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ABSTRACT: Several methods have been developed in the past

few years for the analysis of molecular dynamics simulations of

biological (macro)molecules whose complexity is difficult to
capture by simple projections of the free-energy surface onto
one or two geometric variables. The locally scaled diffusion map
(LSDMap) method is a nonlinear dimensionality reduction
technique for describing the dynamics of complex systems in
terms of a few collective coordinates. Here, we compare
LSDMap to two previously developed approaches for the
characterization of the configurational landscape associated

oy

with the folding dynamics of a three-stranded antiparallel 3-sheet peptide, termed Beta3s. The analysis is aided by an improved
procedure for extracting pathways from the equilibrium transition network, which enables calculation of pathway-specific cut-based
free energy profiles. We find that the results from LSDMap are consistent with analysis based on transition networks and allow a
coherent interpretation of metastable states and folding pathways in terms of different time scales of transitions between minima on

the free energy projections.

1. INTRODUCTION

Molecular dynamics (MD) simulations are routinely used to
collect information on the motion of high dimensional systems,
in many different areas of research. Proteins serve as paradigms
for analyzing complex dynamics because of the many degrees of
freedom involved and the important role of entropy, for example,
in the protein folding mechanism and free energy surface." The
ability to interpret the results of peptide or protein simulations
often requires the definition of collective coordinates with which
to describe the dynamics and understand the nature of transition
ensembles. Several research groups have proposed different
methods to accomplish this task. For example, recent approaches
to analyze MD data include the definition of isocommitor
surfaces,””* Bayesian analysis methods,” nonlinear dimensionality
reduction,®” genetic neural network algorithms,w’1 ! and likelihood
maximization;'” these approaches take advantage of the large
number of rare events that can be harvested from methods like
the string method,">™'* transition path sampling,'®”" meta-
dynamics,”® and milestoning*""** once means for distinguishing
the stable states of a reaction are known.

In the current work, we apply the recently developed Locally
Scaled Diffusion Map (LSDMap) technique to the characteriza-
tion of the dynamics of a designed 20-residue, three-stranded
antiparallel 5-sheet miniprotein (termed Beta3s). LSDMap has
already been successfully applied to other systems: isomerization
of alanine dipeptide, folding of a coarse-grained model of the
SH3 protein domain,* and polymer reversal inside a nanopore.”*
Beta3s provides an ideal additional test for the LSDMap method,

v ACS Publications ©2011 american chemical Society

as it has been extensively studied with different approaches,” >

and these studies have shown that, although Beta3s consists of a
single [3-sheet, its folding dynamics is far from simple, as it
involves a well-defined native state and several misfolded meta-
stable states.

In previous work, the conformational space of Beta3s has been
sampled by implicit solvent®" MD simulations at 330 K for a total
of 20 us durin% which about 100 folding and unfolding events
were observed.”® In these simulations, Beta3s folds reversibly,
without any bias, irrespective of the starting conformation. The
interpretation of Beta3s simulations is significantly more challen-
ging than the test cases previously used in the LSDMap approach.
In particular, as a transferable force-field is used, there is no a
priori information on the nature of the folded state, nor on the
possibility of populating misfolded conformations. In contrast,
previous applications of LSDMap have been limited to simplified
protein models where empirical reaction coordinates are more
easily used to interpret the results.”>**

The free energy surface of Beta3s has been previously char-
acterized by two different methods for determining metastable
states: the minimum-cut based free energy profile method*”** and
kinetic grouping analysis.”® Both methods require (geometric)
clustering of the MD snapshots into nodes of a network whose links
are the transitions observed during the equilibrium MD sampling,
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The essential idea of these two methods is to group the clusters
into free energy minima, according not to their standard struc-
tural features, but rather to the equilibrium dynamics. In other
words, the MD trajectory is used to determine the populations of
the states, which provide the relative free energies and the rates of
transition between the states, which yield the free energy barriers.
Notably, both methods yield the same free energy basins of
Beta3s whose most populated state is the designed antiparallel
p-sheet structure (population of about 35% at 330 K). Interest-
ingly, the denatured state of Beta3s presents several misfolded
traps stabilized by enthalpy (with a cumulative population of
about 20%), as well as a basin with fluctuating helical conforma-
tions and a heterogeneous entropic state populated at about 10%
and 35%, respectively.

Additionally, in the work of Qj, et al."' the same long simula-
tions obtained by Muff, et al.”® were used to construct networks of
transition ensembles. Committor probabilities were then deter-
mined to the native state and misfolded states, and these were used
as input to a genetic neural network (GNN) algorithm to extract
physically meaningful collective coordinates. They found the sum
of the distances of eight key hydrogen bonds along the backbone
to be the best geometric coordinate for the overall folding/
unfolding reaction and identified three distinct folding pathways
and the distinct coordinates that characterized them.

In the present work, we relate the diffusion coordinates and
time scales that emerge from LSDMap analysis to the metastable
states 1dent1ﬁed in Krivov et al.*’ and the reaction coordinates of
Qi etal.'"! We also introduce an improved procedure for defining
the pathways. This, together with the LSDMap analysis, provides
insights into the dynamics unique to each pathway.

