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Abstract: Wordom is a versatile, user-friendly, and efficient program for manipulation and analysis of molecular struc-
tures and dynamics. The following new analysis modules have been added since the publication of the original Wordom
paper in 2007: assignment of secondary structure, calculation of solvent accessible surfaces, elastic network model, motion
cross correlations, protein structure network, shortest intra-molecular and inter-molecular communication paths, kinetic
grouping analysis, and calculation of mincut-based free energy profiles. In addition, an interface with the Python scripting
language has been built and the overall performance and user accessibility enhanced. The source code of Wordom (in the
C programming language) as well as documentation for usage and further development are available as an open source
package under the GNU General Purpose License from http://wordom.sf.net.
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Introduction

Wordom is a program aimed at fast manipulation and analysis of
individual molecular structures and molecular conformation ensem-
bles. Its development started in 2003 and the relative publication
appeared in 2007.1

A number of programs are already available to analyze molec-
ular structures and dynamics. These include: (a) the most common
molecular simulation and analysis packages, like CHARMM,2, 3

Gromacs,4 and Amber5, 6; (b) a number of molecular viewers, like
VMD,7 and Pymol8; (c) command-line oriented analysis programs
and script suites, like MMTSB,9 carma,10 and pcazip11; and (d)
packages that provide environments for structural analysis, like
Bio3D,12 MMTK,13 or Biskit.14 In this panorama, Wordom was
originally conceived as a simple command-line utility to quickly
access data in common structural data files. Basic manipulation tools
were then implemented, which paved the way for the adoption of
a modular framework to easily add analysis routines. At the time

of the first publication, novel analysis modules already formed the
bulk of Wordom’s code, and others have been added since then.

Some of the new modules (Table 1), such as secondary structure
assignment (SSA), surface area calculations, and elastic network
models (ENM), implement tools that are already available in some
form in other software packages or web servers. However, their use
on trajectory files is either cumbersome or unpractical. Indeed, pro-
grams for SSA and surface computation are widespread, but most
of them can only deal with a single structure file at a time, thus
making the handling of multiconformation files complex and time
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Table 1. New Features in Wordom Since the Original Publication.1

Module Labela Function Reference

Secondary Structure Assignment SSA Assignment of secondary structure based on
geometric criteria

15, 16

Molecular Surface SURF Calculation of solvent accessible, solvent
excluding and van der Waals surfaces;
surface correlation along a trajectory

17, 18

Elastic Network Model ENM Calculation of elastic network models on a
protein structure

19–24

Cross Correlation CORR Correlations of atomic displacements along a
trajectory

25–27

Protein Structure Network PSN Calculation of network of amino acid
interactions

28–31

PSN Path PSN-path Path calculation within protein structure
network

32, 33

Clustering CLUS Clustering according to conformation
similarity

34–36

cut-based Free Energy Profile cFEP Computation of a one-dimensional free
energy profile that preserves barriers
between free energy basins

39, 46

Kinetic Grouping Analysis KGA Determination of free energy basins based
on kinetic behavior

40

aAbbreviation/acronym used in the text.

consuming. On the same line, ENM can be computed by the
CHARMM program2, 3 or via web servers.41–45 However, the for-
mer is slower and significantly more complicated than Wordom in
input setting, whereas the latter do not handle multiconformation
files. Moreover, a number of ENM-based analysis tools are avail-
able in different programs and/or web servers, whereas Wordom
joins many of them together in a single interface.

Other novel modules introduce procedures and algorithms not
available elsewhere, such as protein structure network (PSN)
analysis,28, 29 search for the shortest intra-molecular and inter-
molecular communication paths (PSN-path),32 kinetic grouping
analysis (KGA),40 and mincut-based Free Energy Profile (cFEP).46

The principles underlying these modules have been reported in
the relevant papers, but, so far, no other publicly available soft-
ware can perform these analyses. In particular, PSN and PSN-path
are based on the application of graph theory to protein structures,
allowing to represent molecular systems as networks of interact-
ing amino acids and to infer the functional implications of such
networks in the context of intra-molecular and inter-molecular com-
munication.30, 31, 37, 38, 47 Importantly, cFEP and KGA are rigorous
methods for determining free energy basins and barriers and thus
for investigating the free energy surface of simulated processes,
e.g., reversible folding and conformational changes of structured
peptides and miniproteins.39, 46, 48

Significant technical improvements include a more user-friendly
input syntax and a more general procedure for selecting subsets
of atoms. Some parts of the code have been rewritten to gain
speed, robustness, and facilitate the addition of new modules. As
for performance, Wordom has been modified to treat calculations
relative to different frames as different threads and exploit multicore
compute architectures (coarse-grained data parallelism). This mul-
tithread approach is now present in the modules in which frames
are treated independently of each other. Future modules that fall
under this category will be able to easily use this kind of threading

without major modifications to the code. This approach does not
prevent single modules to adopt internal threading. An example is
the clustering module, which can now be used in multicore mode
in the CPU-intensive step of frame–frame comparison. Finally, an
interface with the Python scripting language has been implemented
to take advantage of its flexibility and speed of coding.

This article details the analysis tools added to Wordom after the
original publication, with particular emphasis on those modules that
are not available in other analysis programs.

New Tools in Wordom

Secondary Structure Assignment

The SSA module is able to evaluate the secondary structure of
a peptide or protein using two methods, DLIKE or DCLIKE,
derived from the DSSP49 and DSSPcont15, 16 algorithms, respec-
tively. These two approaches are considered two standards in the
field of secondary structure assignments. DSSPcont is a consensus-
based DSSP assignment, in which the whole DSSP procedure is
run 10 times with different values of the energy cutoff that defines
an hydrogen bond (H-bond).15, 16 Assignments are then weighted
according to the cutoff and a consensus is given as the final output.
DSSP and DSSPcont assignments are generally comparable.

