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Abstract: We propose an analytical approach to calculate the effective dielectric function of proteins in aqueous
solution. The screening effect if quantified by a measure of enclosure which is based on the distribution of solute atomic
volumes around a pair of charges in a macromolecule. For protein conformations that vary significantly in size and
shape, a comparison with finite difference Poisson calculations shows that pair interaction energies, their sums and
solvation energies are well reproduced. The approach rivals the speed of simple distance dependent dielectric functions
and the accuracy of the generalized Born model.
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Introduction

Incorporating solvent effects in molecular dynamics (MD) and
Monte Carlo simulations is of key importance to quantitatively
understand chemical and physical properties of biomolecular
processes. Accurate electrostatic energies of proteins in an
aqueous environment are one indispensable component to dis-
criminate between native and non-native conformations. An
exact evaluation of electrostatic energies considers the interac-
tions among all possible solute-solute, solute-solvent, and sol-
vent-solvent pairs of charges. However, this is computationally
expensive for macromolecules. Continuum dielectric approxi-
mations offer a more tractable approach.1–5 The essential con-
cept in continuum models is to represent the solvent by a high
dielectric medium, which eliminates the solvent degrees of
freedom, and to describe the macromolecule as a region with a
low dielectric constant and a spatial charge distribution. The
Poisson equation provides an exact description of such a sys-
tem. The increase in computation speed for a finite difference
solution of the Poisson equation,6 –9 with respect to an explicit
treatment of the solvent, is remarkable, but still not enough for
effective utilization in computer simulations of macromole-
cules. The generalized Born (GB) model was introduced to
facilitate an efficient evaluation of continuum electrostatic en-
ergies.10 It provides accurate energetics and the most efficient
implementations are between five to ten times slower than in
vacuo simulations.11–13 The essential element of the GB ap-
proach is the calculation of an effective Born radius for each

atom in the system, which is a measure of how deeply the atom
is buried inside the protein. This information is combined in a
heuristic way to obtain a correction to the Coulomb law for each
atom pair.10 For the integration of energy density, necessary to
obtain the effective Born radii, both numerical10,11,13 and ana-
lytical13–16 implementations exist. The former are more accu-
rate but slower than the latter.13 Moreover, analytical deriva-
tives that are required for MD simulations are not given by
numerical implementations.

For efficiency reasons empirical dielectric screening functions
are the most common choice in MD simulations with implicit
solvent. One kind of solvation model is based on the use of a
dielectric function that depends linearly on the distance r between
two charges [�(r) � �r]17,18 or has a sigmoidal shape.19–22

Although very fast, these options suffer from their inability to
discriminate between buried and solvent exposed regions of a
macromolecule and are therefore rather inaccurate. Recently, a
distance- and exposure-dependent dielectric function was pro-
posed.23

The aim of this article is to give an analytical approximation of
the effective dielectric screening function that rivals the speed of
�(r) � �r and the accuracy of the GB model. A measure of
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enclosure that focuses directly on atom pairs and their neighbor-
hoods is introduced. It provides an approximate description of
where the atom pair is located with respect to the bulk of the
macromolecule and the solvent. A fit to effective dielectric con-
stants derived from finite difference Poisson (fdP) energies for a
set of several protein structures supplies analytical functions with
continuous derivatives. The question of transferability and predic-
tive power of the model presented here, henceforth called the
analytical electrostatic interaction (AEI) model, is addressed by
dividing the set of protein structures into several training and test
sets. Various comparisons with electrostatic energies calculated by
fdP, the GB approach,13 and the sigmoidal distance dependent
dielectric (SGM) model20 are given. Finally, the physical rele-
vance of the measure of enclosure is analyzed by comparing AEI
with fdP solvation energies.

Methods

AEI Model

Theory

Consider a macromolecule in a fixed configuration immersed in a
polar solvent with zero ionic strength. The Poisson equation

���� x����� x��� � �4���x�� (1)

defines the electrostatic potential � given the dielectric function �
and the charge density �. In the continuum approximation used in
all following calculations �( x�) � �m for the region of the mac-
romolecule and �( x�) � �s for the region of the solvent. The
effective dielectric constant �ij

fdP,eff for each pair of atoms i and j
is defined such that if substituted into the Coulomb law the same
electrostatic interaction energy results as when solving the Poisson
equation:
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where �i
fdP is the electrostatic potential of a unit charge at the

position of atom i; qi and qj denote the charges of atoms i and j,
respectively; x� j represents the position of atom j, and rij the
distance between atoms i and j. Note that qiqj�i

fdP( x� j) is the
electrostatic interaction energy of the (i, j) pair in the presence of
solvent.

For an accurate approximation of �ij
fdP,eff it is necessary to

discriminate between buried and solvent exposed atoms in the
macromolecule. In the GB approach10 the effective dielectric
constant �ij

GB,eff is defined by
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where Ri and Rj denote the effective Born radii of atoms i and j,
respectively, uij

GB � �RiRj, and the function f is defined by
f( x) � 1/�m � (1/�m � 1/�s)/�1 	 x2e�1/4x2. The effective
Born radius of an atom in the system is a measure of its enclosure.
Consequently, the quantity uij

GB could be interpreted as a measure
of enclosure of the (i, j) atom pair: the larger uij

GB is the more
buried the (i, j) pair is. Because the calculation of the effective
Born radii is the time consuming part in the GB approach and
because this article is mainly concerned with interaction energies,
we seek an alternative way to quantify the degree of enclosure of
an atom pair in the macromolecule. We introduce a new and
computationally efficient measure of enclosure uij

AEI and approxi-
mate �ij

fdP,eff in the same spirit as in the GB model by a function of
uij

AEI/rij, that is, 1/�ij
fdP,eff � 1/�ij

AEI,eff � g(uij
AEI/rij).