2. METHODS

2.1. LSDMap Analysis. As mentioned above, we apply the
LSDMap™® formalism to the same Beta3s MD data used by
Krivov et al.”” and Qi et al." As both the locally scaled diffusion
map (LSDMap) methodology and Beta3s MD simulation have
been detailed in previous publications, we give only a brief
overview here, and refer the interested reader to the original
publications.

As detailed in ref 27, MD simulations of the Beta3s system
were performed with the program CHARMM.?? All of the polar
hydrogen atoms and the heavy atoms are included in the
simulation; solvation effects are incorporated through the solvent
accessible surface area implicit solvent model.>* The use of an
implicit solvent model is supported by the fact that the same
model used here (with the same surface-tension like parameters)
has been used previously to collect statistically significant sam-
pling of different processes that are computationally prohibitive
with explicit solvent. These processes include the rever51ble
folding of a simplified-sequence version of protein G,** the
mechanical (un)folding of a helical peptide,*>*® and the early
steps of aggregation of the Alzheimer’s amy101d -f3 peptide, which
have revealed the amyloidogenic “hot-spots”.>” Moreover, using
the same implicit solvent model, MD simulation of amyloid-
forming peptides in the presence of small-molecule inhibitors of
aggregation have shed light on the mechanism of inhibition.***’

In the current work, conﬁguratlons were sampled every 20 ps
of MD simulation, for a total of 10° snapshots. We use a subset of
the original data, by collecting configurations every 100 ps, for a
total 0of 200 000 configurations that serve as input to the LSDMap
calculation.

LSDMap is a recently developed*® nonlinear dimensionality
reduction technique for characterizing dynamics at different time
scales in terms of a few collective coordinates. In general, the
application of dimensionality reduction techniques is based on
the assumption that the high dimensional data set under
consideration lies on a manifold of much lower dimensionality
than the full configuration space. LSDMap treats the whole
ensemble of configurations sampled from an MD simulation as a
noisy data set that resides on an low-dimensional underlying
“manifold”. This “manifold” is not a mathematically defined
manifold with constant dimension, but it is locally heteroge-
neous, presenting a different intrinsic dimensionality in different
regions of the configurational landscape.

These local differences are taken into account in the LSDMap
formalism and are used to locally “renormalize” the landscape in
the construction of global eigenfunctions of the Fokker—Planck
(FP) operator. These eigenfunctions have been shown to
represent good reaction coordinates for describing the diffusive
dynamics of systems sampled by MD simulations. The mathe-
matical details on diffusion maps can be found in the original
paper by Coifman and Lafon,* and applications to model
nonmolecular Fokker—Planck systems in ref 41. The full details
on the motivation and construction of the locally scaled version
of diffusion map (that is, LSDMap) are presented in ref 23. For
completeness, a brief overview of the LSDMap procedure is
provided below.

Macromolecular systems in the high-friction regime obey the
FP equation

o 1; ax,(ﬁ o, aE,.)p = ~Hep (v

where p = p(x,t) is the probability density, N is the number of
degrees of freedom, 3 = 1/ (kg T), kg is Boltzmann’s constant, T'is
the temperature, E = E(x) is the potential energy function, and
Hpp is the FP operator. The FP equation can be cast as an
eigenvalue problem, and in systems for which there is a separa-
tion of time scales between m slow collective modes and the
remaining faster ones, the solution can be written as

Pl t) = glx) + 3, aip(x)e @)

where ¢; and 4, are the eigenfunctions and associated eigenvalues
of Hpp, respectively, and the coeflicients c; are determined by the
initial distribution p(x,t = 0). The zeroth eigenfunction ¢
corresponds to the Boltzmann distribution; the first eigenfunc-
tion ¢, to the collective motion with the slowest time scale; the
second eigenfunction ¢, to the second slowest collective motion,
etc. When normalized by the Boltzmann distribution, these
eigenfunctions ¢;/¢o possess the qualities of good reaction
coordinates in the sense that the dynamics on the longer time
scales can be described using only these m collective degrees of
freedom.*>* The functions 1; = ¢,/ ¢ are elgenfunctlons of the
backward FP operator. These coordinates are the “diffusion
coordinates” (DCs); the “diffusion map” is the nonlinear map-
ping from the molecular configuration space to the diffusion
coordinate space.
The LSDMap is based on the kernel

Hxi —x;‘||2
K; = - 3
i exp( 26, (3)
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Figure 1. The exponential of the negative of the FP eigenvalues 4; as a
function of eigenvalue number. The presence of a spectral gap, denoted
by the vertical black bar, indicates that the essential features of the
dynamics can be captured by the first DC.

where llx; — «fl is the root-mean-square deviation (rmsd)
between the two configurations x; and «;, and &; is the local scale
for x;. This local scale represents the radius in configuration space
around x; within which the underlying manifold can be approxi-
mated by a hyperplane tangent to the manifold, that is, is
approximately linear. The procedure to estimate the local scale
g; around every point x; in the data set is detailed in ref 23. The
kernel Kj; is related to the “ease” with which x; can diffuse into x;.
A normalized version of this kernel (see ref 23) represents the
Markov matrix for the data set of molecular configurations, and
the diagonalization of such a matrix yields a set of vectors that
serve as diffusion coordinates.

