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a b s t r a c t

We introduce the mixed product of three vectors spanning four molecular locations as a descriptor of
optical isomerism. This descriptor is very efficient as it does not require molecular superposition, and
is very robust in discriminating between a given isomer and its mirror image. In particular, conforma-
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hirality descriptor
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tional isomers that are mirror images of each other, as well as optical isomers have opposite sign of the
descriptor value. For efficient database searches, the optical isomerism descriptor can be used to com-
plement an available ultrafast shape recognition (USR) method based solely on distances, which is not
able to distinguish enantiomers. By an extensive comparison of the USR-based similarity score with an
approach based on Gaussian molecular volume overlap, the accuracy and completeness of the former are
onformational isomerism
onformer clustering

discussed.

. Introduction

Shape complementarity is essential in macromolecular recog-
ition and binding of small molecules to proteins because of the
ensitivity of the van der Waals energy at separations close to the
ptimal distance. There is abundant experimental evidence that
mall molecules with shape similar to known active compounds
re likely to have similar biological activities [1]. Therefore, screen-
ng of databases of three-dimensional (3D) molecular structures
an be performed by comparison of molecular shapes [2–4]. Sev-
ral methods have been developed and applied in the past few
ecades to identify compounds similar to a query molecule [5–10].
hey are useful whenever one or more inhibitors of a target protein
re known particularly when the 3D structure of the protein is not
vailable.

Recently, a method termed Ultrafast Shape Recognition (USR)
as been developed for searching very large databases of molecu-

ar structures [11]. Despite its recent publication, USR has already
een used in several drug design projects [3,12–15] because of

ts simplicity and efficiency. Importantly, the molecules do not
eed to be superposed. Only, the distances between each atom
f the molecule and four molecular locations are calculated for
SR: the molecular centroid (ctd), the atom closest to ctd (cst), the

tom farthest to ctd (fct), and the atom farthest to fct (ftf). The
hape of a molecule is then encoded by 12 descriptors indepen-
ent of the number of atoms. The first descriptor is the mean of
tomic distances from ctd �ctd

1 ≡ (1/N)
∑N

j=1dctd
j

, where dj is the
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distance of the jth atom from ctd, and N is the number of atoms
in the molecule. The second descriptor is the square root of the
second central moment of the distribution of the same atomic dis-

tances �ctd
2 ≡

[
(1/N)

∑N
j=1(dctd

j
− �ctd

1 )
2
]1/2

. The third descriptor is

the cubic root of the third central moment of the same distribution

�ctd
3 ≡

[
(1/N)

∑N
j=1(dctd

j
− �ctd

1 )
3
]1/3

which is a measure of asym-

metry. The remaining nine descriptors are calculated analogously
using cst, fct, and ftf. Since only intramolecular distances are used in
the 12 descriptors, the USR is not able to distinguish mirror images.

Here, we supplement the original USR method [11] with an opti-
cal isomerism descriptor that is able to discriminate a molecule
from its mirror image, and is therefore particularly useful for clus-
tering conformers and searching 3D databases. Our extension of
USR (called USR:OptIso) is first tested on three pairs of conforma-
tions of kinase inhibitors and 15 pairs of different types of isomers.
Then similarity scores based on USR and USR:OptIso for 1.6 × 1010

pairs of conformers of 2.7 millions small molecules are compared
with the ones based on Gaussian molecular volume overlap [16]
calculated by ROCS (OpenEye Scientific Software).

2. Methods

2.1. Optical isomerism descriptor

Considerable efforts have been devoted to symmetry detec-

tion in chemistry and chemoinformatics. In particular, several
methods have been developed to analyze chirality. These
include two-dimensional descriptors [17–19] for the predic-
tion of the major product of stereoselective reactions [20–22],
and three-dimensional descriptors (chiral topological indices) as

dx.doi.org/10.1016/j.jmgm.2010.08.007
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Fig. 1. Optical isomerism descriptor. The four molecular locations of a conformer
of compound 1 are denoted with red circles, and the three vectors a, b, and c with
blue arrows. The optical isomerism descriptor is the cubic root of the volume of
the parallelepiped with blue edges. The sign of the optical isomerism descriptor is
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S

slight changes in the coordinates yield minor changes in both S12
egative for this conformer because c and a × b form an obtuse angle (violet angle
). The mirror image of this conformer has a positive value of the optical isomerism
escriptor, and is shown in Fig. 3. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of the article.)

omplement to distance matrices in quantitative stereochemical
tructure–activity relationship models [23–29].