The present approach to calculate a measure of enclosure uij
AEI

focuses on a finite region 
ij of space. This region is chosen
around atoms i and j, and is large enough to neglect effects on
�ij

fdP,eff due to conformational changes outside 
ij. The exact
shape of this region is not important for the following arguments.
One could, for instance, imagine a cylinder with an axis along the
line joining atoms i and j or a sphere or an ellipsoid with its center
somewhere between the two atoms. If only atoms i and j of the
macromolecule were present within 
ij, solving the Poisson equa-
tion would result in �ij

fdP,eff � �s and uij
AEI is required to be small.

As more and more atoms are gradually added, �ij
fdP,eff decreases

and uij
AEI increases in a complex way depending on where the

additional atoms are placed. When all the solvent has finally been
flushed out from 
ij, solving the Poisson equation would result in
�ij

fdP,eff � �m and uij
AEI reaches its maximum value. Intuitively, one

expects that atoms located near or between charges i and j increase
uij

AEI more than atoms located far from the (i, j) pair because the
closer an atom is placed to atoms i and j, the more it influences the
electric field at their positions.24,25 Furthermore, adding a large
atom is expected to increase uij

AEI more than adding a small one
because more solvent is displaced.

The above arguments suggest quantification of the degree of
enclosure of the (i, j) atom pair by a function that depends on the
sum of the van der Waals volumes within 
ij, which are weighted
according to their positions with respect to atoms i and j. In the GB
approach the measure of enclosure uij

GB is the square root of the
product of the effective Born radii of atoms i and j. In the AEI
model uij

AEI is the square of a sum of weighted van der Waals
volumes located around the atom pair. While there are many
methods of calculating a weighted sum, the necessity for low
computational costs eliminates most of them. For instance, it is not
feasible to construct a cylinder around each atom pair and calculate
a weighted sum within such a cylinder. We will only use quantities
already available in the course of an MD simulation.

Two spheres of radius rsphere with centers at the positions of
atoms i and j define 
ij. Let A denote the set of all atoms with
their centers within the sphere around atom i. Note that atom i
belongs to A. Let B denote the corresponding set of atoms for the
sphere around atom j. Let 	k be the van der Waals volume of any
atom k and N the total number of atoms of the macromolecule.
Then uij

AEI is defined by the square of a sum of weighted van der
Waals volumes of the atoms in A and B (see Fig. 1):

Dielectric Function of a Macromolecule in Aqueous Solution 1937



uij
AEI :� ��

k�1

N

	k�ik � �
k�1

N

	k�jk�2

(5)

� � �
k�A
B

	k�ik � �
k�B
A

	k�jk � �
k�A�B

	k��ik � �jk��2

(6)

where the weighting function �ik is defined by

�ik :� ��1 � � rik

rsphere
�2�2

rik � rsphere

0 rik � rsphere

(7)

The first two sums in eq. (6) include all atoms in A and B that are
not in the intersection of A and B. The volumes of these atoms are
weighted with respect to the position of either atom i or atom j.
The third sum in eq. (6) includes all atoms in the intersection of A
and B. The volumes of these atoms are weighted with respect to
the positions of both atoms i and j. The weighting function �ik

assures that the further away an atom k is placed from atom i, the
lower its weight and the less it contributes to the sum. Further-
more, the existence of continuous derivatives (required for MD
simulations) is guaranteed. Note that �ik is the shifting function
that is commonly used in MD simulations to have zero Coulomb
interaction energy at the cutoff.26 Only if rij � 2rsphere do the
spheres around atoms i and j overlap. If rij � 2rsphere, each atom
is only weighted with respect to the position of either atom i or

atom j, but in this case the distance rij is large, thus the interaction
energy is small and a more crude approximation justified. Follow-
ing the arguments mentioned previously

1

�ij
fdP,eff � g�uij

AEI

rij
� (8)

and the function g has to be chosen so as to approximate 1/�ij
fdP,eff

as accurately as possible. The calculation of the measure of en-
closure uij

AEI [see eqs. (5) and (7)] can be performed very effi-
ciently. Building a list of atoms within a sphere of radius rsphere

around each atom in the system is intrinsic to MD simulations. The
same is true of the shifting function and its derivative. Because the
derivation given in this section is heuristic, the approach is ulti-
mately only justified if the results are satisfactory.

Determination of the Function g

For a training set of structures the function g in eq. (8) was
determined by fitting it to the inverse of effective dielectric con-
stants derived from fdP energies [see eq. (2)]. The performance
was assessed by comparing interaction energies calculated by the
AEI model and by fdP for the conformations in a test set. Of
particular interest was whether or not good performance of both
folded and unfolded states for peptides and larger proteins could be
achieved.

