcular, for
free-energy projections that preserve the barriers, ° it becomes
apparent that such subdivision is not only possible, but also
is very useful in order to derive a chemical master equation
that is comparable with the experimental analysis.zz’23 Here,
we use a well-known application of the ultrametricity, namely,
the fact that, from any ultrametric set, a dendrogram can be
unambiguously built. There is indeed a one-to-one relationship
between an indexed hierarchy, a dendrogram with positive real
values defined at each divergence, and an ultrametric set.
Dendrograms based on potential energy or free energy
(disconnectivity graphs) have been introduced in the past 15
years to characterize the shape of the multidimensional (free)
energy surface.'>**~%’

Yet, the ultrametric nature of the cut-based free energy of the
TS has not been reported in previous works. In this context, it
is important to note that, different from previous studles,26 28
ergodicity is a fundamental assumption, whereas detailed
balance is not required. Moreover, the definition of an ultra-
metric distance on the set of nodes is a different way to state
the important properties of the minimum cut method, and it is
potentially useful for further theoretical investigations in
Markov theory, as well as in all the applications that use finite
regular Markov chains models.

In order to define the dendrogram, the free energy of the TS
between any pair of nodes must be calculated. This can be done
by means of the isomorphism between the rate probabilities g;
of the Markov chain and the capacities ¢; defined in a flow
network. The task to find the minimum cut is then solved with
standard methods such as the Ford—Fulkerson algorithm,19
in order to find the minimum cut between two nodes, and
the Gomory—Hu algorithm,28 which is useful to deduce all the
V(V = 1)/2 minimum cuts after only V — 1 flow problems have
been computed. Different from what Gomory and Hu assumed,
here, we do not assume detailed balance (c,j = cji) ; nevertheless,
the method still holds, because the symmetry property Q,p =
Qg is true for every cut (A,B) in an ergodic chain. Note also
that the strong triangle inequality, written in the form Q,.] >
mm{Q,k,Qk]}, is a necessary and sufficient condition for a
generic matrix Q' to be realizable by some flow network, as
proven in ref 28. Moreover, the strong triangle inequality is
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easily understood considering its graphical interpretation on the
dendrogram (see, for example, Figure 2). The free energy of the

{1,2,3}~
{1,2},{3}~
{1}.{2}.{3}

Figure 2. Depiction of a degenerate state. The top image shows the
dendrogram resulting from the ultrametric distance matrix G'. Note that
the free energy of the TS between two nodes is the value at the
divergence between them in the hierarchical tree. The strong triangle
inequality—that is, the fact that the free energy of the TS between
nodes i and j cannot decrease imposing the passage through a third
node k—is a consequence of the tree structure. Here, for example, it is
true that G{; < max{G},,G}3} and G, < max{G];,Gi,}. The bottom
image shows a schematic picture of the original Markov chain
subdivided into two states.

TS between two nodes i and j is the value at the divergence
between them in the hierarchical tree. Therefore, the third node
k must be either a descendant of the same divergence, in which
case the free energy of the TS between nodes i and j passing
through k does not change, or it is located outside the subtree
containing nodes i and j, in which case the free energy of the
TS between nodes i (or j) and k is greater than the one
between i and j.

Once the dendrogram is known, a natural clustering pro-
cedure is defined by proceeding from the bottom to the top. In
this way, nodes are merged into states, according to the
hierarchy, and the free energy of the TS between two states
corresponds to the one calculated between a node in one state
and a node in the other, with the choice of these two nodes
being not important.

Once the MSM is clustered in states, a reduced MSM is
defined in the following way. Let x and y be two states (namely,
two disjointed subsets of nodes), the rate probability between
them is defined as q,, = Yc.je,qiy and the transition probability
is then calculated as P,, = q,,/) 4., The procedure presented
here to reduce a Markov chain is not free of issues; in particular,
important questions emerge from the analysis of kinetic
observables. Here, we focus on the following question: Is the
mean escape time from a state in the reduced chain equal to the
one calculated in the original chain? Generally, the answer is
negative; we will determine how to check its validity using
analytical calculations.