2.2. Construction of Pathways. The network of states emer-
ging from the dynamics of Beta3s is detailed in Krivov et al.”” and
Qi et al.'"' Nine major non-native states were previously identified
(see Figure 7 of ref 27). The different pathways are constructed by
considering the connections between the native state and all the
non-native states; only a small number of transitions occur
between the non-native states. Consequently, the transitions
between different non-native states and the native state define
the possible foldin§ and unfolding pathways.

In earlier work,™* the dynamics of structures were character-
ized by their commitment probabilities for folding from state i to
the native state (pg.14,) and for unfolding from the native state to
state i (Punfola,)- 1deally, if a structure is specifically associated
with pathway i, it would satisfy the condition pg14,; + Punfold,i = 1.
However, because pfoq; and punfola; are calculated separately
based on the statistics of the network, their sum can exceed one.
Qi et al'! grouped structures together when pgi4; + Punfold; €
(0.8,1.2). Here, we employ a more restrictive scheme based on a
series of state-to-state transitions. Specifically, we identify trajec-
tory segments that go from the native state to non-native state
i and remove those segments that also visit the other major non-
native states. By this procedure, three main pathways are
detected with sufficient statistics needed for a detailed analysis;
these are the three pathways that are characterized in the
following.

We identify 17 folding events and 18 unfolding events that
follow pathway 1. There are 48533 structures that are clustered
based on rmsd into 2523 nodes with 1569 pairwise links within
nodes and 7579 pairwise links between nodes. We varied the
commitment time to maximize the number of structures with
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Figure 2. Free energy (in units of kcal/mol) as a function of the
diffusion coordinates. Free energy as a function of the first DC (a), free
energy as a function of the first DC and second DC (b), first DC and
third DC (c), and first DC and fourth DC (d). The metastable states
associated with the free energy minima are labeled with letters A—F.

Prold; + Punfold;i € (0.8,1.2); this yields a commitment time of 11.3 ns,
compared with 10 ns in previous work."" Using this commit-
ment time, 45131 of the 48533 structures (nearly 93%) satisfy
the commitment probability sum condition even though it was
not explicitly used in construction of the pathway, which
validates the procedure. By the same token, we identify 11
folding events and 10 unfolding events that follow pathway 2;
there are 20658 structures that are clustered into 1966 nodes
with 1118 pairwise links within nodes and 4728 pairwise links
between nodes. Pathway 3 contains 6 folding events and 7
unfolding events; there are 9826 structures that are clustered
into 1043 nodes with 607 pairwise links within nodes and 2478
pairwise links between nodes. 80% of the structures in the
trajectories of both pathways 2 and 3 satisfy the commitment
probability sum criterion with commitment times of 13.6 and
12.5 ns, respectively.

3. RESULTS

Figure 1 shows the first ten FP eigenvalues obtained by LSDMap
applied to the MD data of Beta3s. As mentioned above, the zeroth
eigenvalue Ay = 0 corresponds to the zeroth eigenfunction ¢, that is
the Boltzmann distribution. The first eigenvalue 4, corresponds to
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Table 1. Pearson Correlation of Hydrogen Bonds with the
First DC

Pearson correlation

hydrogen bond with the first DC
H,— 05 0.77
H,—O0,0 0.84
Hs—Os 0.59
H—04 0.75
H;s—0p, 0.71
H,,—Os 0.77
Hi6—Op3 0.56
Hi;— 016 0.69

the collective motion with the slowest time scale, the second
eigenvalue 4, corresponds to the collective motion with the
second slowest time scale, and so on. The large gap denoted by
the black vertical bar in Figure 1 shows that there is a separation
of time scales, and one collective slow motion dominates the
dynamics of Beta3s on long time scales. This slow collective
motion corresponds to the folding and unfolding of the peptide.
A detailed discussion on the relation between the different
collective motions at different time scales and the diffusion
coordinates is presented in section 3.1.

Figure 2a shows the free energy as a function of the first DC.
The one-dimensional folding and unfolding free energy barrier of
about 1.5 kcal/mol predicted by the first DC is comparable to the
free energy barrier as a function of the best overall reaction
coordinate presented in Figure 7a of the work of Qj, et al.'' where
a genetic neural network (GNN) analysis was used. Indeed, we
find a high correlation (Pearson correlation coefficient ~0.89)
between the first DC and the best reaction coordinate describing
the overall folding reaction in ref 11, that is, the sum of the
hydrogen bond distances for the eight hydrogen bonds between
atoms H3— 0,0, Hs—Og, H;1— 014, Hi3— 016 Hio— O3, Hg— O,
H;3—O0y3, and H;6—0;3. Throughout our analysis, we use the
same numbering scheme for the hydrogen bonds as in ref 11, that is
also shown in Figure 8. For example the hydrogen bond distance for
H;—0 corresponds to the distance between the H atom on the
third nitrogen atom from the N-terminus and the tenth O atom
from the N-terminus. As shown in Table 1 and consistent with the
results presented in ref 11, the correlation of the first DC with the
O—H distance of each hydrogen bond individually is lower than
that with their sum, suggesting that the formation of this set of eight
hydrogen bonds is a better variable for describing the overall folding
than any single hydrogen bond by itself.