An initial set of 29 proteins (23 single and six multichain
proteins) of very different sizes and shapes was used. The struc-

Figure 1. Schematic illustration for the calculation of the measure of enclosure uij
AEI in the case rsphere

� rij � 2rsphere. The small circles describe protein atoms. The two large circles represent the spheres that
define the neighborhood of atoms i and j, which are taken into account to evaluate uij

AEI. Atoms within
the large spheres around atoms i and j constitute sets A and B, respectively. The shaded circles represent
the atoms in the intersection of A and B. They are weighted with respect to the positions of both atoms
i and j. The atoms described by the small empty circles are only weighted with respect to either atom i
or atom j.
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tures ranged in size from 11 (1cb3) to 347 (3pte) amino acids. The
set included almost spherical geometries with no microcavities, as
well as structures with internal cavities. 5hvp, for instance, is the
HIV-1 aspartic proteinase in a complex with a peptidic ligand that
was removed from the active site to obtain an internal cavity. To
further diversify the set of structures with many different kinds of
irregular shapes (cavities, open loops, etc.), the single chain pro-
teins were subjected to high temperature unfolding simulations at
450 K for 20 ns with an implicit solvation model.27 From each
trajectory an unfolded conformation was selected and added to the
initial set of structures. The average increase in the radius of
gyration of the chosen conformations was 32% and their average
C�-RMSD was 12.8 Å. The final set consisted of 52 conforma-
tions. All atoms (a total of 47,979 atoms) were assigned unit
charges, and all pair interaction energies for every conformation in
the set of the 52 conformations (a total of 39,041,961 pairs) were
calculated by numerical (finite difference) solution of the Poisson
equation.

The set of 52 conformations was divided in seven different
ways into a training and a test set in order to perform cross
correlations (Table 1). While cases (a), (b), and (c) addressed the
convergence of the parameterization in general, cases (d) and (e)
investigated how well the parameters extrapolate to different
shapes, and cases (f) and (g) investigated how well the parameters
extrapolate to different sizes. Note that apart from case (a), the
training and test sets are disjointed.

Given a specific training set, g(uij
AEI/rij) was fitted to 1/�ij

fdP,eff

rather than a function g̃(uij
AEI/rij) fitted to �ij

fdP,eff in order to obtain
accurate values for small effective dielectric constants (only these
can result in high energies). Three different cases were distin-
guished: 1-2 pairs, 1-3 pairs, and all other pairs, that is

1

�ij
fdP,eff � gk�uij

AEI

rij
� (9)

where k � 1 for 1-2 pairs, k � 2 for 1-3 pairs, and k � 3 for all
remaining pairs. (A 1-2 pair consists of two covalently bonded
atoms and a 1-3 pair of two atoms covalently bonded to a common
atom.) For each of the three cases the range of the variable uij

AEI/rij

was divided into 100 bins and the average of all 1/�ij
fdP,eff values

within a given bin was calculated. The functions gk were obtained
by fitting analytical functions of the form of f in eq. (4) to the
average curves (see Appendix). Note that the functions gk have
continuous derivatives.

The measure of enclosure uij
AEI, defined by eqs. (5) and (7), and

the analytical functions gk given in the Appendix, are the main
results of this article and constitute the AEI model. They were used
to calculate electrostatic interaction energies Eij for solute charges
immersed in solvent by the formula

Eij � 332
qiqj

rij
gk�uij

AEI

rij
� (10)

where the factor 332 was introduced to obtain values in kcal/mol.
Note that only g3 is relevant for MD simulations because the
interaction energies of 1-2 and 1-3 pairs are accounted for in the
bonding terms of the force fields. Results are also presented for 1-2
and 1-3 pairs to show that the approach is valid in general. The
calculation of solvation energies within the framework of the AEI
model is outlined in the section Solvation Energies.

Finite Difference Poisson

The numerical (finite difference) solution of the Poisson equation
was calculated with the PBEQ module28 in CHARMM.26 A grid
spacing of 0.3 Å was used. (Some calculations with a grid spacing
of 0.2 Å were also performed. Relative errors of interaction ener-
gies for a grid spacing of 0.3 Å with respect to a grid spacing of
0.2 Å are on average only about 0.55%.) The dielectric disconti-
nuity surface was defined by the molecular surface. This is the
surface spanned by the surface of a solvent probe sphere of radius
1.4 Å rolled over the van der Waals envelope of the atoms. The
molecular volume was treated as a dielectric medium with a low
dielectric constant �m � 1. Together with the spatial charge
distribution of the macromolecule it represents the solute. The
remaining space was treated as a dielectric medium with a high
dielectric constant �s � 78.5 and represents the solvent. Solvation
energies were calculated by subtracting the vacuo self-energy

Table 1. Definitions of the Seven Test Cases that Are Used to Perform Cross Correlations.

Test case

Training set Test set

Type of structures Number Type of structures Number

a All 52 All 52
b Randomly selected 26 The complementary set 26
c Test set (b) 26 Training set (b) 26
d Native 29 Unfolded 23
e Unfolded 23 Native 29
f Less than 70 amino acids 27 More than 70 amino acids 25
g More than 70 amino acids 25 Less than 70 amino acids 27

A test case consists of a training and a test set. For each test case the parameters of the AEI model are derived from the
training set and used to calculate interaction energies for the structures in the test set. Apart from test case (a), the
training and test sets are disjointed.
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(�m � 1, �s � 1) from the self-energy in solution (�m � 1, �s �
78.5). Note that using �m � 1 (instead of �m � 2 or �m � 4, for
instance) is the most stringent test for the accuracy of the AEI
model. For single-point energy calculations (e.g., for ranking in
ligand binding), �m 
 1 would be more appropriate because it
accounts for thermal fluctuations. As the AEI model is primarily
aimed to be used in MD simulations, the more stringent test with
�m � 1 was chosen for the present validation.