Both algorithms have been rewritten from scratch since the DSSP
license does not allow free reuse of the code. The output is a simple
string where the nth character corresponds to the secondary struc-
ture of the nth amino acid. There are eight possible letters in the
secondary structure “alphabet”: H, G, I, E, B, T, S, and L, standing
for α helix, 310 helix, π helix, extended, isolated β-bridge, hydrogen
bonded turn, bend, and unstructured loop, respectively.15 No extra
information such as that included in the typical DSSP output is given,
since the SSA module is meant to be used for a quick analysis of
the secondary structure profile along a trajectory, rather than for a
complete and throughout characterization of a single structure.

Journal of Computational Chemistry DOI 10.1002/jcc
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Comparisons between the secondary structure assignments by
Wordom and by the DSSP program are shown in Table 2. The
agreement is good, i.e., 92%, considering also that most discrep-
ancies do not concern exchanges between helices and strands. The
higher speed of the SSA module compared to DSSP shows itself on
trajectory files (see Table 3). In fact, whereas the SSA module can
compute the secondary structure along a trajectory very fast, DSSP
works on single frame files previously extracted from the trajectory.
Thus, the better performance of Wordom must be ascribed, at least
in part, to the lack of input/output operations associated with han-
dling each molecule conformation as a standalone file (see Table 3).
The speedup is more pronounced when dealing with small systems,
e.g., peptides.

Contrarily to DSSP, because Wordom is conceived to operate
on the results of simulations, the structure files must contain all the
atoms that contribute to the backbone H-bonds. Therefore, structures
derived directly from the protein data bank (PDB), especially the
X-ray structures that miss hydrogen atoms or entire residues, must
be completed before submission to the SSA module.

Molecular Surface Calculation, Correlation, and Clusterization

Wordom computes different kinds of molecular surfaces using two
different algorithms: an exact analytical method developed by Hu
and coworkers (i.e., ARVO algorithm)17 and a fast numerical method
developed by Pascual-Ahuir and coworkers (i.e., GEPOL algo-
rithm).18 ARVO calculates the solvent accessible surface area by
expressing the molecular surface as surface integrals of the second
kind and then transforming these integrals into a sum of double
integrals using the stereographic projection method.17 In contrast,
GEPOL describes the molecular surface as a series of tesserae
and then calculates the overall area.18 The Wordom implementa-
tion of GEPOL allows calculation of the van der Waals, solvent
accessible and solvent excluding surfaces as well as tuning of three

Table 2. Comparison Between the Secondary Structure Assignments Made
by Wordom (SSA Module, DLIKE Option) and Those Made by the DSSP
Program.a

DSSPa

E B T S L H G I Total

W
or

do
m

/S
SA

a

E 2103 31 18 21 85 2 0 0 2260
B 11 58 6 6 38 1 7 0 127
T 16 1 638 51 32 6 3 0 747
S 12 0 5 656 13 0 2 0 688
L 44 3 9 6 1351 3 0 0 1416
H 0 1 11 2 7 951 17 0 989
G 1 0 39 0 3 1 163 0 207
I 0 0 2 0 0 0 0 0 2

Total 2187 94 728 742 1529 964 192 0 6436

aThe test set consists of 29 proteins (2CCY, 1ECA, 2IFO, 1TPM, 1HRE,
1PHT, 2POR, 3BCL, 2HLA, 1CDQ, 1AFC, 1MSA, 1VMO, 1HXN, 1NSC,
2BBK, 3AAH, 1TSP, 2PEC, 1PPK, 1STD, 4TIM, 1BRS, 1NTR, 1PYA,
2DNJ, 1PLQ, 1BNH, and 1PYP) selected as representatives of common
folds.50 Results have been pooled together for each program and compared.
Each element ij of the matrix reports the number of residues assigned by
Wordom and by DSSP to be in conformation i and j, respectively.

Table 3. Speed (in Seconds) Comparison of Secondary Structure
Computations.

#Residues #Frames DSSPDCD
a DSSPPDBs

b WordomSSA
c

316 10,000 1460 920 640
16 10,000 238 155 0.35

aA script extracted each single frame by mean of Wordom and called DSSP
on the extracted frame.
bA script called DSSP on the already-extracted frames.
cCalculation through the Wordom SSA module.

different parameters [i.e., number of divisions (ndiv), overlapping
factor (ofac), and radius of the smaller sphere (rmin)] to balance the
speed and accuracy of area computation. Wordom implementations
are faster than the original programs (see Table 4).

Using either one of these two algorithms, Wordom can perform
different regression analyses (i.e., linear, logarithmic, exponential,
and power) to correlate surface area values from two different selec-
tions computed along a trajectory. Moreover, a number of statistical
parameters can be derived from the surface timeseries (i.e., range,
time average, covariance, and standard deviation). Finally, cluster-
ing (binning) of the trajectory snapshots can be also performed on
the basis of the surface area values of a given selection, dividing the
trajectory frames in different clusters of user-defined width.

Elastic Network Model

The ENM is a coarse grained normal mode analysis (NMA) tech-
nique able to describe the vibrational dynamics of protein systems
around an energy minimum. Within this technique, the protein struc-
ture is described by a reduced subset of atoms (usually Cα-atoms),
whose coordinates can be derived either from structure determi-
nations (crystallography, NMR) or from molecular simulations.
The interactions between particle pairs are given by a single term
Hookean harmonic potential.19 The total energy of the system is
thus described by the simple Hamiltonian:

E =
∑
i �=j

kij
(
dij − d0

ij

)2
(1)

where dij and d0
ij are the instantaneous and equilibrium distances

between Cα-atoms i and j, respectively, whereas kij is a force con-
stant, whose definition varies depending on the type of ENM used.
The second derivatives of the harmonic potential are stored in a
3N × 3N Hessian matrix (H), whose diagonalization gives a set of
3N-6 nonzero-frequency eigenvectors and associated eigenvalues.