Figure 2b shows the free energy as a function of the first DC
and the second DC. The two deepest minima correspond to the
folded (A) and unfolded (B) states. The second DC represents a
motion deviating from the main folding path, and defines several
local free energy minima corresponding to misfolded states. The
local minima are also evident, from a different “angle”, in the plot
of the free energy as a function of the first DC and third DC
(Figure 2c), and first DC and fourth DC (Figure 2d). State E,
which appears as one misfolded minimum in the free energy as a
function of the first DC and the second DC, splits into three
substates (E;, E,, and E,) when the additional coordinates
third DC and fourth DC are used. Additionally, the fourth DC
also describes a motion internal to the folded state, that appears
as a split minimum in the folded basin of the free energy in

Figure 2d.

2" pc

2Mpc

Figure 3. Local geometric indicators associated with each molecular
configuration are plotted as a function of the first DC and second DC.
Each dot corresponds to one of the configurations in the data set, and
different colors indicate different values for the local scale ¢ (top panel),
and number of local intrinsic dimensions (bottom panel).

As discussed in section 2, the local geometric properties of
high-dimensional MD data sets are expected to vary from region
to region in the configuration space. The LSDMap approach
quantifies this heterogeneity by providing a local length scale and
local dimensionality around each point in the data set. Figure 3
illustrates the variability of the local scales and the number of
local intrinsic dimensions on the Beta3s landscape as determined
by LSDMap, plotted as a function of first DC and second DC.
For each configuration of the sample, the local scale is shown on
the top panel and the local intrinsic dimension on the bottom
panel. By comparing this figure with the free energy landscape as
a function of the first DC and second DC reported in Figure 2b,
we observe that, roughly speaking, configurations near the free
energy minima have a larger number of intrinsic dimen-
sions than those close to free energy barriers, as expected.”**
In addition, the local scale is much larger in the unfolded state
than in any other states. This large difference in local scale
suggests that configurations in the entropically stabilized region
of the unfolded state are separated by a larger rmsd than
configurations within the native basin or the enthalpic traps.

3.1. Characterization of States. The states corresponding to
the different free energy minima are labeled with letters from
A—F in Figure 2 and correspond to different metastable states:
folded (A), unfolded (B), and several partially misfolded states
(C—F). The average structural features of each of these states is
investigated by considering the probability to form hydrogen
bonds in each of these minima. The results are reported in terms
of “hydrogen bond maps” in Figure 4 and Figure S. A hydro-
gen bond is considered formed if the OH distance is smaller
than 2.4 A and the NHO angle is larger than 2.44 rad. The fold-
ing pathways that emerged in the analysis discussed above
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Figure 4. Representative structure and probability to form hydrogen bonds in the main different metastable states identified by the first four DCs. The
letters A—F correspond to the states identified in Figure 2. Native and non-native hydrogen bonds formed in the different structures are shown in orange
and black, respectively. The black dots in the hydrogen bond maps indicate the residue pairs that are identified by Qi, et al.'" as forming native

hydrogen bonds.

(see section 2.2 and ref 11) are then interpreted in terms of
transitions between these minima. The states identified by LSDMap
are also compared with the states determined by the minimum-cut
based free-energy profile method for the same system in ref 27.

3.1.1. Folded State. The hydrogen bond map presented in
Figure 4 for state A shows that all ten native hydrogen bonds
identified in the paper by Qi et al.'' are formed in state A,
although with different probabilities. One additional hydrogen
bond, H;—O,, can be formed with probability ~0.4 within this
basin. This extra hydrogen bond is at the beginning of the
N-terminal antiparallel -sheet, and it is consistent with the
overall native structure of Beta3s.

While the native basin appears as a single minimum in the free
energy as a function of the first three DCs, the fourth DC splits
the native state into two substates, indicating fluctuations inside
the folded state on a fast time scale (compared with the much
slower overall folding). The two substates present a slightly
different hydrogen bond pattern: the hydrogen bond Hg—0O, is
formed with probability less than 0.1 in state A;, while it is formed
with probability ~0.5 in state A,; additionally, the hydrogen
bond Hg—O, can form with probability ~0.1 in state A,. The
probability of formation of all the other hydrogen bonds is
essentially indistinguishable from the map reported in Figure 4,
both in A; and A, (see Figure S1 in Supporting Information).