GB

The GB calculations were performed with the analytical imple-
mentation of the GBMV module13 in CHARMM. The dielectric
discontinuity surface and the dielectric constants were defined as
in the fdP calculations. Note that the analytical GBMV reproduces
the Poisson-derived Born radii with an accuracy of about 2–4%
and with a correlation of about 0.95.13 In previous analytical
implementations of the GB model there is cancellation of errors
because the Coulomb approximation tends to overestimate the
effective Born radii, whereas the analytical approximation of the
energy density integration tends to underestimate them.29

SGM Function

The SGM model is based on the sigmoidal function19–21:

�SGM�rij� � A �
B

1 � �e�
rij
(11)

which is similar to the one used recently.22 The parameters A and
B were determined by the conditions limrij30�SGM(rij) � �m �
1 and limrij3��SGM(rij) � �s � 78.5. The two remaining
parameters � and 
 were determined by optimizing �SGM for each
of the 52 conformations (separately because of memory require-
ments) in such a way that fdP interaction energies were reproduced
as accurately as possible. Finally, the values for � and 
 were
averaged over the 52 conformations. The resulting parameters
were: � � 60.868, 
 � 0.317541, and A � �0.273247, B �
78.773247. Note that A and B are such that if interaction energies
are calculated by Eij � 332q1q2/rij�

SGM(rij), the units are kcal/
mol.

Parameter Set

All calculations were performed using the van der Waals radii and
partial charges of the CHARMM parameter set PARAM19.26 For
the fdP calculations and certain tests (see below) all atoms were
assigned unit charges. The CHARMM parameter set PARAM19
treats hydrogens covalently bound to carbons implicitly and polar
hydrogens explicitly.

Results and Discussion

For all seven training sets (see Table 1) the functions gk with k �
{1, 2, 3} are determined following the prescription in the section
Determination of the Function g. They are denoted by gk

(u) with

Figure 2. Top: inverse of fdP-derived effective dielectric constants against uij
AEI/rij for 1-2 pairs (A), 1-3

pairs (B), and all remaining pairs (C) of all 52 conformations. Bottom: analytical functions resulting from
the fits (see text) for 1-2 pairs (D), 1-3 pairs (E), and all remaining pairs (F). The solid lines represent the
fits for training sets (a) to (e) and (g). The dotted lines represent the fits for training set (f).
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u � {a, b, . . . , g}. Excluding the training set u � f, the maximal
deviation between any two gk

(u) is 0.0177 for k � 1, 0.0287 for
k � 2, and 0.0229 for k � 3. This implies that these curves are
very close to each other and basically overlap (see Fig. 2). Only
gk

( f ) differs significantly from the other curves. The maximal
deviation between gk

( f ) and all other fits for k values of 1, 2, and
3 is 0.0367, 0.0774, and 0.0750, respectively. However, gk

( f ) is
expected to be an outlier: in small structures, most of the atoms are
exposed to the solvent so that nearly all interactions experience
large screening, that is, the average screening is higher than for a
training set, which also includes structures with a large hydropho-
bic core. Therefore, for a given value of uij

AEI/rij, the average curve
is biased towards high effective dielectric constants.

For each test case listed in Table 1 all pair interaction energies
for every structure in the test set are calculated for unit charges,
using the gk

(u) obtained by the fit based on the corresponding
training set. The correlation, slope, and RMSD with respect to fdP
data are determined for each structure in every test set. The results
are summarized in Table 2. Note that only the results for k � 3 are
shown, that is, 1-2 and 1-3 pairs are excluded. Taking all pairs into
consideration merely improves results and is a less stringent test.
None of the correlations is below 0.97 and apart from case (f), all
slopes are close to 1 with the overall tendency being to overesti-
mate rather than to underestimate energies. Applying gk

( f ) (fit on
proteins with less than 70 amino acids) to proteins with more than
70 amino acids [test set (f)] gives a slope of 0.85. The fit gk

( f )

underestimates energies for large structures as it overestimates the
average screening. The reverse effect, albeit less significant, can be
observed for gk

( g). The fit on the training set consisting of proteins
with more than 70 amino acids [training set (g)] slightly underes-
timates screening on average for the small structures. Because the
structures in training set (g) include both buried and exposed
atoms, the effect is hardly perceivable.

It is clear from the fits shown in Figure 2 and the cross
correlation data given in Table 2 that far less than all the 52

structures are sufficient for the parameter optimization to converge
[see test cases (a), (b), and (c)]. Furthermore, fitting on only folded,
unfolded, or large structures does not introduce any bias [see test
cases (d), (e), and (g)]. The model is highly independent of the
shape of the proteins in the training set. However, a training set
consisting of only small structures is not appropriate as it overes-
timates screening on average [see test case (f)].

The above analysis was carried out for 17 different values of
the sphere radius rsphere, namely rsphere � 6.0 Å up to rsphere �
14.0 Å with a step size of 0.5 Å. A value of rsphere � 8.5 Å was
found to perform best, but the model does not depend strongly on
the radius. The results with a radius in the range from 7.5 to 9.0 Å
differ only slightly. Clearly, a too small or too large sphere radius
no longer discriminates whether an atom pair is in the bulk or on
the surface, but there seems to be a relatively large range where
this information is captured satisfactorily. Moreover, several com-
binations of different definitions of �ik and different exponents for
uij

AEI [i.e., (uij
AEI)a/ 2 and a was varied from 1.0 to 2.0 with a step

size of 0.25] were investigated. Indeed, there are combinations that
perform slightly better than the option presented here, but the
marginal gain in accuracy is not considered to be worth the
additional complexity in the formulas. In addition, a different
weighting function is no longer intrinsic to the calculations in MD
simulations. For all the following calculations, the functions gk

derived from the fit on all conformations [training set (a)] with a
sphere radius rsphere � 8.5 Å will be used.