Two alternative versions of ENM have been implemented. In the
first version, termed “linear cutoff-enm,” the force constant is equal
to 1 for pairwise interactions between the Cα-atoms lying within
a cutoff distance chosen by the user, and adjacent Cα-atoms are
assigned a force constant equal to 10.20 In the second one, termed
“Kovacs-ENM,”21 the force constant depends on the distance of the
interacting particles:

kij = C

(
d0

ij

dij

)6

(2)

where C is constant (with a default value of 40 Kcal/mol · Å2).21
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Table 4. Computing Time for Different Modules.

# Selected Approximate
Module atomsa CPU timeb

Surface (WordomARVO)c 115d 2980
Surface (ARVO)e 115 3690
Surface (WordomGEPOL−ASURF)f 115 2130
Surface (GEPOLASURF)g 115 2660
Surface (WordomGEPOL−ESURF)h 115 5900
Surface (GEPOLESURF)i 115 7290
Surface (WordomGEPOL−WSURF)j 115 1890
Surface (GEPOLWSURF)k 115 1970
Correlation (DCC)i 360m 4
Correlation (LMI)n 360 63
PSNo 2593 391
PSN-path – 15 per pair
Clustering (distances only)p 316q 1461
Clustering (QT-like)r 316 100
Clustering (hiero)s 316 >50,000
Clustering (leader)t 316 10
Clustering (leader)u 316 10
Clustering (leader)v 316 45

aThe considered system is a 10,000 frame trajectory of the GTP-bound Gαi1

subunit (PDB: 1CIP; 2593 atoms; 316 residues and 1 GTP molecule (44
atoms)).
bCPU time (seconds) on an AMD Athlon 64 3000+, 2 GHz, 2 GB RAM.
cSolvent accessible surface area computed by the Wordom implementation
of the ARVO algorithm.
dselection consisted in GTP and first 9 residues (selection /*/@(1 − 10)/*)
eSolvent accessible surface area computed by the ARVO program.
f Solvent accessible surface area computed by the Wordom implementation
of the GEPOL algorithm (highest accuracy).
gSolvent accessible surface area computed by the GEPOL program (highest
accuracy).
hSolvent excluded surface area computed by the Wordom implementation
of the GEPOL algorithm; accuracy settings: rmin 0.5, ofac 0.8, ndiv 5.
iSolvent excluded surface area computed by the GEPOL program; accuracy
setting: rmin 0.5, ofac 0.8, ndiv 5.
jvan der Waals surface area computed by the Wordom implementation of
the GEPOL algorithm; highest accuracy.
kvan der Waals surface area computed by the GEPOL program; highest accu-
racy.
lResidue-residue correlation by means of the dynamic cross correlation
method; masses were not taken into account.
mSelection consisted in all Cα atoms and GTP
nResidue-residue correlation by means of the linear mutual information
method; masses were not taken into account.
oPSN analysis probing 11 different Imin values (from 0.0 to 5.0 with a 0.5
step).
pOnly the RMSD-based distance matrix was computed at this stage and writ-
ten to file.
qAll Cα atoms were selected.
rClustering by the QT-like algorithm, using a precalculated distance matrix
(RMSD cutoff 1.0 Å).
sClustering by the hierarchical algorithm, using a pre-calculated distance
matrix (RMSD cutoff 1.0 Å).
tClustering by the leader-like algorithm (RMSD cutoff 1.0 Å); distance
matrix is not necessary.
uClustering by the leader-like algorithm (RMSD cutoff 1.0 Å) and turning
on the non-markovian option. In this case, the bottleneck is disk speed (CPU
usage 18%).
vClustering by the leader-like algorithm (DRMS cutoff 1.0 Å).

The structural perturbation method (SPM) has been recently
described as a technique useful to characterize allosteric wiring
diagrams in the context of the ENM lowest frequency modes.22

According to this methodology, amino acid positions that are rele-
vant to protein dynamics are searched by perturbing systematically
all the springs that connect the Cα-atoms and then measuring the
residue-specific response of such perturbations in the context of a
given mode m. The perturbation response is computed as:

δωm = νT
m · δH · νm (3)

where νm is the eigenvector of mode m, νT
m is its transpose, and δH

is the Hessian matrix of the perturbation to the energy of the elastic
network:

δE = 1

2

∑
i �=j

δkij
(
dij − d0

ij

)2
(4)

The response δωim is proportional to the elastic energy of the springs
that are connected to the ith residue when they are perturbed by
an arbitrary value (0.1), thus defining the most critical nodes for
the dynamics of a given mode. The number of modes used for the
computation is specified by the user (from 1 up to 3N-6). It is also
possible to generate, for each analyzed mode, a pdb file containing
the values of δωim in the β-factor field (Fig. 1).

Theoretical β-factors can be computed inside the ENM module,
by the formula23

BT
n = 8π2kT

3

3N∑
m=1

ν2
mn

λm
(5)

where νmn is the nth element of eigenvector m, λm is the associated
eigenvalue, k is the Boltzmann constant, and T is the temperature
in K.

Cross correlations between theoretical and experimental β-
factors can be also computed according to the following equation:

CC =
∑N

i=1 βT
i βE

i
N − βT · βE√∑N

i=1 βT
i βT

i
N − βT · βT ·

√∑N
i=1 βE

i βE
i

N − βE · βE

(6)

where βT
i and βE

i are the theoretical and experimental β-factors, and

βT and βE are the theoretical and experimental β-factor average
over all atoms, respectively. The number of modes used for the
computation is specified by the user (from 1 up to 3N-6).