3.1.2. Unfolded State. The free-energy minimum labeled B in
Figure 2 corresponds to the unfolded state, with no hydrogen

Hydrogen
=S

> O ©

n

2 4 6 8 10121416 18 20
Oxygen

Figure S. Representative structure and probability to form hydrogen
bonds in the helical state Ej,. The color scheme is the same as Figure 4.

bonds formed with probability higher than 0.1. The configura-
tions in state B are quite different from each other and, although
different sets of hydrogen bonds can be transiently formed, on
average they do not present a persistent hydrogen bond pattern.
The unfolded state can be understood as the gathering of many
low-populated partially misfolded states. The reason why they
are gathered together by the LSDMap analysis is that these
mostly unfolded structures can diffuse easily into each other
despite of the large rmsd between them. Additionally, it is clear
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Figure 6. Projection of the configurations corresponding to the three main folding pathways onto the free energy landscape as a function of first DC and
second DC (first row), first DC and third DC (second row), and first DC and fourth DC (third row). The projected points are colored according to the
value of the best physical variable identified by the one-descriptor NN models (see text for details). The free energy projections are shown in grayscale.
The figures in the first column correspond to pathway 1, and the projections are colored by the sum of the hydrogen bond distances between atoms
H;3—0;6 and H;—013; in the second column to pathway 2, colored by the sum of the distances between the geometric centers of the side chains of
residue 4 and 9; and in the third column to pathway 3, colored by the sum of the hydrogen bond distances between atoms H3—O;o and H;p—Os.

Table 2. Top One-Descriptor NN Models for Major Folding Table 3. Definitions of the Native and Non-native States for

and Unfolding Pathways”

Punfold,i ms Punfold,i and ms

pathway as target error Prola,i as target error
1 dyp of 13—16 0.1908  dyp of 3—10, 13—16 0.2778
distance of Hj3—0,6 0.1935 distance of Hj3—0O,5  0.2888
qa3 0.1987  dyp of 13—16 0.2898
2 dsc of 4—9 0.2034 dgsc of 4—9 0.2746
Ey2W of 4—9 0.2093 distance of H;p— O3  0.2766
ESE° of 4—9 02100 dgc of 4-9, 12—17, 0.2787

5-8, 13—16

Prold,i rms Punfold,i and rms

pathway as target error Prola,i as target error
3 dyp of 3—10 0.1968  CA;-CA,-CAs-CAg 02924
CA;-CA4-CAs-CAs 02016  CB4-CA4-CAs-CBs 03018
Ef of 3—10 0.2017  CA,-CA;-CA4,-CAs  0.3239

* dyp and dsc denote the sum of distances between hydrogen bonding
backbone O and H atoms and between the geometric centers of side
chains, respectively. EHec EYOW and EESC are energy terms. HB and SC
subscripts denote hydrogen bond and side chain interactions, respec-
tively; elec and VDW superscripts denote the electrostatic and van der
Waals parts of the energy function. g,; indicates the fraction of contacts

within the C-terminal hairpin; contacts were defined as in ref 25.

from Figure 2 that both the native state and most of the misfolded
states that appear as separate free energy minima are directly

13070

MSM B
Prola Calculations”

pathway native states non-native states

1 dygof 13—16< 45A
2 dscof 4-9< 475A dsc of 4—9> 10.75 A
3 (a)dygof 3—10< 425A (a) dyp of 3—10> 12.05 A
(b) dip of 3—10 < 4.25 A and (b) dyyp of 3—10 > 12.05 A and
|CA;-CA4-CAs-CAg| > 157°  CA3-CA4-CAs-CAg € (— 33°,59°)
“We define the native and non-native states according to the distribu-
tions of the reaction coordinates (Figure S6 in Supplementary Material).

dyp of 13—16 > 12.5A

connected to the entropically stabilized region of the unfolded
state; this is not surprising as we expect the misfolded structures
to at least partially unfold before proceeding to the folded state,
consistent with the results of ref 28.

3.1.3. Misfolded States. The main six misfolded states (labeled
as C, D, E,, E,, E, and F in Figure 2 and Figure 4) can be defined
according to the free energy as a function of the first several DCs.
The probability of forming different hydrogen bond patterns
provides information on the average structure of the peptide
in these states that can be compared to the results of previous
studies.' "’

Figure 4 shows that in state C, the C-terminal part of the
antiparallel 3-sheet is completely formed, while a mismatch of
the native hydrogen bond pattern is observed in the N-terminal
part. This state corresponds to the state named “Ns-or” (N terminal
strand out of register) in ref 27.

dx.doi.org/10.1021/jp2076935 |J. Phys. Chem. B 2011, 115, 13065-13074
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Figure 7. Cut-based free energy profile for networks clustered according to the selected coordinates (red) or all-atom rmsd (black), and the folding
probability corresponding to a Markov state model (blue) as a function of the relative partition function Z,/Z for specific pathways. Pathways are as marked.