Comparison Between the AEI, GB, and SGM Models

In the point charge approximation the total electrostatic interaction
energy of a macromolecule in aqueous solution is

Eelec
inter �

1

2 �
i�1

N �
j�1, j�i

N

Eij (12)

where N is the number of charges in the system and Eij the
screened Coulomb interaction energy of the (i, j) pair. In the
following sections, energies calculated by the AEI, GB, and SGM
models are compared with the appropriate fdP values. In the next
section, pair interaction energies Eij are analyzed, while in the
following sections the sum of all interaction energies of atom i,
¥j�i Eij, and the total electrostatic interaction energy of the
macromolecule, Eelec

inter, are discussed. The sums are useful to in-
vestigate cancellation of errors.

Pair Interaction Energies Eij

Pair interaction energies Eij are calculated by the AEI, GB, and
SGM models for each of the 52 conformations. The correlation,
slope, and RMSD with respect to fdP data are evaluated and the
results are shown in Figure 3 and Table 3. Unit charges are
assigned to all atoms, and two sets of pairs are distinguished: all
pairs and all but 1-2 and 1-3 pairs. Both the AEI and GB models
perform distinctly better than the SGM model. The AEI and GB
models show similar accuracy, and for most of the conformations
the GB model has only a marginal advantage. However, the range
in the correlation, slope, and RMSD are larger for the AEI than for

Table 2. Cross Correlation Data for Pair Interaction Energies Eij

Calculated by the AEI Model and by fdP.

Test case Correlation Slope RMSD

a 0.976 1.033 (0.081) 1.400
b 0.972 0.977 (0.082) 1.383
c 0.980 1.085 (0.091) 1.469
d 0.972 0.981 (0.054) 1.072
e 0.980 1.058 (0.089) 1.576
f 0.978 0.851 (0.149) 1.065
g 0.974 1.087 (0.121) 1.861

For each test case defined in Table 1 the parameters of the AEI model are
fitted to the data extracted from the structures in the training set and used
to calculate interaction energies for the structures in the test set. A sphere
radius rsphere � 8.5 Å is used. Correlation, slope, and RMSD with respect
to fdP data are averaged over the conformations in the test set. The
unsigned deviations of the slopes from 1, averaged over the conformations
in the test set, are shown in parentheses. All atoms are assigned unit
charges and 1-2 and 1-3 pairs are excluded. The unit of the RMSD is
kcal/mol.
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the GB model. In particular, the slopes vary more (see Table 3),
but most of the single structure values are close to the mean value
and the extremes are gathered in few conformations (see Fig. 3).
From the data presented in Figure 3 one can deduce that both the
AEI and GB models tend to overestimate interaction energies, that
is, underestimate the screening effect.

A closer inspection of the data and structures reveals that
conformations where most residues are exposed are less accurately

represented in the AEI model compared to its average perfor-
mance. Figure 4 shows pair interaction energies Eij as calculated
by the AEI model against fdP data for a folded protein (2ins) and
an unfolded structure [originating from a helix cut out from protein
G (1pgb), named hlx1 in this article] that has the poorest correla-
tion in the set of the 52 conformations. Note that the results for most
of the structures are similar to 2ins. A strongly extended conformation
of 17 residues (that is not in the set of the 52 conformations) gives a

Figure 3. Pair interaction energies Eij, calculated by the AEI [fit on training set (a), rsphere � 8.5 Å], GB,
and SGM models, are compared to the corresponding fdP values. Correlation, slope, and RMSD are
shown for each of the 52 conformations. Unit charges are assigned to all atoms and energy values are in
kcal/mol. The data presented on the left hand column include all pairs and the data on the right hand
column all but 1-2 and 1-3 pairs. The conformations are ordered such that the folded ones (conformations
1 to 29) precede the unfolded ones (conformations 30 to 52).

Table 3. Minimal, Maximal, and Average Values of the Data Shown in Figure 3.

Model

Correlation Slope RMSD

Min Max Ave Min Max Ave Min Max Ave

All pairs
AEI 0.983 0.995 0.992 0.933 1.092 0.032 0.626 3.603 1.649
GB 0.990 0.998 0.996 0.986 1.045 0.025 0.603 1.992 1.102
SGM 0.912 0.977 0.956 0.651 1.152 0.113 1.410 6.230 3.661

All but 1-2 and 1-3 pairs
AEI 0.939 0.988 0.976 0.784 1.228 0.081 0.513 3.019 1.400
GB 0.966 0.994 0.988 0.915 1.100 0.032 0.492 1.349 0.854
SGM 0.846 0.934 0.897 0.444 1.502 0.240 1.068 4.230 2.712

The average values shown in the slope column are the averages of the unsigned deviations of the slopes from 1. For the
AEI model the fit on training set (a) with rsphere � 8.5 Å is used. The unit of the RMSD is kcal/mol.
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correlation and slope of only 0.91 and 0.66, respectively (excluding
1-2 and 1-3 pairs). The AEI model underestimates interaction energies
for very extended structures. However, this is not a serious disadvan-
tage because they are not realistic and are not usually sampled in
conventional MD simulations.

The measure of enclosure uij
AEI presented in this work is appli-

cable for any macromolecular system. Yet, for peptides (20 resi-
dues or less) results can be improved by a slightly different choice.
Using (uij

AEI)1/2 instead of uij
AEI improves the accuracy for very

extended conformations without any major deterioration of the
values of the folded peptides.

To further compare the accuracy of the three models, Figure 5A
shows a histogram of the deviations of the interaction energies
calculated by the AEI, GB, and SGM models from the fdP values.
Again, the GB model is slightly more accurate than the AEI model,
whereas the SGM model has by far the largest errors. The devia-
tions are essentially the same if 1-2 and 1-3 pairs are included in
the calculations.