B MEAN ESCAPE TIME

From a Markov chain in discrete time, it is possible to derive
the corresponding Markov process in continuous time.””** The
Markov process is described by the master equation

L) = B, (k1) = k)
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where the rate constants k,, are the transition probabilities P,,
of the starting discrete time Markov chain, and the mean time
to escape from a state x is equal to the inverse of the probability
Y#Py = 1 — P, to move from x to another state. A
comparison between the mean escape time from state x of the
reduced chain and the mean escape time from the subset of
nodes denoting the same state x in the original (not reduced)
chain is an interesting criterion in order to establish the quality
of the approximation, where a good approximation requires
similar values. As we will see, such a request is a necessary
condition for a well-known assumption made in TST and
Kramers’ theory, namely, the assumption that a probability
distribution of configurations belonging to a state maintain a
local equilibrium form at all times. In other words, the ratio
between the probabilities associated with two different
configurations belonging to the same state does not change
over time. By looking at the dynamic of the process, such an
assumption is equivalent to ask that the content of a state must
relax to equilibrium much faster than the mean time of leaving
that region.” The role of this assumption is to neglect every
deviation from thermal equilibrium distribution (namely, the
Boltzmann distribution). A similar assumption is at the base of
Kramers’ theory: from the nonlinear dynamics of the model, a
time scale separation emerges for values of the barrier height
much greater than thermal energy kyT. In that case, the random
frictional force is acting as a small perturbation and the particle
will have the time to equilibrate on minima of the potential
well before the accumulated action of the random force will
drive it over the barrier into a neighboring state. If there is no
separation of time scales (that is, when the barrier height is of
the order of kzT), a rate description is not suitable.* Both
assumptions consist of a separation between the time scale for
the system to equilibrate inside a state, and the time scale to
escape from it. The justification of such an assumption is
generally contingent on a good partitioning of the configuration
space in states.>' >*

In this section, we present how to analyze such a separation
of time scales by means of cut-based free energy. As mentioned
above, in Kramers’ theory, one way to calculate the rate kyp
consists of evaluation of the mean time 7, to escape from state A.
The equivalence of mean escape time and Kramers’ rate could
be easily motivated by the following reasoning. For a given
ergodic Markov chain of transition matrix P, a subset
A of its nodes (B =V — A) and a probability vector v de-
fined on nodes belonging to A, the mean time 7, to escape
from A is calculated as described in ref 17. Let P, be the
submatrix of P containing the transition probabilities of
the nodes inside A, and N be the fundamental matrix of the
associated absorbing Markov chain (N = (II — P,)™"); then
the mean time 7,(v) to escape from A, starting from the
distribution v, is

ta(v) = DYica v jea Nijgj

where € is the column vector with all entries equal to 1.
The vector Z(v) (Z,(v) = ZjeAv]-Nj,-) gives the mean number
of times that the process is in state i € A before leaving region
A and is therefore proportional to the steady distribution in

A related to the absorbing process starting with the initial

distribution v. Noting that 7,(v) = Y,c4Zi(v) and
YieajenZi(v)P; = 1,'7 we easily recognize that
2 Zi(v)P;
i€EA
1 jEB
) Xiea Ziv)

where the last equivalence is established noting that the mathe-
matical form of the central term is equivalent to the Kramers’
rate constant, defined as the net flux out of A normalized by the
population inside A.*** A more detailed and general proof of
the equivalence between mean escape time and Kramers’ rate is
presented in ref 3.

The assumption of a separation between the time scales
of equilibration inside state A and escaping from it is for-
malized here assuming that the quantities Z,(v) do not depend
on the starting distribution v and the ratio between any two of
them is equal to the ratio between the steady-state probabilities
7; corresponding to the same nodes, in formula

= kg p(v)

From this assumption, we recognize that the ratio y = 7;/Z;
does not depend on node j and we have

Y X ZP X mP;
i€A i€A
JEB JEB Qa,B
kA,B = = =
yzleAzi ELEA”i A

The escape time 7, could be compared with the value
74/ Qup if the difference

In| —— | — In] —
A TA

does not approach zero, then the assumption Z;/Z; = x;/n; does
not hold; hence, we discard the hypothesis of separated time
scales. Note that the equality —In(Q45/7,) = In 7, is necessary
but not sufficient for the separated time scales condition: there
are cases where the equality is true but the time scales are not
separated, and cases where the equality holds only under a limit
operation (see the Examples section).