The average hydrogen bond pattern in state D looks very
similar to what observed in state C, although the N-terminal
hairpin in state D appears to be a little closer to the native state
structure (or, equivalently, state C is more misfolded than state D),
consistent with their relative position along the first DC. In parti-
cular, configurations both in state C and in state D have high
probability of forming the pair of non-native hydrogen bonds
H;o—04 and H4—O,. In addition, non-native hydrogen bonds
H;,—0,, Hs—Og, and H,— O, can be formed in state C, while
the native hydrogen bonds H;,—O;, H;—0O(, and H;—0O;, can
be formed in state D. It is worth noting that although state C and
D only differ by a few hydrogen bonds in the N-terminal hairpin,
the free energy projections in Figure 2 suggests that state C and D
are not directly connected: the configurations in state C need to
unfold to some extent before they can proceed to state D (and
vice versa).

The average hydrogen bond pattern of state F shows that the
N-terminal (-hairpin is correctly formed while the C-terminal
one is out of register. This state corresponds to the basin named
as “Cs-or” (C-terminal strand out of register) in ref 27.

The free energy as a function of the first few DCs (Figure 2)
suggests that while states C, D, and F are accessible from partially
folded states along the folding process, states E;, E,, and Ej, are
directly connected only to the unfolded state. Indeed, these states
have a completely non-native topology and need to unfold, at
least partially, to proceed toward the correctly folded state. The
average hydrogen bond map of states E; and E, presents the
C-terminal S-hairpin partially out of register, with a few native
hydrogen bonds formed with probability ~0.2, and the forma-
tion of a non-native parallel S-hairpin connecting the N and C
termini. These states correspond to the basins named “Ch-curl1”
and “Ch-curl2” in ref 27.

The probability of forming different hydrogen bonds is very
similar in states E; and E,, and the average over the two
ensembles is presented in Figure 4. The main difference between
these two states is that hydrogen bonds H;9— 0O, H;,— 0,7 and
H;3—0,7 can form with probability ~0.2—0.3 in state E, but are

not present in state E,, while H,,— O, appear with a probability
~0.2 in E, but not in E, (Figure S2 in Supporting Information).

As shown in Figure S, state Ej, in Figure 2 corresponds to helix-
like configurations, that is, to the state named “helix” in the
analysis reported in ref 27. This state appears projected onto the
same position of the first DC as misfolded state E; and E,, along
the left boundary of the entropic state B defined by the LSDMap
analysis, and emerges as an independent state when at least the
first three DCs are used. The fact that the helical state is included
in state E in Figure 2b, and it is very close to the entropic basin
along the first DC indicates that the formation and unfolding of
this misfolded helix from the entropic basin, and the intercon-
nection of the helix into the Ch-curl state, is very rapid with
respect to the formation/unfolding of other misfolded states.
However, according to the distance between the helical state and
the native state along the first DC, it is clear that the E,, state,
together with the Ch-curl state, are the states kinetically most
distant from the native state. In other words, although the helix
can be rapidly form from the entropic basin, it takes longer to fold
from the helical state than from the other misfolded states. This
result is consistent with the findings by the minimum-cut based
free energy profiles of Krivov et al.”’

3.2. Heterogeneity of Folding Pathways. As shown in the
free energy projections onto the first four DCs Figure 2, different
misfolded states are involved in the folding and unfolding process
with the longest time scale along the first DC. Therefore, when
extracting physical details of the dynamics, multiple pathways
should be taken into account, despite the similar time scale of the
overall folding transitions in each pathway. Previous work'' on
Beta3s analyzed three folding pathways for this protein, involving
different misfolded configurations. As discussed in section 2.2,
here we group states into these pathways according to more
restrictive criteria than previously used, to eliminate trajectory
segments that visit more than one major misfolded state. This
new procedure allows us to calculate free energy profiles along
the relative partition function Z,/Z and selected descriptors
using only the states in a single pathway, in contrast to Figure 13
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native state

Figure 8. Representative structures in pathway 2 illustrating the
rearrangement of the side chains of residues 4 and 9, shown in black
and purple, respectively. Native and non-native hydrogen bonds formed
in the different structures are shown in orange and black lines,
respectively.

of ref 11, in which free energy profiles using all states were
calculated for pathway-specific variables. We are also able to
obtain pathway-specific dynamic information, for example, posi-
tion-dependent diffusion constants (see Figure S3 in Supporting
Information). Such information is important as it can help to
evaluate the quality of a selected coordinate: simple Brownian
motion with uniform diffusion constant is expected for a “good”
coordinate.™

We begin by interpreting the pathways in terms of the popula-
ion of the metastable states identified by LSDMap. Figure 6 pre-
sents the projection of the configurations visited in the different
pathways on the free energy landscape as a function of the first
few DCs. It is clear that different sets of metastable states are
visited in different pathways. In particular, pathway 1 visits the
misfolded state F (corresponding to Cs-or in ref 27), which
equilibrates with the unfolded basin on a time scale much faster
than the overall folding process (as state F clearly emerges as a
distinct state only when projected on the fourth DC, and it is not

visible at all when only the first two DCs are used). This
interpretation of pathway 1 is consistent with the description
presented in Figure 11 of ref 11: the main non-native state visited
during this pathway involves the partial misfolding of the
C-terminal hairpin, as also evident from the comparison of
Figure 6 and Figure 4. On the contrary, the main non-native
state visited in pathway 2 involves the partial misfolding of the
N-terminal hairpin (Ns-or), again consistent with the results of
Qi et al.'" Pathway 3 appear to visit a misfolded state included in the
entropic basin, which suggests that the misfolded configuration in
pathway 3 is more rapidly unfolded, compared with that of pathway
1 and 2. This is in consistence with the misfolded configurations
from the three pathways in Figure 11 of ref 11. The distinct
population of different regions of the free energy landscape as a
function of the first few DCs further validates the improved pathway
construction procedure introduced in section 2.2.