Here, the following vectors are introduced for the efficient
valuation of the optical isomerism descriptor: a ≡ cst − ctd,
≡ fct − ctd, and c ≡ ftf − ctd, where ctd, cst, fct, and ftf are the
ectors connecting the origin of the coordinates to each of the four
olecular locations (Fig. 1). The optical isomerism descriptor is

efined as the cubic root of the scalar triple product (or mixed prod-
ct) of a, b, and c, i.e., optical isomerism descriptor ≡ [c (a × b)]1/3.
he cubic root is used to obtain a unit of length (Å) as for the other
2 descriptors. The computational cost for evaluating the optical

somerism descriptor is neglectable, since the coordinates of the
our molecular locations have already been calculated for the other
2 descriptors.

During the writing of this manuscript, Armstrong et al. reported
modification of USR that is able to distinguish enantiomers [30].
hey use the cross product of two vectors spanning three of the four
SR molecular locations (ctd, fct, and ftf) to define a fourth location
hich is different from cst. In contrast, the crucial component of

ur descriptor is the triple product of three vectors spanning all of
he four locations. Moreover, Armstrong and collaborators replace
hree of the 12 USR descriptors (those involving cst) whereas we
upplement the USR with the optical isomerism descriptor. Note
hat cst might contain useful information as Ballester et al. reported
hat the first moment of the distribution of distances from cst had
similar value across active molecules (Fig. 3 in Ref. [3]). In gen-

ral, the atomic distances to ctd are different from that to cst as the
eparation between ctd and cst is usually between 0.4 and 2.0 Å for
mall molecules (Supplementary Material Fig. S-1). Since our opti-
al isomerism descriptor contains more geometrical information
han the one of Armstrong et al., it is expected to perform at least
quivalently.

.2. Similarity score

The inverse Manhattan distance is used as similarity score [11]:
pq = 1 length unit

1 length unit + 1
n

∑n
i=1

∣∣Mp
i

− Mq
i

∣∣ ,
s and Modelling 29 (2010) 443–449

where Mp
i

is the ith descriptor of the conformation p. Note that all
the USR descriptors have a unit of length, which is Å here, there-
fore the Spq is dimensionless. The addition of 1 length unit at the
denominator prevents a division by zero in the case of identical 3D
structures, and yields a similarity score of 1 for them. The similar-
ity scores with the optical isomerism descriptor (S13

pq ) and without
(S12

pq ) are compared in the next section.

3. Results and discussion

3.1. Discriminatory power of USR:OptIso and usefulness for
clustering

The ability of the optical isomerism descriptor to discriminate
isomers is presented in Fig. 2. For a molecule and its mirror image
the 12 descriptors of the original USR method are identical because
they only depend on distance distributions. However, their optical
isomerism descriptors are opposite because their four molecular
locations are mirror images as well. In contrast, structural iso-
mers, diastereoisomers, and other types of conformers that are
not mirror image of each other have different distance distribu-
tions. Therefore, the first 12 descriptors are enough to discriminate
them.

A recently published inhibitor of the receptor tyrosine kinase
Ephrin type-B receptor 4 (EphB4) [13] is used to illustrate the
usefulness of the optical isomerism descriptor (Fig. 3). The sim-
ilarity score S13

pq is able to distinguish the two mirror image
conformers of compound 1 because of the opposite sign of their
optical isomerism descriptors. In contrast, the two conformers of
1 have identical 12 descriptors based on the original USR method
[11].

The optical isomerism descriptor is useful for clustering as it
can distinguish between different conformers/isomers that would
be clustered together by the original USR. In our previous study
[13], multiple conformers of 1 were generated by systematic bond-
rotation and optimized to their nearest local minima using density
functional theory. Two local minima were then considered identi-
cal if their similarity score Spq was higher than 0.999. Interestingly,
the opposite sign of the optical isomerism descriptor contributes
significantly to the identification of mirror images (or pairs of con-
formers very close to mirror images), in particular when S12

pq is
close to 1 (Fig. 4). Furthermore, the USR:OptIso was tested on two
pairs of isomers of recently published kinase inhibitors (2 and 3
in Fig. 5) [31,32]. The first 12 descriptors of USR have identical
values, while the optical isomerism descriptor reduces the simi-
larity score from 1 to 0.705 for compound 2 and from 1 to 0.650 for
compound 3.

The optical isomerism descriptor can be used for searching
(multi-)conformational libraries. As an example, using the similar-
ity score S13

pq yields only the conformer similar to the query whereas
the conformations that are similar to its mirror image might be
retrieved erroneously if one neglects the optical isomerism descrip-
tor. This is a clear advantage of USR:OptIso with respect to the
original USR.