Moreover, involvement coefficients I between the ENM modes
and the displacement vector between a given structure/frame T and
a reference structure R can be computed according to the following
equation:

Im =
∑3N

n,i=1 νmn�ri∑3N
n=1 ν2

mn

∑3N
i=1 �r2

i

(7)

where �ri = rT
i − rR

i and rT,R
i is the ith coordinate in the two

conformers and νmn is the nth element of eigenvector m.24 By default,
the computation is done for all 3N-6 modes, and only the values of
I greater than an arbitrary threshold (i.e., 0.2) are output.

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 1. Application of the SPM (within the ENM module) to
the GTP-bound Gαi1-subunit (PDB: 1CIP). Each Cα-atom is colored
according to the response to the perturbation of the 1st normal mode.
Coloring from red to blue indicates maximum (100%) and minimum
(0%) perturbations, respectively. Arrows point in the direction of the 1st

normal mode. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

The cumulative square overlap (CSO) between all modes and
the displacement vector is computed according to the following
equation:

CSO =
√√√√3N−6∑

m=1

I2
m (8)

Finally, residue correlation Cij is computed as:51

Cij =
∑N

l=1
νilνjl

λl(∑N
m=l

νimνjm

λm

) 1
2
(∑N

n=l
νinνjn

λn

) 1
2

(9)

Cross Correlation

Wordom implements two different algorithms to calculate cor-
relations of atomic displacements along an MD trajectory. One

algorithm, called dynamic cross-correlation (DCC),25 is a simple
and well established method based on the calculation of the normal-
ized covariance of atom/residue position vectors. DCC values are
computed as:

Cij = (ri − ri)(rj − rj)√(
r2

i − r2
i

)(
r2

j − r2
j

) (10)

where i and j may be atoms or centroids of atoms grouped by residue,
and ri and rj are the corresponding position vectors. DCC repre-
sents the extent of atom/residue displacement correlation within
a range that goes from 1.0 to −1.0; where 1.0 indicates com-
pletely correlated (same period and phase) and −1.0 completely
anti-correlated (same period and opposite phase) displacements.
The second algorithm, called linear mutual information (LMI),26, 27

is computationally more expensive (see Table 4) than DCC but
overcomes some limitations of the DCC algorithm and is able to
estimate correlations between perpendicular motions. LMI values
are computed as:

Ilin(xi, x2) = 1

2
(ln|Ci| + ln|Cj| − ln|Cij|) (11)

where i and j may be atoms or residues, Cij is the pair-covariance
matrix, and Ci and Cj are marginal covariance matrices.26, 27

LMI correlation values can vary from 0.0 to 1.0, which indicate
completely uncorrelated and completely correlated displacements,
respectively.

The Wordom implementation of the DCC and LMI algorithms
incorporates some setup options. In particular, it is possible to cal-
culate correlations by treating atoms independently or collectively
with respect to the residues they belong to. It is also possible to take
into account the atomic masses.

For a selection of 360 atoms within 10000 trajectory frames, the
DCC and LMI methods took, respectively, 4′′ and 63′′ on the same
processor (Table 4). The relative correlation matrices are shown in
Figure 2.

Protein Structure Network

In recent times, the concept of PSN has been explored, giving
more insights into the global properties of protein structures.30, 31

The representation of protein structures as networks of interactions
between amino acids has proven to be useful in a number of studies,
such as protein folding,47 residue contribution to the protein–
protein binding free energy in given complexes,37 and prediction
of functionally important residues in enzyme families.38 All these
aspects pertain to the issue of intra-molecular and inter-molecular
communication.30, 31

Wordom implementation of PSN analysis is based on the work
and algorithms described in the relevant papers by the Vishveshwara
and coworkers.28, 29 PSN is constructed from the atomic coordinates
of residues, which represent the nodes of the network. Two nodes
are connected by an edge if the percentage of interaction between
them is greater than or equal to a given Interaction Strength cutoff.

Iij = nij√
NiNj

100 (12)

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 2. Cross-correlation matrix of the atomic fluctuations of the Gαi1-subunit Cα-atoms and the geo-
metrical center of GTP. The regions below and above the matrix main diagonal concern the DCC and LMI
correlation methods, respectively. DCC correlation values go from −1.0 (fully anti-correlated motions) to
1.0 (fully correlated motions), whereas LMI correlation values go from 0.0 (fully uncorrelated motions) to
1.0 (full correlated motions).

where Iij is the interaction percentage of nodes i and j, nij is the num-
ber of side-chain atom pairs within a given distance cutoff (4.5 Å as
a default), and Ni and Nj are, respectively, the normalization factors
(NF) for residues i and j, which take into account the differences in
size of the different nodes and their propensity to make the maxi-
mum number of contacts with other nodes in protein structures. The
NFs for the 20 amino acids in our implementation were taken from
the work by Kannan and Vishveshwara.28 Novel NFs for nonamino
acid nodes can be introduced as well by the user. In this respect,
the current version of the module holds also the NFs for retinal,
guanine nucleotide di- and tri-phosphates (GDP and GTP, respec-
tively), and Mg2+. In detail, retinal NF (i.e., 170.13) was computed
as the average number of contacts done by the molecule in a dataset
of 83 crystallographic structures concerning the different photoin-
termediate states of bacteriorhodopsin, bovine rhodopsin, sensory
rhodopsin, and squid rhodopsin. The NFs for GDP and GTP (i.e.,
220.19 and 274.78, respectively) were derived from datasets of 55
and 69 G proteins, respectively. Finally, the NFs for Mg2+ con-
cerns GTPases and is 14.65 and 22.01 in the GDP- (i.e., based upon
41 GTPase structures) and GTP-bound states (i.e., based upon 68
GTPase structures). Iij are calculated for all node pairs excluding
j = i ± n, where n is a given neighbour cutoff (2 as default), and
each node pair with an Iij value greater than or equal to a given Imin

cutoff is connected by an edge. Different networks can be achieved
by probing a range of Imin cutoffs. At high Imin cutoffs, only nodes

with high number of interacting atom pairs will be connected by
edges, indicative of stronger inter-residue interactions. At a given
Imin cutoff, those nodes that realize more than a given number of
edges (4 as default) are called hubs. The percentage of interaction
of a hub node is