To relate the DCs to physically intuitive variables, we apply the
NN part of the GNN procedure to these pathways. Details of the
method and the choice of descriptors is the same as in ref 11
except that we exhaustively enumerate the one- and two-de-
scriptor models rather than searching them with a genetic
algorithm. In constructing the database of input structures for
the NN procedure, it is important to have a roughly uniform
distribution of commitment probability values, so that no
particular values dominate the fit. We selected 1200 and 1920
structures with roughly uniform distributions of pynfora,; for
pathways 1 and 2. For pathway 3, there were more limited
statistics, and we could not obtain a sufficient number of
structures with intermediate pynfoiq; values. However, as the
commitment probabilities are approximate (50 punfola; 7 1 —
Proldi), we were able to construct a database of 500 structures
with roughly uniform distribution of pg, 4, values for pathway 3.
Given these databases, two sets of NN calculations are performed
for each: one with only a single commitment probability as the
target (Prold; OF Punfold,» depending on the pathway); the other
with simultaneous prediction of pg1q; and punfold,- The best one-
descriptor models obtained are listed in Table 2. The mean
square errors per target are comparable and the descriptors
chosen are consistent in both cases. Consistent with the descrip-
tions of the pathways above, individual pathways are best
characterized by coordinates that track the formation of specific
hairpins. We consider each pathway individually below.

To evaluate the different descriptors, we compare cut-based
free energy profiles” for networks clustered according to either
the selected coordinates or all-atom rmsd. For pathway 1, we
group the 48533 structures into 186 bins (nodes) with width
0.1 A in dyyg of 13—16 (the sum of the hydrogen bond distances
between atoms H;s—O;3 and Hy3—O ). There are 144 pairwise
links within nodes and 9269 pairwise links between nodes. Good
correspondence is found between the two cut-based free energy
profiles (Figure 7), which suggests that the simple geometric vari-
able captures the relevant dynamics. We also calculated the folding
probability corresponding to a Markov state model ppag " using the
definitions of folded and unfolded states in Table 3. The small
spread in ppy . in the transition region further supports the
dynamic relevance of the selected descriptors (see Figure 7).
The projection of the free energy onto dpp of atoms 13—16 itself
(Figure S3 in Supporting Information) has a broad barrier
between 6 and 12 A, which corresponds to breaking of backbone
hydrogen bonds (Figure S4 in Supporting Information).

Analogous calculations are performed for pathway 2. The most
highly ranked descriptor is dsc of 4—9 (the sum of the distances
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Table 4. Top Two-Descriptor NN Models”

pathway reaction coordinates rms error
1 CBys-CA;-CA;-CBrs  Njs-CA;o-Cis-Nyg 0.1750
014-C14-Ci5-015 N;5-CAy5-Ci5-Nig 0.1781
cos angle b/w cos angle b/w 0.1783
C=0 of 15—14 C=0 of 16—15
cos angle b/w Ny4-CA4-C14-Nyg 0.1785
C=0 of 16—15
Ni3-N;5-Ny» distance of H;3—0O ¢ 0.1789
distance of H;3—0O4 ASA of 14 0.1794
distance of H;3—0 ¢ sum of CA;-CA,-CAy 0.1794
and CA,-CA4-CAjq
2 interaction b/w residues  dgc of 4—9 0.1779
1—5and 8—12
interaction b/w residues E‘S’SW of 4—9 0.1785
1—5 and 8—12
interaction b/w residues  Egc of 4—9 0.1796
1—Sand 8—12
distance of H;,—O; Es&W of 4—9 0.1801
distance of H;,—O, dsc of 4—9 0.1802
dsc of 4—9 CAs-CA,-CA, 0.1804
3 ASAide chain Of 2 Epg of 3—10 0.1773
ASAgide chain Of 2 EFI of 3—10 0.1787
ASA of 1 EEsc of 3—10 0.1788
distance of CBs-CBg CA,-CA4-CAq4 0.1803
EP of H;—0 CA;-CA,-CA-CAg 0.1806
ASA idechain Of 2 g of 3—10 0.1809

% ASA denotes accessible surface area.

between the geometric centers of the side chains of residue 4 and 9).
This descriptor was selected in ref 11, but less consistently. As
suggested by the representative structures in Figure 8, unfolding
is necessary for the side chains to move from opposite sides of the
plane (as in the non-native state) defined by the [3-sheet to the
same side (as in the native state). This finding is consistent with
the free energy (Figure 2b) as a function of the first two DCs that
shows the configurations in state C need to unfold partially
before they can fold to the native state. We group the 20658
structures of pathway 2 into 171 bins (nodes) with width 0.1 A in
dsc of atoms 4—9. There are 102 pairwise links within nodes and
6189 pairwise links between nodes. Again, there is good corre-
spondence with the rmsd based profile (Figure 7).