Finally, it is necessary to verify that similar conformers of a
given molecule yield very similar values of S12

pq and S13
pq . A set of

100 similar structures of the protein kinase inhibitor PP2 [33]
was used for assessing the robustness upon minor structural
change of the original USR and USR:OptIso. A scatter plot is pre-
sented in Supplementary Mater Fig. S-2. This test indicates that
pq

and S13
pq when they are close to 1. Note that the high similarity

range (i.e., values close to 1) is the most relevant case for vir-
tual screening as only a small fraction of hits can be tested in
practice.
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Fig. 2. Application of the optical isomerism descriptors to isomers. All pairs of isomers can be distinguished by the USR:OptIso (13 descriptors) because the optical isomerism
descriptors (OID1 and OID2) of mirror image isomers have opposite signs. The scatter plots show the pairwise USR comparisons of these 30 compounds (top right, full data
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et; bottom right, zoom-in on values close to 1). The original USR (S12
pq ) and USR:Opt

he five pairs of isomers that can be distinguished by both S12
pq and S13

pq are denoted
he ROCS shape Tanimoto [16].

.2. Potential limitations of the optical isomerism descriptor

The optical isomerism descriptor is the cubic root of the (signed)
olume of the parallelepiped defined by three vectors connecting
our molecular locations. It is therefore equal to zero whenever the
our molecular locations are coplanar. To estimate the frequency
f the coplanarity of these four locations, we calculated the opti-
al isomerism descriptor of 100,812,356 poses of about 2.7 million
olecules (downloaded from the 2007 version of the ZINC library

34]) generated by high-throughput docking into EphB4 [35]. Strik-
ngly, only 28 poses (of 24 molecules) have an optical isomerism
escriptor smaller than 0.01 in absolute value, which indicates that
he optical isomerism descriptor is able in the vast majority of cases
o clearly discriminate a given isomer from its mirror image. Some
f these 28 poses are (close to) coplanar, while in others of them,
he majority of the atomic nuclei are in a plane, and the nuclei out

f the plane happen to be excluded (they are neither closest nor
arthest to a centroid) from the four centroids. Note that a value of
he optical isomerism descriptor different from zero does not nec-
ssarily imply that a molecule is chiral. For this reason, we prefer to
se the term “optical isomerism” rather than “chirality” descriptor.
3
q ) methods assign close similarities except for 10 pairs (blue diamonds) out of 435.
red diamonds. The dashed line represents S12

pq = S13
pq . The last column of the table is

3.3. Comparison between similarity scores calculated by USR and
ROCS

It is interesting to compare the USR-based similarity scores
with a metric based on superimposed volume. The correla-
tion coefficient between the similarity score based on Gaussian
molecular shape overlap (ROCS shape Tanimoto [16]) and either
S12

pq or S13
pq is 0.64 for the 435 possible pairs of the 30 com-

pounds in Fig. 2. This relatively low correlation is due to the fact
that the similarity score evaluations are based on two different
procedures. In the former, the similarity is calculated by volume-
overlap percentage after structural superposition, whereas in USR
which does not require overlap, the similarity is evaluated using
distributions of nuclei distances from the molecular centroids.
Moreover, neither the iterative maximizing of the overlapped
molecular volume in ROCS nor the maximum/minimum function

for determining centroids in USR is continuous with respect to
the Cartesian coordinates of the atomic nuclei, which are used as
input.

For an in-depth comparison of similarity scores calculated by
USR or USR:OptIso and ROCS shape Tanimoto the aforementioned
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Fig. 3. Two mirror images of the tyrosine kinase inhibitor 1 [13] generated by systema
molecular locations are connected with black lines on the 3D structures which are shown w
power of the optical isomerism descriptor whose usage results in a low similarity score S1

p

original USR method (S12
pq = 1.000). (For interpretation of the references to color in this fig

Fig. 4. Scatter plot of the similarity scores with the optical isomerism descriptor
(S13

pq ) and without (S12
pq ) for the 10,585 pairs of 146 local minima [13] of 1. The color

of each data point illustrates the sign of the optical isomerism descriptor (same
and opposite signs are in gray and black, respectively). The dashed line represents
S12

pq = S13
pq .
tic bond-rotation are distinguished by the optical isomerism descriptor. The four
ith sticks and transparent CPK models. This example shows the high discriminating

3
q = 0.711 for the two mirror images of 1 whereas they are not distinguished by the
ure legend, the reader is referred to the web version of the article.)

100 million poses of about 2.7 million molecules from ZINC were
used to generate 1.6 × 1010 pairs of conformations. Notably, these
two methods have very different algorithms to evaluate molecular
shape similarity. Cartesian coordinates are the only input required
to calculate USR scores, whereas ROCS also needs atomic radii to
evaluate the Gaussian molecular volume. To compare the confor-
mation pairs filtered by different similarity cutoffs, the “accuracy”
was defined as the number of pairs for which both scores exceeded
the cutoff divided by the pairs for which only the USR similarity
score exceeded the cutoff (i.e., C/(A + C) in Fig. 6). In the same way,
the “completeness” was defined as the ratio of the number of pairs
for which both scores exceeded the cutoff to the pairs for which
only ROCS shape Tanimotos exceeded the cutoff (i.e., C/(B + C) in
Fig. 6).