B EXAMPLES

A Degenerate State. Here, we present an example of the
arguments introduced in the last section. We define an ergodic
Markov chain with a set of three states; we then show how,
depending on the transition probabilities, it is possible to face a
situation in which the equality —In(Q,/7,) = In 7, holds without
regard for the separated time scales condition, or a situation such
that the above equality holds only under a limit condition (the
same condition with which we have the time scales separation).

Let define the set of states V = {1,2,3} and the transition matrix

1 2 3

1[{1-6-w o @

P=2 8 1-6—1 n
3 0] n l1-w—7n

where 6 > w > 5. The Markov chain described by P is
irreducible and aperiodic; it is easy to see that the unique steady
state is 7 = '/5(1, 1, 1) and that the detailed balance condition
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mP; = mP;; holds. The matrix of rate probabilities Q; = m,P; is
then Q = '/ 3P

Because of the small size of the problem, the minimum cut
matrix Q' is easily calculated by examining the values of all

possible cuts, which results in

i 0 o+n n+ow
Q'=|o+7 0 n+ow
n+w n+ow 0

From Q', the free energy of the TS between any couple of
nodes is defined as G = —In Q" (where, here, —In 0 is defined
as 0). From the dendrogram associated with G’ (see Figure 2,
top), it is possible to see the three possible ways to subdivide
the chain in states according to the kinetics of the system. Here,
we consider the partition scheme {{1,2},{3}} and we define the
cut (A,B), where A = {1,2} and B = {3}. The cut value is Q 45 =
/(@ + n); we then have

Qap _o+n
A 2
The mean escape time 7, from region A is defined as 7, = vNg,
where v is the probability distribution of the starting nodes (here,
we choose v = !/,(1, 1) for nodes in A), ¢ is the column vector
with all entries 1, and N is the fundamental matrix of the absorbing
Markov chain:

N=@1-py)!
_ 1 (5 +7
G+w)(S+n) —562\ 9

7o)
0+ w

The resulting mean escape time is 7, = (46 + 1 + w)/(26n +
20w + 2nw).

Some observations are needed. The probabilities @ and 7
are responsible for the transitions between A and B, so
different values of them cause different scenarios. For
example, in the case @ = 7, we obtain Qup/7y = 7, = @,
regardless of the value of 5, which means that there could be
no separation between the time to equilibrate inside A and the
time to escape from it. As already mentioned, the equality
Qup/my = 7,7 is not sufficient for the condition of separated
time scales.

There are also cases where the above equality holds only
under a limit operation (for example, in the case of # = 0 and
® — 0). In this situation (7 = 0, ® > 0, as depicted in the lower
part of Figure 2), we have

_h{%) _ _ln(ﬂ)
77,'A 2

1 (46 + a))
—In| —| =
Ty 20w
Q
A =1 28| _pf L
A TA
Qa,B
= ln TA
A

The above equalities show that the ratio between Q, /7, and
74 ' goes to 1 for @ — 0; in the same limit, we obtain the
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time scales separation. It is easy to see that, with 6 = 0.5 and
A < 0.05, we have @ < 0.1 and —In Q4 /7, > 2.97 (in units of
kgT). Hence, within this system, which could be considered to
be composed of a degenerate state (made of two states) and
another state, the approximation Q4 /7, =~ 7,7 (the difference
is A) holds for a barrier AG, > 3ksT. Under such conditions
(6 =0.5 and @ = 0.1), the chain could be reduced in the two-
state system described by the master equation

d )
E”A(f) = ;”A(t) — wmp(t)
and is governed by the exponential distribution P, (t) = (1 —
exp(—yt/z,), denoting the probability to see a jump from A to
B in the interval of time (0,t). Note that y has units of inverse of
time and it defines the time scale between the number of steps
in the Markov chain and the corresponding time t for the
Markov process: n = yt.