Error Cancellation for Atomic Energies

The relevant quantities in MD simulations are sums over pair
interaction energies and their derivatives and not single pair val-
ues. The model that best reproduces Eij with respect to fdP data is

not necessarily the best at reproducing ¥j�i Eij if the errors in Eij

cancel each other poorly. There is a fortuitous cancellation of
errors in the GB model because a systematic overestimation (or
underestimation) of the effective Born radii has a compensating effect
on sums of interactions involving like and opposite charges.29 In
the following, the cancellation of errors in the AEI, GB, and SGM
models is compared. For this purpose all atoms of the 52 confor-
mations are assigned partial charges. Let Eij

fdP denote the interac-
tion energy calculated by fdP and Eij the energy calculated by the
AEI, GB, or SGM model. In a first step the error of each pair
interaction energy Eij with respect to the fdP value, that is, Eij �
Eij

fdP, is determined. Then, for each nonzero partial charge i indi-
vidually (a total of 37,869 charges), positive errors (Eij � Eij

fdP 

0) and negative errors (Eij � Eij

fdP � 0) are added up separately.
The total error of charge i is the sum of the two and the values are
shown in Figure 6. The sums ¥j�i Eij, as calculated by the AEI,
GB, and SGM models for each atom i with a nonzero partial
charge, are plotted against the appropriate fdP values in Figure 7.
The corresponding correlation, slope, and RMSD are shown in
Table 4. Note that the vertical deviations from the diagonal line in
Figure 7 that are used to calculate the RMSD correspond to the
total errors in Figure 6. The correlation and slope, however, cannot
be deduced from the data in Figure 6. A histogram of the distri-

Figure 4. Pair interaction energies Eij for unit charges, calculated by the AEI model [fit on training set
(a), rsphere � 8.5 Å], are plotted against fdP values for all but 1-2 and 1-3 pairs for 2ins folded (left) and
hlx1 unfolded (right). hlx1 unfolded is the conformation with the poorest correlation in the set of the 52
conformations. The insets show the interaction energies for all pairs. The unit of energy is kcal/mol.

Dielectric Function of a Macromolecule in Aqueous Solution 1943



bution of errors is shown in Figure 5B. Moreover, Table 4 shows
the results if the sums ¥j�i Eij are calculated with a cutoff of 7.5
Å (the default cutoff of CHARMM PARAM19) in the AEI, GB,
and SGM models and compared to the corresponding fdP values
obtained by adding up interaction energies with no cutoff. Note
that 1-2 and 1-3 pairs are excluded from the data presented in
Figures 5B, 6, and 7 and Table 4, but the results look similar if all
pairs are taken into account.

All three models do in fact benefit greatly from cancellation of
errors. Clearly, the SGM model has the largest total errors. It is
interesting to note that for small errors (�5 kcal/mol) the AEI and
GB models show essentially the same frequencies, whereas larger
errors (
5 kcal/mol) occur less often in the AEI than in the GB
model (see Fig. 7 and tails in Fig. 5B). From the data presented in
Figures 5B and 7 one can deduce that in the case of an infinite
cutoff, errors cancel each other better in the AEI than in the GB
model. For a cutoff of 7.5 Å the two models show similar accuracy
(Table 4).

Total Electrostatic Interaction Energy of Native and
Non-Native Conformations

It is important to test the accuracy of the total electrostatic inter-
action energy calculated by the AEI model for different confor-
mations of the same macromolecule. For this purpose high tem-
perature unfolding simulations at 450 K for 20 ns using an implicit

solvation model27 of a SH3 domain (1shg, 57 residues) and a
three-stranded antiparallel 
-sheet (beta3s, 20 residues30) were
performed. Coordinates were saved every 5 ps and all snapshots
were sorted according to increasing radius of gyration (Rg). Then
100 conformations were chosen as follows: every 25th conforma-
tion of the 500 snapshots with the lowest Rg (20 conformations),
every 25th conformation of the 500 snapshots with the largest Rg
(20 conformations), and every 50th conformation of the remaining
3000 snapshots (60 conformations). Furthermore, the native state
was added. The conformations ranged from folded to significantly
extended. They covered a range in the radius of gyration from 10.2
to 25.4 Å for 1shg and from 6.9 to 12.3 Å for beta3s. Note that
from the 101 conformations of 1shg or beta3s, only the native state
and one of the unfolded states were in training set (a) that was used
to parameterize the AEI model. The comparison was limited to two
proteins because of the large computational requirements for the
fdP calculations on the set of 100 conformations. For each struc-
ture the total electrostatic interaction energy Eelec

inter [see eq. (12)]
was calculated. The results for the AEI, GB, and SGM models are
compared to the fdP data and are shown in Figure 8 and Table 5.
Also shown in Table 5 are the results if Eelec

inter is calculated in the
AEI, GB, and SGM models with a cutoff of 7.5 Å and compared
to the appropriate fdP data obtained with no cutoff. The plots in
Figure 8 indicate that the AEI model is accurate enough not only
for compact and unfolded structures but also for conformations

Figure 5. Distribution of deviations from fdP values of pair interaction energies Eij (A) and the sums
¥j�i Eij (B), calculated by the AEI, GB, and SGM models. A total of 625 and 185 bins of 0.16 kcal/mol
each span the energy intervals given on the abscissa axes in (A) and (B), respectively. The number of data
points for which the deviation in energy falls within a given bin is shown on the ordinate axis. For (A),
all atoms are assigned unit charges, whereas for (B), partial charges are used. In both cases 1-2 and 1-3
pairs are excluded from the calculations.
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with an intermediate value of the Rg. Furthermore, the RMSD
values of the total electrostatic interaction energy are smaller in the
AEI than in the GB approach. There is a systematic shift towards
lower and higher energy values for the AEI and GB model,
respectively (see Fig. 8), and the shift is smaller in the AEI than in
the GB model. Note that the electrostatic interaction energy alone
is not expected to discriminate the native state from other compact
conformations.