Ii = nij

Ni
100 (13)

where Ii is the hub interaction percentage of node i, nij is the number
of side-chain atom pairs within a given distance cutoff and Ni is the
normalization factor of residue i. Node inter-connectivity is finally
used to highlight cluster-forming nodes, where a cluster is a set of
connected amino acids in a graph. Node clusterization procedure
is such that nodes are iteratively assigned to a cluster if they can
establish a link with at least one node in such cluster. A node not
linkable to existing clusters initiates a novel cluster and so on until
the node list is exhausted. The size (defined as the number of nodes)
of the largest cluster is used to calculate the Icritic value. Icritic is
defined as the Imin at which the size of the largest cluster is half
the size of the largest cluster at Imin = 0.0. At Imin = Icritic weak
node interactions are discarded, emphasizing the effects of stronger
interactions on PSN properties.

The Wordom implementation of PSN analysis allows the user
to: (a) modify all the involved cutoffs (i.e., distance, neighbor,
hub); (b) make residue selections; (c) set Imin ranges; and (d) set,

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 3. Hub correlation analysis on a 10 ns MD trajectory of GTP-bound Gαi1-subunit. Each dot corre-
sponds to two amino acids that show a correlated tendency to behave as hubs (i.e., that are syncronized in
their hub behavior in more than 50% of the trajectory frames). An Imin = 3.0% was employed for the PSN
analysis.

when dealing with a trajectory, the fraction of frames for which
a PSN property is defined as stable. Furthermore, Wordom com-
putes all network properties described in the relevant papers by
Vishveshwara’s group (i.e., interaction strength for all node pairs,
stable node interactions, hub frequencies, cluster compositions, and
dimensions).28, 29

An original feature of Wordom is the hub correlation analy-
sis, a simple but effective method to highlight correlations in the
propensity of two nodes to behave as hubs along an MD trajectory
(Fig. 3).

The results of an application of the PSN module to a 10,000
frame trajectory of the Gαi1-subunit complexed with GTP are shown
in Figures 4A and 4B. The relative CPU time required for such a
demonstrative calculation is reported in Table 4.

Search for Communication Paths

As an extension of the PSN analysis tool, Wordom can calculate the
shortest non-covalently connected path(s) between two residues of

interest in a single structure or in a trajectory (Fig. 4C), by combin-
ing PSN node inter-connectivities and residue correlated motions,
as described in the relevant paper by the Gosh and Vishveshwara.32

Path search through the PSN-path module uses Dijkstra’s algo-
rithm33 to traverse PSN inter-connectivities, and to find the shortest
paths in each frame. It consists in: (a) search for all shortest paths
between selected residue pairs based upon the PSN connectivities
and (b) selection of paths that contain at least one residue corre-
lated with either one of the two extremities (i.e., the first and last
amino acids in the path). Once the shortest paths have been found,
their frequencies, i.e., the number of frames containing the selected
path divided by the total number of frames in the trajectory, are com-
puted, which helps selection of the most meaningful paths. Steps (a)
and (b) of path search employ the outputs from the PSN and CORR
modules, respectively. The Wordom implementation allows the user
to tune several parameters of the path-search routine (i.e., minimum
interaction strength cutoff between nodes, lowest accepted residue
correlation cutoff, minimum length and frequency of paths). Either
the DCC or LMI methods can be chosen as a source of residue
correlations.
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Figure 4. Results of PSN and PATH analyses on a 10 ns MD trajectory of GTP-bound Gαi1-subunit.
(A) Cα-atoms of the 27 stable hub residues, at Imin = 3.0%, are represented as cyan spheres. The GTP
molecule, which is a stable hub as well, is shown as a red sphere centered on the C4′ ribose atom. Nodes
are considered as stable hubs if they are involved in at least four connectivities at a given Imin (3.0% in this
case) in more than 50% of the trajectory frames. (B) The 90 nodes that contribute to the largest cluster at
Imin = 3.0% are shown as green spheres centered on the Cα-atoms. The GTP molecule, which participates
as well in such cluster, is shown as a red sphere centered on the C4′ ribose atom. (C) Representation of the
most frequent shortest communication path (i.e., frequency = 46%). The amino acids that participate in
the path are shown as magenta spheres centered on the Cα-atoms, whereas GTP, which participates in the
path as well, is shown as a red sphere centered on the C4′ ribose atom. The two apical residues in this path
are A152 and I222, located, respectively, in the α-helical and Ras-like domains.

Clustering

The original RMSD- and DRMS-based clustering module allowed
the choice of three different algorithms: leader-like,34 hierarchi-
cal35 and quality threshold-like (QT-like).36 QT-like differs from
the original QT algorithm in the check performed to assess whether
a conformation belongs to a cluster or not. The original QT builds
a perspective cluster for each frame by comparing it with all oth-
ers and adding conformations progressively farther away from the
starting frame until each new addition is within the chosen threshold
with respect to all previously added frames. The largest of all these
perspective clusters is then taken as the first cluster, its members are
taken out of the conformation population and the procedure is run
again until all conformations are either in a cluster or isolated. The
threshold can be seen as the diameter of the cluster thus formed. In
contrast, QT-like builds the clusters only checking that newly added
conformations are within the threshold with respect to the reference
frame; the threshold is thus the radius of the cluster.