Both accuracy and completeness increase monotonously with
the similarity cutoff (Fig. 6). The accuracy of USR:OptIso has
improved compared with the original USR, because the mirror
images of the query conformation have been eliminated by the
opposite optical isomerism descriptors. For instance, 91.25% of the
conformation pairs that have USR:OptIso scores ≥0.968 also have
ROCS shape Tanimotos ≥0.968, whereas the percentage decreases

to 57.17% for the original USR. If the similarity score cutoff is set
to 0.98, the accuracy of the USR:OptIso increases to 99.02% com-
pared to 86.30% for the original one. Panel (a) of Fig. 7 shows “the
most inaccurate” example whose USR score is higher than the ROCS
shape Tanimoto.
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Fig. 5. Discriminatory power of the optical isomerism descriptor. (a) The conformer of the protein kinase C inhibitor 2 observed in the X-ray structure [31] is shown in the
top panel, while its mirror image is shown in the bottom panel. The similarity score decreases from 1 to 0.705 by taking into account the optical isomerism descriptor. (b)
The active conformer of the p38 MAP kinase inhibitor 3, shown in the top panel, is >100-fold more potent than its atropisomer shown in the bottom panel [32]. The similarity
score decreases from 1 to 0.650 by taking into account the optical isomerism descriptor. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)
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Fig. 6. Accuracy and completeness of USR similarity score in reproducing ROCS shape Tanimoto. In the left panel, the red and the green squares are the sets of conformation
pairs for which USR similarity scores and ROCS shape Tanimoto satisfy a particular cutoff, respectively. Their overlap (yellow part) represents the conformation pairs for
which both similarity scores satisfy the cutoff. In the right panel, the cutoff varies from 0.9 to 1.0, which covers the range interesting for virtual screening applications. The
solid and dashed lines represent accuracy and completeness, respectively, while the red and black color denote the USR and USR:OptIso results, respectively.

Fig. 7. Examples of large discrepancies between USR and ROCS shape Tanimoto. (a) High USR similarity score but low ROCS shape Tanimoto. The overlaid conformations were
optimized by ROCS. The USR and USR:OptIso similarity scores are 0.9807 and 0.9810. The ROCS shape Tanimoto is 0.676. This is the only case out of 1.6 × 1010 conformation
p (b) Lo
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airs whose USR is larger than 0.98 and ROCS shape Tanimoto smaller than 0.7.
imilarity scores are 0.6988 and 0.6981. The ROCS shape Tanimoto is 0.999. These
reen conformation changes the location of ftf from the phenyl hydrogen (of the cy
n this figure legend, the reader is referred to the web version of the article.)

The completeness of USR methods is low. One of the main
easons is that USR overestimates the difference of conformation
airs that are different at the extremity of the molecule where fct
nd/or ftf are defined. Fig. 7(b) shows an example of a conformation
air whose ROCS shape Tanimoto is higher than the USR similar-

ty score. In this example, USR overestimates the conformational
ifference because of a change of the ftf location. The similarity

alculated by USR:OptIso is often lower than the one calculated by
SR (Fig. 4) due to the influence of the optical isomerism descrip-

or. Therefore, USR:OptIso has lower completeness than USR. This
ifference in completeness becomes smaller when the similarity
utoff approaches 1. The low completeness is not surprising as ROCS
w USR similarity score but high ROCS shape Tanimoto. The USR and USR:OptIso
olecules are different in only one substituent. The additional methyl group in the
nformation) to the methyl hydrogen. (For interpretation of the references to color

shape Tanimoto distinguishes atomic elements by different van
der Waals radii whereas both USR and USR:OptIso treat all atoms
equally. Moreover, the optimal volume overlap has to be calculated
in ROCS shape Tanimoto for every pair of conformations while the
USR methods are significantly more efficient (more than 5000 times
faster [11]) as they use only interatomic distances.
4. Conclusions

The optical isomerism descriptor (defined as the mixed prod-
uct of the three vectors from the molecular centroid to the three
molecular locations cst, fct, ftf) is an efficient and robust tool for
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hape comparison. It can be used as a supplement of the original
2 USR descriptors, which are based solely on distance distribu-
ions, while the optical isomerism descriptor is able to distinguish

irror images. It is therefore helpful for analyzing molecules with
tereogenic centers, atropisomerism, and in the clustering of con-
ormers generated by systematic bond-rotation. Moreover, it can
e used for the efficient search of molecular conformations that
re superposable on the query structure. Finally, a comparison of
he USR similarity score with the ROCS shape Tanimoto shows that
oth accuracy and completeness increase monotonously with the
imilarity score cutoff. The accuracy of the USR:OptIso similarity
core is always higher than the one based on the original USR, and
he completeness of USR:OptIso is close to the one of USR in high
imilarity ranges, which are relevant for virtual screening.
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