A Complex MSM. Here, we apply the cut-based analysis on
the MSM describing the reversible folding of the 20-residue
three-stranded antiparallel f-sheet peptide studied in ref 22.
The molecular dynamics sampling has been clustered according
to backbone dihedral angles values, by means of a hierarchical
algorithm®® implemented in the molecular modeling package
CAMPARL?” The resulting network has V = 157 380 nodes
and E = 329011 edges; it has been analyzed with PYKOV
(a Markov chain Python module).*® Because of the size of the
network, instead of calculating the V? mincuts (which is a
problem of complexity O(V*),” we selected the reference state
by means of the cbFEP method'® with ordering of the nodes
according to mean first passage time to the folded state. This
procedure is motivated by the fact that the cbFEP offers an
approximated solution for the problem to collect nodes in
states, it is an approximation because there is no guarantee to find
the minimum cut and so the free energy of the TS calculated by
cbFEP is lower or equal to the free energy of the TS derived from
the minimum cut (Q} 5ij)- At the cut (A,B), located at 7, ~ 0.33
and separating the reference state A from all the rest B (see top of
Figure 3), the TS and the activation free energies have values (in
units of kgT) of Gup ~ 5.69 and AG,p = Gy — G, =~ 4.57,
respectively. Let v be the restriction of 7 on the state A,

& .
v =— VieA
A

then the mean escape time from state A, calculated by
() = Xica viZjEA Nijej

is 74 ~ 104 steps (around 2 ns as the saving frequency was
20 ps), and its logarithm (In 7, =~ 4.64) is similar to the activation
free energy AG,p, since the difference is much smaller than
their absolute values. Moreover the distance 1Z(v)/z, — vl (see
below) is <0.02, where the vector Z(v) = Y}c,v;N; indicates
the mean number of times that the system is in node i before
escaping from A. These results suggest that the system spends
much less time to equilibrate inside state A than the time
needed to escape from it. This observation can be further
validated by means of the mixing time of state A, which is
calculated by the following procedure. The subnetwork related
to state A is extracted from the entire network. Since this
subnetwork is not ergodic we then used its largest strongly
connected component® as the network representing state A,
which covers the 99% of the extracted network and, upon
normalization, defines the MSM P related to state A. We then
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Figure 3. Application to a MSM of peptide folding. (Top) The folded
state of a 20-residue f3-sheet peptide was determined by the cbFEP.>*
The logarithm of the mean time to exit from the native state (blue
dot) is essentially identical to the height of the activation free energy
(red profile), suggesting that the system spends much less time to
equilibrate inside the state than the time needed to escape from it. The
time to mix within the native state (inset on the right) is much smaller
than the mean exit time 7, as expected. (Bottom) Cut (A,B) of a non-
native region of the phase space that has helical secondary structure
content and is stabilized entropically.** The logarithm of the mean
escape time from A does not overlap with the peak of the activation
free energy, which implies that the system escapes before reaching
equilibrium inside A. The mixing time (inset on the right) is not
significantly shorter but rather similar to the mean escape time 7.

calculated the mixing time of P in the following way: given the
steady state 7 of P, we define the initial v as the probability
vector having value 1 at the least-probable node of 7 and zeros
for all the others. We then iterate vector v, v(n) = vP", and for
every n, we calculate the distance from the steady state:

d(n) = lv(n) — | = X, Iv(n); — 7

(d(n) is weakly monotonically decreasing in n: lv(n) — 7l >
lv(n + 1) — 7). As shown in Figure 3 top, d(n) reaches zero in
few steps, and defining the mixing time 7, as the smaller n
such that d(n) < 0.25, we have that the time to mix inside state
A is much smaller than the mean time to exit from it: 7, ~ 2
steps < 7. Note that state A is the native state, but we refer to
ref 22 for a description of the structures according to the
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position of the cut and for a detailed characterization of the free
energy surface of folding of this f-sheet peptide.

In the bottom portion of Figure 3, the same analysis is
performed on a different cut (A,B) concerning the helical
state, a non-native region of the phase space, which is
stabilized mainly by entropy.*” In this case, the logarithm of
the mean escape time from region A is not comparable with
the activation free energy, so we do not expect a mixing time
much smaller than the escape time. The two time scales are
indeed of the same order. It also emerges that the distance
1Z(v)/74 — vl = 0.2, which provides further evidence that the
time to equilibrate within this non-native region is not
negligible.

Cut-Based Free Energy Profile (cbFEP) of the Free
Energy of Activation. The most significative information
derived from the cbFEP analysis is contained in the peak
coordinates of the first barrier. The x-value is the probability
7y of the state A delimited by the barrier, while the y-value
represents either the free energy of the TS (G,jp) or the free
energy of activation (AG,y) to exit from state A. In the pre-
vious example of a complex MSM, we showed how the cbFEP
analysis of the free energy of activation (AG, ), compared to the
calculation of the mean exit time and mixing time of state A, is a
useful tool to check for the existence of a metastable state. In fact,
such comparison is able to evaluate the separation of time scales
for equilibration within and exit from state A.