Efficiency

Finally, we comment on the computational requirements. The AEI
model is highly efficient; it is only 10% slower than vacuo,
irrespective of the size of the molecule. According to ref. 13, the
GB approach is slower by a factor of 5 (for large proteins with
more than 60 amino acids) to 10 (for small proteins and peptides
with up to 60 amino acids) compared to vacuo.

Solvation Energies

To further assess the physical relevance of a measure of enclosure
based on the sum over weighted volumes of neighbors, this section
addresses the evaluation of solvation energies in the framework of
the AEI model. A brief description is given here because the focus
of this article is on screened interaction energies.

In the Methods section a measure of enclosure for a pair of
atoms (i, j) is introduced. In the same spirit one can define a
measure of enclosure for a single atom i by

wi
AEI � �

k�1

N

	k�ik (13)

where 	k is the van der Waals volume of atom k, N the total
number of atoms in the system, and �ik is defined in the Methods
section with rsphere � 8.5 Å. Note that �ik is different from zero
only for the atoms in a sphere of radius 8.5 Å centered on atom i.
Analytical functions of wi

AEI, that is, �Ei
AEI � hp(wi

AEI), where
�Ei

AEI denotes the solvation energy of atom i calculated in the AEI
model, are fitted to fdP-derived solvation energies for unit charges
of the atoms of one protein (1a2p, 1,073 atoms). The index p
accounts for the fact that different functions are necessary for
different ranges of the van der Waals radii (see Appendix). The
AEI solvation energies for all atoms with nonzero partial charge of
10 proteins not used to parameterize the model (1bpi, 1crn, 1hdn,
1pgb, 1pht, 1ycq, 1ycr, 2ci2, 2ptl, beta3s), are shown in Figure 9.
For the AEI model, the correlation and slope are 0.987 and 0.952,
respectively, and for the GB model 0.986 and 0.632, respectively.
These results indicate that a measure of enclosure for a single atom
i based on summing over neighbors allows the modeling of not
only interaction but also solvation energies.

Conclusion

Both the AEI and GB models utilize a measure of enclosure for
pairs of charges to calculate the screened electrostatic interac-

Figure 6. Error cancellation for pair interaction energies as calculated by the AEI [fit on training set (a),
rsphere � 8.5 Å], GB, and SGM models. For each atom i with nonzero partial charge, the total error ¥j�i

(Eij � Eij
fdP) is given in light gray. The positive and negative contributions to the total error are shown

in black and gray, respectively. Partial charges are used and 1-2 and 1-3 pairs are excluded.
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tion energy. For each charge in the system an effective volume
and an effective Born radius is evaluated in the AEI and the GB
approach, respectively. These quantities are combined in a
heuristic way to obtain a measure of enclosure for a pair of
charges. The essential element of the AEI model is to define
such a measure with information easily available from a rea-
sonably large neighborhood of a given pair. The degree of
enclosure of two charges quantifies the distribution of solute
atomic volumes surrounding the pair. The appealing feature of
the AEI model is the efficiency with which the measure of
enclosure can be calculated. It is simply the square of the sum
of weighted atomic volumes. Hence, the present implementa-

tion of the AEI model uses only quantities whose calculation is
intrinsic to MD simulations so that the computational overhead
is negligible with respect to vacuo. In the GB approach the
measure of enclosure of a pair of charges is the square root of
the product of their effective Born radii, whose calculation
requires integration of the electrostatic energy density over the
solute volume. The sum of all pair interaction energies of an
atom i (relevant for MD simulations) and the total electrostatic
interaction energy of a macromolecule are reproduced more
accurately in the AEI than in the GB approach. Only single pair
interaction energies are slightly better approximated in the GB
model. The validity of the AEI model is further assessed by

Figure 7. Each data point represents the sum of all pair interaction energies of an atom i with nonzero
partial charge, ¥j�i Eij. The AEI [fit on training set (a), rsphere � 8.5 Å], GB, and SGM values are plotted
against the fdP data. Partial charges are used and 1-2 and 1-3 pairs are excluded. See text for details.

Table 4. Comparison of the Sum of All Interaction Energies of Atom i, ¥j�i Eij, Calculated by the AEI,
GB, and SGM Models and fdP.

Model

No cutoff Cutoff of 7.5 Å

Correlation Slope RMSD Correlation Slope RMSD

AEI 0.981 1.016 2.152 0.957 0.994 3.258
GB 0.966 1.003 2.895 0.955 0.989 3.312
SGM 0.890 0.794 4.958 0.878 0.782 5.197

For the AEI model the fit on training set (a) with rsphere � 8.5 Å is used. Partial charges are assigned to all atoms and
1-2 and 1-3 pairs are excluded. No cutoff is applied for the calculation of the data on the left hand part of the table. For
the data on the right hand part, the sums ¥j�i Eij are calculated with a cutoff of 7.5 Å in the AEI, GB, and SGM models
and compared to the corresponding fdP values obtained with no cutoff. The unit of the RMSD is kcal/mol.
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Table 5. For 101 Conformations along a High Temperature Unfolding Trajectory of 1shg and beta3s, the
Total Electrostatic Interaction Energy Eelec

inter Is Calculated by the AEI, GB, and SGM Models.