The clustering module has been optimized both in its perfor-
mance (speed and memory usage) and accuracy. In the leader-like34

algorithm (the fastest but least accurate one), each subsequent frame
is compared with the existing cluster centers and, in case no clus-
ter center is within the threshold, a new cluster is created with the
frame as its center. The original implementation allowed the choice
of two different frame-comparison modalities. According to the first
modality a frame is compared with all the existing clusters and
assigned to the nearest one (more accurate, default behavior). With
the second option a frame is assigned to the first cluster within the
threshold (faster). In the latest version a third option has been added,
such that each frame n is compared with the existing clusters moving

backward from the cluster that holds frame n − 1, to the cluster that
holds frame n−2, and so on, until a distance lower than the threshold
is found. In non-Markovian data sets (e.g., snapshots of MD simu-
lations saved every few ps which are correlated) this approximation
greatly speeds up the process, because the likelihood that a frame
belongs to the same cluster as the preceding frame(s) is quite high.
The accuracy of the new option is only slightly lower than the “com-
parison with all clusters” approach, but the execution is faster than
the original “stop at first viable cluster” option. Leader-like cluster-
ing is less accurate than the QT or the Hierarchical algorithms since
it compares each frame only with the clusters that have been already
found along the trajectory, thus making the outcome dependent on
the frame order.

More relevant improvements concern the Hierarchical and QT-
like algorithms. Indeed, they have been both modified so that the
original memory requirements have been almost halved. Further-
more, the actual clustering algorithms massively use multithreading
in the CPU-intensive computation of the inter-frame distances
(RMSD or DRMS). Also, the distance matrix can now be saved
for later use, so that, if clustering with different threshold values
is desired, the distance-computing step needs to be performed only
once. Finally, the original two-pass clustering has been improved as
well. In detail, after a first clustering run on a subset of frames, a sec-
ond pass can be run that assigns each considered frame to the nearest
cluster found in the first run. In the original version, frames with no
clusters within a distance lower than the threshold were labelled
as isolated. In contrast, Wordom now treats these isolated frames as
new cluster centers, so that new clusters can be found and populated
in the second run. This improves the overall accuracy and allows
for a smaller portion of the total data set to be used in the first run.
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Figure 5. Complex network analysis of free energy landscapes. (A) Conformation space network. Nodes
and links are protein conformations (i.e., microstates, see main text) and direct transitions sampled during
the MD simulation, respectively. Node size is proportional to the population of the microstate, whereas
link width is proportional to the transitions frequencies, i.e., larger link widths indicate more frequent
transitions. Densely connected regions of the network represent rapidly interconverting microstates that
belong to the same free energy basin (highlighted by a shaded circle). (B) Simplified example of a two state
system. The free energy barrier between the two macro-states is represented by a region of minimum flow
in the network (identified by a minimum-cut). (C) Cut-based free energy profile (cFEP). The free energy is
projected onto the partition function-based reaction coordinate Z , a projection that preserves the barriers as
it takes into account all possible pathways to a reference microstate.46 The solid vertical line indicates the
correspondence between the minimum-cut and the highest free energy barrier.

When accuracy is paramount, the QT-like algorithm is proba-
bly the most appropriate, being more accurate than the leader-like
one and significantly faster (with comparable accuracy) than the
Hierarchical algorithm (Table 4). Yet, in spite of the improvements,
it remains considerably memory-hungry. Therefore, when dealing
with big data sets (>1M–10M frames, depending on the available
computing power and memory), with which it is impossible to con-
sider all frame–frame distances, the user can choose to either use
QT on a subset of frames and then run a two-pass clustering, or to
opt for the leader-like algorithm.

Determination of Free Energy Basins and Barriers

Wordom has two distinct modules, cFEP46 and KGA,40 devoted
to the identification of (meta)stable states sampled by MD simula-
tions. The key idea of cFEP and KGA is to group conformations not
according to structural criteria, but mainly according to equilibrium
kinetics. In this way, an analysis of the MD trajectory in terms of free
energy basins, i.e., basins of attraction of the dynamics, is provided.
The main advantage of cFEP with respect to KGA is the informa-
tion on the height and location of the free-energy barriers along the
cumulative partition function,46 which can be used to identify the
transition state structure(s).52 On the other hand, the KGA proce-
dure does not require the use of a reaction coordinate to determine
the free-energy basins.40

For both cFEP and KGA procedures, MD snapshots (i.e.,
Cartesian coordinate sets) need to be finely clusterized and assigned
to a discrete set of microstates. Clusterization can be done according
to atomistic, i.e., RMSD-based clustering, or to coarse-grained rep-
resentations such as secondary structure strings. Both RMSD-based
and coarse-grained clustering have proven to be good discretiza-
tion methods of MD trajectory snapshots into a set of microstates
that describe large conformational changes (see Ref. 40, 48, and
53–56 for examples in protein folding). Application to large proteins
requires more sophisticated clustering procedures like principal
component space.57

Mincut-Based Free Energy Profile

The cFEP module refers to a rigorous method introduced by Krivov
and Karplus46 for determining a one-dimensional free energy profile
that preserves the barriers between free energy basins; given the
barriers, free energy basins can be determined. The method uses
the relative partition function,46 which is a reaction coordinate that
takes into account all possible pathways to a reference state (e.g.,
the folded state).