The cbFEP defined by AG,p is also advantageous, with
respect to the profile of G,p, for another reason. While an
exhaustive sampling of the phase space is required for the
values of 74 and G, to be meaningful, this is not necessary for
AG, p. Indeed, being the free energy of activation the logarithm
of the conditional probability Q4z/7,, the sampling of the
phase space far from the region of interest (i, far from the
state A) is not required (see Figure 4). We assume here that the
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Figure 4. The free energy of activation is not affected by an
incomplete sampling of the phase space. All the nodes located before
7, = 0.5 in the red (or black) profile define a subnetwork with half of
the sampling of the original MSM. The subnetwork contains the native
state and its barrier, but it does not contain the non-native region
considered in the bottom of Figure 3. The quantity Q) is the flow
through the cut (A,B) calculated on the subnetwork (blue and green
profiles). The figure shows that, at the peak of the first and most
relevant barrier (inset on the figure), G, 5 is significantly different from
Gy p whereas AG);p is similar to AG,p. The x-axis range of G); 5 and
AG) 5 is rescaled by a factor of 0.5, to better compare the cbFEPs.
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lack of a complete sampling entails that the calculated
probabilities 7z, and Q, 5 can be approximated by the correct
ones by a rescaling factor a, i.e., we are assuming the equalities
7y = an'y and Q45 = @Qy 5. This assumption is justified by the
fact that the maximum likelihood probability Q, 5, as well as 7,
is defined as the ratio N, /N between the number N,; of
observed transitions through the cut (A,B) and the total
number N of transitions.*” Whereas N is affected by a lack of
sampling of noninteresting phase space regions, because the
exploration of a restricted region needs less sampling, the amount
N, of observed transitions through the cut must remain con-
stant. In formulas, we have that Q5 = N, /N = N, /(N — k),
where N’ indicates the total number of observed transitions for a
sampling of a larger phase space region and k is the difference
N’ — N. The above assumption is now easily recovered, noting
that N, 3/(N' — k) = aQ'y , with @ = N'/(N' — k). This heuristic
reasoning suggests that, while G,5 and 7, are each individually
affected by the lack of sampling, under the above assumption,
AG, 5 is not influenced, because the a factors at the numerator
and denominator of the Q,5/7, quotient cancel out.

B CONCLUSION

Markov state models (MSMs) offer a relatively easy and
powerful mathematical framework within which to define and
analyze the kinetics of a complex system. The cut-based analysis
of a MSM is based on the evaluation of the minimum cut
between two nodes i and j, calculated as the cut (A,B) separat-
ing node i € A from node j € B with minimum flow through it.
The cut-based analysis has, as the main objective, the study of
the free energy surface to derive kinetic observables. We have
shown here that the cut-based free energy of the transition state
(TS) defines an ultrametric distance on the set of nodes of an
ergodic MSM, without the assumption of the detailed balance
condition. This property offers a way to collect nodes in states,
which is a simplification procedure motivated by the kinetics of
the system. The time scale to equilibrate inside a state is
expected to be much smaller than the time to escape from it,
and such difference can be checked by analytical calculations on
the MSM. Kinetic observables like the free energy of the TS,
the activation free energy, and the rate constants are directly
derived from the cut-based analysis. In the same direction, here,
we have proposed a novel definition of the cut-based free
energy profile (cbFEP) that allows one to check for the
separation of time scales for equilibration within and exit from a
state. In the framework of protein dynamics, the final target
of such analysis is to compare simulation results with the
corresponding experimental observables, and, in this sense, it was
our intention to make explicit the existence of a parallelism
between cut-based quantities (TS and activation free energies) and
the concepts at the base of transition state theory (TST) and
Kramers’ theory.

Lastly, it is essential to mention the wide applicability of the
ultrametric distance defined here; given that it is defined on the
set of nodes of an ergodic Markov chain, its application is not
dependent on the physical system under study and could prove
to be useful in fields far from protein folding, e.g., material
sciences and bioinformatics.
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