The best descriptor for pathway 3 is obtained by using diys of
atoms 3—10. While there is a barrier along the cut-based free
energy profile obtained from a network clustered according to
dip of 3—10 (Figure 7), considerably better correspondence
with the rmsd-based network is obtained when we also group
structures according to the descriptor giving the second best
prediction, the pseudodihedral angle between the CA atoms of
residue 3, 4, S, and 6 (Figure 7). The free energy projection on
these two variables (Figure S3 in Supporting Information)
indicates that there are multiple minima that are well-separated
but overlap in each of the individual coordinates, consistent with
the need for two variables.

Given the results for pathway 3, we exhaustively enumerated
all possible two-descriptor models for the three pathways
(Table 4). These do yield noticeably better prediction (rms
error <0.18). However, because the descriptors are often selected

to complement each other to maximize their joint information
content, they can be considerably more challenging to interpret.
Interestingly, the accessible surface area of the side chain of
residue 2 is selected multiple times for pathway 3. This residue is
a tryptophan, so it is likely that this descriptor reports on
misfolding. Other combinations of descriptors result in particu-
larly well-defined minima when the free energy is projected onto
them (e.g,, E*° of Hy— O, and CA;-CA,-CAs-CAg in Figure S5
in Supporting Information, the two blue-black regions on the left
are the native basin, and the blue region on the right is the non-
native basin). Overall, the two-descriptor analysis shows that very
good prediction of commitment probability values can be
obtained, and that the complexity revealed in the LSDMap
analysis is reflected in the two-descriptor free energy projections.
To better connect the NN results with the LSDMap analysis,
we show how the descriptors of the best one-descriptor models
vary with the first few DCs (Figure 6) by coloring structures
projected onto the DCs according to their NN descriptor values.
The fact that structures of similar color fall together supports the
choice of the selected descriptors to represent the different
folding transitions. At the same time, the adjacency of different
parts of the color scale is consistent with the improved prediction
obtained with two descriptors and the need for multiple DCs.

4. CONCLUSION

We have applied the recently proposed LSDMap approach to
the characterization of the folding process of Beta3s, a 20-residue,
three stranded, antiparallel 3-sheet miniprotein. Despite its small
size Beta3s is a complex system as previous analysis of equilib-
rium all-atom MD simulations of reversible folding close to the
melting temperature have revealed a very heterogeneous unfolded
state ensemble””** and multiple folding pathways.'">>*** The
LSDMap approach has been previously tested and applied to
extract collective coordinates to describe more simple dynamics,
such as the isomerization of alanine dipeptide, the folding of a
coarse-grained model of the SH3 protein domain,*® and a coarse-
grained polymer reversal inside a nanopore.* The identification of
folding reaction coordinates is more challenging in the case of the
Beta3s protein model used here: the peptide dynamics is simulated
with an all-atom transferable potential and its associated free
energy landscape is expected to be significantly more frustrated
than in minimalist protein models.

The LSDMap analysis provides a set of diffusion coordinates
(DCs) that allow the definition of a low-dimensional free energy
landscape on multiple time scales. The global diffusion coordi-
nates are generated in a multiscale fashion that takes into account
the local heterogeneity and noise intrinsic to the MD data set.
This approach can be seen as a “renormalization” of the config-
uration space according to the local geometry.

The first few DCs correspond to different collective motions
on different time scales. The first DC describes the overall transi-
tion between the folded and unfolded state, the slowest motion
of the system, and has a high correlation (~0.89) with the best
empirical reaction coordinate for the folding process that has
been identified in previous work."" While there is only a single
well separated time scale, there are multiple pathways with
similar barriers that contribute to this longest time scale. To
obtain a complete understanding of these pathways, a genetic
neural network algorithm has been used to extract physically
intuitive variables for the first three most populated pathways. All
the states and pathways identified here are in good agreement
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with those analyzed previously,'"*” and moreover, in the picture
of a set of global orthogonal coordinates from the LSDMap
analysis. In summary, the results presented show that LSDMap
appears to correctly extract the local and global diffusion dyna-
mics of Beta3s without any a priori knowledge of the system.

In this work we have applied the LSDMap approach to an
equilibrium sampling of the Beta3s obtained with an implicit
solvent model, as statistically meaningful data are computation-
ally inaccessible with an explicit solvent model. However, in
principle the application of LSDMap to a system sampled with an
explicit solvent model is essentially the same as what presented
here. It would be interesting to see if application of the LSDMap
analysis to folding of Beta3s in explicit solvent yields DCs involv-
ing solvent degrees of freedom once such simulations become
teasible.

We believe that the approach presented here can be used in
general to characterize complex diffusion processes involving
several (meta)stable states and multiple pathways.
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