The cFEP algorithm is based on a network description of the
conformational dynamics. Each microstate (see above) represents a
node of the conformation space network53, 58 and a link is made if
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Figure 6. Network description of MD and evaluation of kinetic distance. The high-dimensional free-
energy surface is coarse-grained into nodes of a network. The figure shows a schematic illustration of
the transition network of a β-sheet peptide where nodes represent microstates and links represent direct
transitions sampled along the MD simulation(s). The size of the nodes and links is proportional to the
statistical weight of the microstates and number of transitions, respectively. The cFEP method implemented
in Wordom requires a reference microstate. In this simplified illustration, the reference microstate is the
large red sphere in the center of the folded state (which is the β-sheet structure, i.e., the basin on the left).
The kinetic distance of each node from the reference microstate can be evaluated in Wordom by the folding
probability (pfold) or the mean first passage time (mfpt). The kinetic distance is rendered by the continuous
coloring from red (folded, i.e., pfold = 1 or mfpt = 0) to blue (unfolded, i.e., pfold = 0 or mfpt = infinity).

a direct transition between two microstates is observed during the
timeseries in a time step of a given size (see Fig. 5).59

The cFEP module implemented in Wordom is a precise and fast
approximation of the minimum-cut method.60, 61 The free energy is
projected as a function of the partition function relative to a reference
node.39, 46 With this method, microstates are ranked according to
their kinetic proximity with respect to a reference microstate (Fig. 6).
The relative partition function is used as the progress coordinate,
and the free energy barriers are determined as a function of it, either
based on the probability of reaching the folded state before unfolding
(pfold)

46 or on the mean first passage time (mfpt)39 to a selected node
(both calculated analytically from the transition matrix). The pfold

implementation, which requires a target node, is appropriate to find
barriers between two well-defined basins, which are specified by the
user through the assignment of pfold = 1 to the representative node
of one basin, and pfold = 0 to the representative node of the other.
On the other hand, the mfpt-based method is more suitable for free
energy profiles relative to a single target basin (e.g., for unfolding

profiles), for which the representative node of the target basin is
assigned mfpttarget = 0.

Kinetic Grouping Analysis

The free energy basins are determined by KGA on the basis of
kinetic behaviors (fast relaxation at equilibrium) along an MD sim-
ulation.40 The KGA method is based on a network description of
the conformational dynamics.

Two protein microstates are grouped in a basin if, along the
MD trajectory, they interconvert frequently within a short commit-
ment time τcommit, which represents a typical relaxation time within
basins. The principle behind this approach is that if two conforma-
tions interconvert rapidly, they are not separated by a barrier and
therefore belong to the same basin. The τcommit is a characteristic of
the investigated system. It is an important (user-chosen) parameter
of KGA and defines the resolution with which basins are isolated. A
short τcommit will group structures only locally or if the free energy
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surface is very smooth. A longer τcommit is more generous and might
group sub-basins, isolated by a shorter τcommit, into larger basins.
The log–log plot of the distribution of first passage times to the
native microstate (or a representative microstate of another basin)
usually reflects two timescales: the inter- and intra-basin relaxation
times (see Fig. 7 of Muff and Caflisch40). The barrier that separates
the two regimes can give a good indication for the relaxation time.

The KGA module allows for isolation of either all relevant
basins at once or of a single basin. In the first case, for a fixed
commitment time τcommit, a matrix with interconversion (commit-
ment) probabilities pcommit between any pair of microstates can be
calculated in principle, and microstates with pcommit ≥ 0.5 are
grouped together. Because the computational cost of all-against-
all calculations increases quadratically, in practice one selects a
subset of highly populated microstates (e.g., the 500 most popu-
lated microstates), calculates the pcommit-matrix and divides them
into basins. In a post-processing step, all other microstates are
assigned commitment probabilities to the isolated basins; finally,
all microstates having a pcommit ≥ 0.5 to a given basin are assigned
to it. Otherwise, the microstates remain unassigned. Both the heavy-
microstate calculation and the post-processing are done by Wordom
in the same function. On the other hand, if only one basin is of inter-
est or if the relaxation times within basins lay on different timescales,
it is better to choose an appropriate τcommit for each basin separately
and then calculate the commitment probability (pcommit) according
to it. In this way, it is possible to isolate basins one-by-one. In this
case, the user has to run the procedure a number of times equal
to the number of basins that need to be isolated. In addition to the
τcommit, a representative microstate of each basin (usually the most
populated microstate in the basin) has to be specified. Finally, all
microstates that commit to the representative microstate of a basin
with probability pcommit ≥ 0.5 are considered as part of that basin.

Python Bindings

Using the SWIG (simple wrappers and interface generator)62 tools,
a python module has been written that gives access to most of
Wordom’s input/output functions and structures in the python envi-
ronment via a simple import command. Basic analysis functions
(e.g., RMSD, distances, atoms selections) are also exposed to the
python environment. The availability of Wordom’s input/output
functions allows scripts to operate directly on molecular data,
whereas access to Wordom’s analysis functions makes it easy to
compute properties on molecules or whole trajectories, and to fur-
ther process the output without writing full-fledged C code or resort
to temporary files. It is also practical to write the prototype of an
analysis module in python and then convert it to C to enhance
its performance, as has been done for some of the recently added
modules.

Conclusions

Wordom is a user-friendly program for manipulating and analysing
data from structural studies and molecular simulations. The latest
release represents a significant improvement and enrichment of the
original version published in 2007,1 as it provides new analysis
tools that are unique to Wordom. These include new procedures for

efficient structural analysis such as dynamic PSN and shortest com-
munication path modules, which are effective tools to infer amino
acids essential for stability and function as well as to unravel intra-
molecular and inter-molecular communication mechanisms. Other
novelties are user-friendly methods for determining free energy
basins and barriers using the network of transitions sampled by MD
simulations. With these new tools, Wordom can be used to analyze
the free energy surface and therefore investigate the thermodynam-
ics and kinetics of complex molecular processes, e.g., the reversible
folding of structured peptides (Fig. 6).