Model

No cutoff Cutoff of 7.5 Å

Correlation Slope RMSD Correlation Slope RMSD

1shg
AEI 0.955 0.983 31.265 0.917 0.969 27.631
GB 0.941 1.040 81.515 0.935 1.038 83.598
SGM 0.706 0.674 139.198 0.661 0.672 124.610

beta3s
AEI 0.939 1.006 15.159 0.916 0.958 15.567
GB 0.937 1.043 28.923 0.925 1.006 27.835
SGM 0.818 0.849 63.504 0.769 0.854 63.163

For the AEI model, the fit on training set (a), rsphere � 8.5 Å is used. Correlation, slope, and RMSD with respect to fdP
data are shown. Partial charges are used and 1-2 and 1-3 pairs are excluded from these calculations. No cutoff is applied
for the calculation of the data on the left hand part of the table. The data on the right hand part show the total electrostatic
interaction energy calculated with a cutoff of 7.5 Å in the AEI, GB, and SGM models, compared to the corresponding
fdP values obtained with no cutoff. The unit of the RMSD is kcal/mol.

Figure 8. Each data point represents the total electrostatic interaction energy Eelec
inter for a given confor-

mation as calculated by the AEI [fit on training set (a), rsphere � 8.5 Å] and GB models against the
corresponding fdP value. Data for 101 conformations along a high temperature unfolding trajectory of
1shg (top) and beta3s (bottom) are shown. Partial charges are used and 1-2 and 1-3 pairs are excluded from
these calculations. Different symbols discriminate between different ranges for the radius of gyration.
Circles and pluses represent the 20 conformations with small and large Rg, respectively, and triangles
the 60 intermediate ones. The total electrostatic interaction energy of the native state is shown by the
symbol x.
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demonstrating that solvation energies can be calculated with a
measure of enclosure for single atoms that is similar to the one
used for pairs.
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Appendix

Interaction Energy

Let rk be the van der Waals radius of atom k and 	k � 4

3
�rk

3 its
van der Waals volume. The van der Waals radii are taken from
the CHARMM parameter set PARAM19 and depend only on
the atom type. The measure of enclosure uij

AEI is defined by eqs.
(5) and (7). Let rij be the distance between atoms i and j and
define pij � uij

AEI/rij. The reciprocal of the effective dielectric
function in the AEI model is denoted by gk, where k � 1 for 1-2
pairs, k � 2 for 1-3 pairs, and k � 3 for all but 1-2 and 1-3 pairs.
Due to the close relationship between the AEI and GB ap-
proaches, the gk are chosen to be of the same functional form as
the reciprocal of the effective dielectric function in the GB
model [see f in eq. (4)]:

gk� pij� � a1,k � �a1,k � a2,k�

� �1 � �a4,k� pij � a3,k��
2e��1/�a5,k� pij	a3,k��2����1/ 2� (A1)

All five parameters ai,k appearing in gk have a well defined
meaning. The functions gk are of sigmoidal shape with the max-
imum and minimum value a1,k and a2,k, respectively, if a1,k 

a2,k. This condition is always satisfied in the AEI model. The
parameter a3,k translates the function gk parallel to the abscissa
axis, and a4,k and a5,k are scaling factors. The parameters ai,k are
determined by fitting gk to the inverse of fdP-derived effective
dielectric constants extracted from all 52 conformations [training
set (a)]. The sphere radius used is rsphere � 8.5 Å. The parameters
are determined to be

�ai,k� � �
	0.113 � 10	01 	0.133 � 10	01 	0.100 � 10	01

	0.253 � 10	00 �0.980 � 10�01 	0.127 � 10�01

	0.145 � 10	07 	0.124 � 10	07 	0.000 � 10	00

	0.451 � 10�06 	0.541 � 10�06 	0.135 � 10�05

	0.998 � 10	00 	0.967 � 10	00 	0.581 � 10�05
�
(A2)

The functions g1 and g2 have five parameters each whereas the
function g3, which is the most relevant for molecular mechanics
and dynamics, has in effect only two parameters because a1,3,
a2,3, and a3,3 are set to the standard GB values, that is, a1,3 �
1/�m � 1, a2,3 � 1/�s � 1/78.5, and a3,3 � 0.

Solvation Energy

The measure of enclosure wi
AEI for a single atom i is defined by eq.

(13). Solvation energies are calculated by hp(wi
AEI) � b1,p 	

b2,pwi
AEI 	 b3,p(wi

AEI)2, where p � 1 for van der Waals radii in

Figure 9. Atomic solvation energies calculated by the AEI (left) and GB (right) models for 10 proteins
(6504 data points) are compared with the fdP values. Partial charges are assigned to all atoms.
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the range from 0.5–1.0 Å, p � 2 for the range from 1.5–2.0 Å
(there are no van der Waals radii in PARAM19 with a value
between 1.0 and 1.5 Å), and p � 3 for van der Waals radii larger
than 2.0 Å. The sphere radius used is rsphere � 8.5 Å. The
parameters bi,p are determined by fitting the functions hp to
fdP-derived atomic solvation energies for unit charges of one
single protein (1a2p, 1,073 atoms). The parameters are determined
to be

�bi,p� � ��0.220 � 10	03 �0.108 � 10	03 �0.766 � 10	02

	0.209 � 10	00 	0.502 � 10�01 	0.169 � 10�01

�0.326 � 10�04 	0.193 � 10�04 	0.250 � 10�04
�
(A3)
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