Improvements include also the implementation of an interface
with the popular scripting language Python.

Like the original version, this version of Wordom is released
under the general purpose license (GPL), which allows anybody
to download, modify, and redistribute both source code and binary
files. This license has been adopted in order to foster diffusion and
encourage contributions to the code.
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Pokornỳ, I.; Skřivánek, J.; Wu, M. Comput Phys Commun 2005, 165,
59.

18. Pascual-Ahuir, J.; Silla, E.; Tunon, I. J Comput Chem 1994, 15, 1127.
19. Tirion, M. Phys Rev Lett 1996, 77, 1905.
20. Delarue, M.; Sanejouand, Y. J Mol Biol 2002, 320, 1011.
21. Kovacs, J.; Chacón, P.; Abagyan, R. Proteins 2004, 56, 661.
22. Zheng, W.; Brooks, B.; Doniach, S.; Thirumalai, D. Structure 2005, 13,

565.
23. Bahar, I.; Atilgan, A.; Erman, B. Fold Des 1997, 2, 173.
24. Marques, O.; Sanejouand, Y. Proteins 1995, 23, 557.
25. McCammon, J. A.; Harvey, S. Dynamics of Proteins and Nucleic Acids;

Cambridge University Press: Cambridge, 1987.
26. Kraskov, A.; Stoegbauer, H.; Grassberger, P. Phys Rev E 2004, 69,

66138.
27. Lange, O.; Grubmuller, H. Proteins 2006, 62, 1053.
28. Kannan, N.; Vishveshwara, S. J Mol Biol 1999, 292, 441.
29. Brinda, K. V.; Vishveshwara, S. Biophys J 2005, 89, 4159.
30. Vishveshwara, S.; Ghosh, A.; Hansia, P. Curr Protein Pept Sci 2009, 10,

146.
31. del Sol, A.; Fujihashi, H.; Amoros, D.; Nussinov, R. Mol Syst Biol 2006,

2, 2006.0019.
32. Ghosh, A.; Vishveshwara, S. Proc Natl Acad Sci USA 2007, 104, 15711.
33. Dijkstra, E. Numer Math 1959, 1, 269.
34. Hartigan, J. Clustering Algorithms; Wiley: New York, NY, USA, 1975.
35. Johnson, S. Psychometrika 1967, 32, 241.
36. Heyer, L.; Kruglyak, S.; Yooseph, S. Genome Res 1999, 9, 1106.
37. del Sol, A.; O’Meara, P. Proteins 2005, 58, 672.
38. Amitai, G.; Shemesh, A.; Sitbon, E.; Shklar, M.; Netanely, D.; Venger,

I.; Pietrokovski, S. J Mol Biol 2004, 344, 1135.

39. Krivov, S. V.; Muff, S.; Caflisch, A.; Karplus, M. J Phys Chem B 2008,
112, 8701.

40. Muff, S.; Caflisch, A. Proteins 2008, 70, 1185.
41. Suhre, K.; Sanejouand, Y. Nucleic Acids Res 2004, 32 (Web Server

Issue), W610.
42. Eyal, E.; Yang, L.; Bahar, I. Bioinformatics 2006, 22, 2619.
43. Zheng, W. AD-ENM Web Server. Available at: http://enm.lobos.nih.

gov. Accessed on October 12, 2010.
44. Lindahl, E.; Azuara, C.; Koehl, P.; Delarue, M. Nucleic Acids Res 2006,

34 (Web Server issue), W52.
45. Hollup, S.; Salensminde, G.; Reuter, N. BMC Bioinformatics 2005, 6,

52.
46. Krivov, S. V.; Karplus, M. J Phys Chem B 2006, 110, 12689.
47. Vendruscolo, M.; Dokholyan, N.; Paci, E.; Karplus, M. Phys Rev E

2002, 65, 61910.
48. Paoli, B.; Pellarin, R.; Caflisch, A. J Phys Chem B 2010, 114, 2023.
49. Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577.
50. Orengo, C.; Michie, A.; Jones, S.; Jones, D.; Swindells, M.; Thornton,

J. Structure 1997, 5, 1093.
51. Van Wynsberghe, A.; Cui, Q. Structure 2006, 14, 1647.
52. Muff, S.; Caflisch, A. J Chem Phys 2009, 130, 125104.
53. Rao, F.; Caflisch, A. J Mol Biol 2004, 342, 299.
54. Rao, F.; Settanni, G.; Guarnera, E.; Caflisch, A. J Chem Phys 2005, 122,

184901.
55. Ihalainen, J.; Paoli, B.; Muff, S.; Backus, E.; Bredenbeck, J.; Woolley,

G.; Caflisch, A.; Hamm, P. Proc Natl Acad Sci USA 2008, 105, 9588.
56. Paoli, B.; Seeber, M.; Backus, E.; Ihalainen, J.; Hamm, P.; Caflisch, A.

J Phys Chem B 2009, 113, 4435.
57. Yew, Z.; Krivov, S.; Paci, E. J Phys Chem B 2008, 112, 16902.
58. Gfeller, D.; De Los Rios, P.; Caflisch, A.; Rao, F. Proc Natl Acad Sci

USA 2007, 104, 1817.
59. Gfeller, D.; de Lachapelle, D. M.; De Los Rios, P.; Caldarelli, G.; Rao,

F. Phys Rev E 2007, 76, 026113.
60. Gomory, R.; Hu, T. SIAM J Appl Math 1961, 9, 551.
61. Krivov, S.; Karplus, M., Proc Natl Acad Sci USA 2004, 101, 14766.
62. Beazley, D. The Simple Wrapper and Interface Generator. Available at:

http://www.swig.org.

Journal of Computational Chemistry DOI 10.1002/jcc


